
Under review as a conference paper at ICLR 2022

A PROOF OF THEOREM 3.1

Let G1 = (V1, E1, o1) and G2 = (V2, E2, o2) be two labelled graphs, then G1 and G2 are isomorphic
(i.e.G1 and G2 represent the same computation structure.) if and only if their canonical form are
identical, i.e. C(G1) = C(G2). Note that it means equality between the canonical forms, not
isomorphism. Let C(G1) = (V C

1 , EC
1 , oC1) and C(G2) = (V C

2 , EC
2 , oC2), then there exists bijections

⇡1 : V1 ! V C
1 and ⇡2 : V2 ! V C

2 , and we use ⇡�1
1 : V C

1 ! V1 and ⇡�1
2 : V C

2 ! V2 to denote their
inverse functions. Hence, we have C(G1) = C(G2) if and only if (1) oC1 (i) = oC2 (i) for 8i; and (2)
(i, j) 2 EC

1 , (i, j) 2 EC
2 for 8i, j.

Next, we will prove Theorem 3.1 by equivelantly showing that the sequence
(o(⇡�1(1)), p⇡�1(1)), (o(⇡

�1(2)), p⇡�1(2)), ..., (o(⇡
�1(n)), p⇡�1(n)) can guarantee the distinctness

of canonical forms C(G). For the notation convenience, let function f(⇡(j), {⇡(i), (i, j) 2 E}) =
Combine(⇡(j),Agg(⇡(i), (i, j) 2 E)) be the composition of function Agg and Combine, then it is
injective if and only if both Agg and Combine are injective. Forthermore, we use Seq1 to denote
the sequence (o1(⇡

�1
1 (1)), p⇡�1

1 (1)), (o1(⇡
�1
1 (2)), p⇡�1

1 (2)), ..., (o1(⇡
�1
1 (n)), p⇡�1

1 (n)), and Seq2 to
denote the sequence (oo2(⇡

�1
2 (1)), p⇡�1

2 (1)), (o2(⇡
�1
2 (2)), p⇡�1

2 (2)), ..., (o2(⇡
�1
2 (n)), p⇡�1

2 (n)).

So far, we know C(G1) 6= C(G2) , there (1) exist i such that oC1 (i) 6= oC2 (i), or (2) exist i, j such
that (i, j) 2 EC

1 but (i, j) 62 EC
2 (equivalently, (i, j) 62 EC

1 but (i, j) 2 EC
2).

Now, let’s prove C(G1) 6= C(G2)) Seq1 6= Seq2.

• (1) For the first case, ⇡1, ⇡2 are the bijections that map G1 and G2 to their canonical forms,
then we have:

o1(⇡
�1
1 (i)) = oC1 (⇡1(⇡

�1
1 (i)))

= oC1 (i)

o2(⇡
�1
2 (i)) = oC2 (⇡2(⇡

�1
2 (i)))

= oC2 (i)

Since oC1 (i) 6= oC2 (i), then we get o1(⇡�1
1 (i)) 6= o2(⇡

�1
2 (i)). indicating that Seq1 6= Seq2.

• (2) For the second case, according to the definition of canonical form, we know that
(⇡�1

1 (i),⇡�1
1 (j)) 2 E1 , (i, j) 2 EC

1 (similarly,(⇡�1
2 (i),⇡�1

2 (j)) 2 E2 , (i, j) 2 EC
2).

As such, we get:

p⇡�1
1 (j) = f(⇡1(⇡

�1
1 (j)), {⇡1(⇡

�1
1 (s)), (⇡�1

1 (s),⇡�1
1 (j)) 2 E1})

= f(j, {s, (s, j) 2 EC
1 })

p⇡�1
2 (j) = f(⇡2(⇡

�1
2 (j)), {⇡2(⇡

�1
2 (s)), (⇡�1

2 (s),⇡�1
2 (j)) 2 E1})

= f(j, {s, (s, j) 2 EC
2 })

Then, since (i, j) 2 EC
1 but (i, j) 62 EC

2 , we have {s, (s, j) 2 EC
1 } 6= {s, (s, j) 2 EC

2 }.
Since function f is injective, then we have p⇡�1

1 (j) 6= p⇡�1
2 (j). Hence, Seq1 6= Seq2

In the end, let’s prove the other direction, i.e. Seq1 6= Seq2) C(G1) 6= C(G2). When Seq1 6= Seq2,
there must (1) exist i such that o1(⇡�1

1 (i)) 6= o2(⇡
�1
2 (i)), or (2) exist j such that p⇡�1

1 (j) 6= p⇡�1
2 (j).

• (1) For the first case, as previous analysis, we have

oC1 (i) = o1(⇡
�1
1 (i))

oC2 (i) = o2(⇡
�1
2 (i))

Hence, we can get oC1 (i) 6= oC2 (i), which indicates C(G1) 6= C(G2).
• (2) For the second case, according to previous analysis, we know that:

p⇡�1
1 (j) = f(j, {s, (s, j) 2 EC

1 })

p⇡�1
2 (j) = f(j, {s, (s, j) 2 EC

2 })

14

Under review as a conference paper at ICLR 2022

Since f is injective, p⇡�1
1 (j) 6= p⇡�1

2 (j) implies that {s, (s, j) 2 EC
1 } 6= {s, (s, j) 2 EC

2 },
which indicates that there exists i such that (i, j) 2 EC

1 but (i, j) 62 EC
2 (or (i, j) 62 EC

1 but
(i, j) 2 EC

2). Henceforth, we get C(G1) 6= C(G2).

B MASK MATRIX

Here we provide two potential ways to get the mask matrix in PACE. Following the same notation as
the main paper, we use C(G) = (V C , EC , oC) to denote the canonical form of the input DAG G.

DFS Algorithm This algorithm takes the canonical form C(G) as input and performs the DFS
algorithm on the graph to explore all the nodes of the graph. Before we start the deep first search, we
traverse all edges in EC to find the direct-successors of each node i, and then put them in a set S(i).
Then, for each node i, we perform the DFS to get a dependent set D(i, and we have Mi,j = False if
and only if j 2 D(i).

Algorithm 1 DFS Algorithm
1: Initialization: D(i) = {}; Visited = [False for i 2 V C]; a source (start) node i, T = [i] (T is a

stack).
2: Visited[i] = True

3: while |T | > 0 do

4: j = T [�1]
5: delete j from T
6: for k in S(j) do

7: if Visited[k] = Flase then

8: put k in D(i)
9: Visited[k] = True

10: put k in T
11: end if

12: end for

13: end while

Floyd Algorithm The Floyd algorithm is originally proposed to for finding shortest paths in directed
weighted graphs. Here, we initialize the edge weights to be 1, and implement the Floyd algorithm to
find the distance dist(i, j) (i.e. length of the shortest directed path) between each node pair i, j in
C(G). Then we have Mi,j = False if and only if dist(i, j) > 0.

Algorithm 2 Floyd Algorithm
Initialization: dist(i, j) = 1 if (i, j) 2 EC else 0

2: for i 2 V C
do

for j 2 V C
do

4: for k 2 V C
do

if dist(j, k) > dist(j, i) + dist(i, k) then

6: dist(j, k) = dist(j, i) + dist(i, k)
end if

8: end for

end for

10: end for

C MULTI-HEAD SELF-ATTENTION MECHANISM

Here we introduce the multi-head (masked) self-attention attention mechanism in the Transformer
encoder blocks of PACE. For notation convenience, we use Hk to denote the output representation
of the kth Transformer encoder block, and use H0 to denote the input (i.e. the representation of the
sequence generated by dag2seq) to the first Transformer encoder block. Furthermore, we denote the

15

Under review as a conference paper at ICLR 2022

number of heads in the self-attention mechanism as h, and the embedding dimension (of each item in
the sequence) as d. Then the Transformer encoder blocks update representation Hk as following.

Hj
k = softmax(

Qj
k(K

j
k)

T

d
)V j

k for j = 1, 2, ...h (5)

Hk+1 = feed-forward(khj=1H
j
k) (6)

where Qj
k = HkW

j
k,q, Kj

k = HkW
j
k,k, V j

k = HkW
j
k,v are the query matrix, key matrix, value

matrix, respectively (i.e. W j
k,q,W

j
k,k,W

j
k,v are trainable parameter matrices); k represents the

concatenation operation; Feed-forward is a one-layer MLP. When we introduce the mask operation
into the Transformer encoder block. let M be the mask matrix from the Floyd algorithm or the BFS
algorithm, then we use following equation to replace equation 5 in the Transformer encoder block.

Hj
k = softmax(

Qj
k(K

j
k)

T +�1 ⇤M

d
)V j

k for j = 1, 2, ...h (7)

D MORE DETAILS ABOUT PACE IN THE VAE ARCHITECTURE

In the section, we describe the decoder of PACE-VAE. Figure 4 illustrates the overall architecture. In
the main paper, we have introduced how PACE maps input DAGs to the latent space, here we focus
on the decoder of PACE-VAE.

Figure 4: The illustration of PACE in the VAE architecture (PACE-VAE)

Similar to PACE, the decoder is constructed upon the Transformer decoder block. Each Transformer
decoder block consists of a masked multi-head self-attention layer (i.e. Euqtion 7), a multi-head
attention layer (i.e. Equation 5 except that the key matrix and value matrix are computed from
points z in the latent space), and a feed-forward layer (i.e. Equation 6). The decoder takes a
MLP as the embedding layer to generate node type embeddings as PACE. In analogous to the
dag2seq framework in PACE, the decoder also uses a GNN to generate the positional encoding based
on the learnt canonical order of nodes. Then the node embeddings and positional encodings are
concatenated and then fed into multiple consecutive Transformer decoder blocks to predict the node
representations, which is used to predict the node types and the existence of edges. In analogous to
the standard Transformer decoder, the decoder performs the shift right trick (i.e. the ith outputed
node representation corresponds to the i+1th node in the sequence) and adds a start symbol node (i.e.
the black node in Figure 4) at the beginning of the node sequence. Specifically, the canonical label
of the start symbol node is different from any possible canonical label in the dag2seq framework to
distinguish it’s position. For instance, DAG in the searching space contains at most N nodes, then the
canonical order of the start symbol node can be 0 or N +1. Let oi denote the output representation of
node i in the sequence, then it is used to predict the type of node i+1 in the sequence through a MLP.
Similarly, for any j < i, we use another MLP, which takes the concatenation of oj and oi as input, to
predict the existence of an directed edge from node j + 1 to node i+ 1 in the sequence. Note that the
canonical order can be generated from the topological sort by breaking ties using canonicalization

16

Under review as a conference paper at ICLR 2022

tools, such as Nauty. Thus, for each node i in the sequence, any dependent node j of this node must
be arranged in a prior position in the sequence (i.e. j < i). In the end, based on these predictions
(node representations), we can perform the teacher forcing to train the VAE.

E VISUALIZATION OF DETECTED OPTIMAL ARCHITECTURES ON NA AND BN

Figure 5: Best architectures on NA and BN detected by PACE.

In this section, we visualize the optimal architectures detected by Bayesian optimization (over the
latent DAG encoding space generated by PACE) on datasets NA and BN. Figure 5 illustrates our
results. On dataset BN, we find that the detected optimal Bayesian network structure is almost the
same as the ground truth (Figure 2 of (Lauritzen & Spiegelhalter, 1988)). In the ground truth, there is
another directed edge from node A (visit to Asia ?) to node T (Tuberculosis).

F RECONSTRUCTION ACCURACY AND GENERATION PERFORMANCE
COMPARISON

Table 5: Recon. accuracy, valid prior, uniqueness, novelty and overall (ave) performance %

NA BN
Methods Accuracy " Valid " Unique " Novel " Overall " Accuracy " Valid " Unique " Novel " Overall "

PACE 99.97 98.16 57.77 100.00 88.98 99.99 99.96 45.10 98.50 85.88

DAGNN 99.97 99.98 37.36 100.00 84.33 99.96 99.89 37.61 98.16 83.91
D-VAE 99.96 100.00 37.26 100.00 84.31 99.94 98.84 38.98 98.01 83.94
S-VAE 99.98 100.00 37.03 99.99 84.25 99.99 100.00 35.51 99.70 83.80
GraphRNN 99.85 99.84 29.77 100.00 82.37 96.71 100.00 27.30 98.57 80.65
GCN 5.42 99.37 41.48 100.00 61.57 99.07 99.89 30.53 98.26 81.94

Models parameterized with neural networks contribute to the inductive biases of the deep generative
models (Zhang et al., 2016; Keskar et al., 2017), thus the quality of the DAG encoder can be
characterized by the reconstruction accuracy (Accuracy) and the generation performance (i.e. the
proportions of valid/ unique/ novel architectures in generated DAGs.) of the corresponding VAE.

The reconstruction accuracy, prior validity, uniqueness and novelty are calculated in the same way
as Zhang et al. (2019). Empirical results are presented in Table 5, and we take the average of these
four measurements to characterize the overall performance of the deep generative model (i.e. VAE),
which also measures the quality of the DAG encoder. We find that PACE performs similarly well
in reconstruction accuracy, prior validity and novelty with D-VAE, DAGNN and S-VAE, while
significantly improving the uniqueness. Hence, PACE achieves the best overall performance and
generates more diverse DAG architectures.

17

	Introduction
	Backgrounds
	Parallelizable Sequence Models
	DAG Encoding Problem

	The PACE Model
	The Dag2seq Framework
	The Transformer in PACE
	Training Methodology

	Comparison to Related Works
	Experiments
	Datasets and Metrics
	Baselines and Model Configuration
	Experimental Results
	Computational Cost
	Ablation Study

	Conclusion
	Proof of Theorem 3.1
	Mask Matrix
	Multi-head Self-Attention Mechanism
	More Details about PACE in the VAE Architecture
	Visualization of Detected Optimal architectures on NA and BN
	Reconstruction accuracy and generation performance comparison

