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Abstract

This work studies the behavior of shallow ReLU networks trained with the logistic
loss via gradient descent on binary classification data where the underlying data
distribution is general, and the (optimal) Bayes risk is not necessarily zero. In this
setting, it is shown that gradient descent with early stopping achieves population
risk arbitrarily close to optimal in terms of not just logistic and misclassification
losses, but also in terms of calibration, meaning the sigmoid mapping of its outputs
approximates the true underlying conditional distribution arbitrarily finely. More-
over, the necessary iteration, sample, and architectural complexities of this analysis
all scale naturally with a certain complexity measure of the true conditional model.
Lastly, while it is not shown that early stopping is necessary, it is shown that any
univariate classifier satisfying a local interpolation property is inconsistent.

1 Overview and main result

Deep networks trained with gradient descent seem to have no trouble adapting to arbitrary prediction
problems, and are steadily displacing stalwart methods across many domains. In this work, we
provide a mathematical basis for this good performance on arbitrary binary classification problems,
considering the simplest possible networks: shallow ReLU networks where only the inner (input-
facing) weights are trained via vanilla gradient descent with a constant step size. The central
contributions are as follows.

1. Fully general classification tasks. The joint distribution generating the (x, y) pairs only requires
x to be bounded, and is otherwise arbitrary. In particular, the underlying distribution may be
noisy, meaning the true conditional model of the labels, Pr[Y = 1|X = x], is arbitrary.
In this setting, we show that as data, width, and training time increase, the logistic loss measured
over the population converges to optimality over all measurable functions, which moreover
implies that the induced conditional model (defined by a sigmoid mapping) converges to the true
model, and the population misclassification rate also converges to optimality. This is in contrast
with prior analyses of gradient descent, which either only consider the training risk [Allen-Zhu
et al., 2018b, Du et al., 2019, Zou et al., 2018, Oymak and Soltanolkotabi, 2019, Song and Yang,
2019], or can only handle restricted conditional models [Allen-Zhu et al., 2018a, Arora et al.,
2019, Cao and Gu, 2019, Nitanda and Suzuki, 2019, Ji and Telgarsky, 2020b, Chen et al., 2021].

2. Adaptivity to data simplicity. The required number of data samples, network nodes, and
gradient descent iterations all shrink if the distribution satisfies a natural notion of simplicity:
the true conditional model Pr[Y = 1|X = x] is approximated well by a low-complexity
infinite-width random feature model.

Rounding out the story and contributions, firstly we present a brief toy univariate model hinting
towards the necessity of early stopping: concretely, any univariate predictor satisfying a local
interpolation property can not achieve optimal test error for noisy distributions. Secondly, our
analysis is backed by a number of lemmas that could be useful elsewhere; amongst these are a
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multiplicative error property of the logistic loss, and separately a technique to control the effects of
large network width over not just a finite sample, but over the entire sphere.

1.1 Main result: optimal test error via gradient descent

The goal in this work is to minimize the logistic risk over the population: letting µ denote an arbitrary
Borel measure over (x, y) pairs with compactly-supported marginal µx and conditional py, with
a data sample ((xi, yi))

n
i=1, and a function f , define the logistic loss, empirical logistic risk, and

logistic risk respectively as

ℓ(r) := ln(1 + e−r), R̂(f) :=
1

n

n∑
k=1

ℓ(ykf(xk)), R(f) := Ex,yℓ(yf(x)).

We use the logistic loss not only due to its practical prevalence, but also due to an interesting
multiplicative error property which strengthens our main results (cf. Lemma B.1 and Theorem 1.1),
all while being Lipschitz.

We seek to make the risk R(f) as small as possible: formally, we compare against the Bayes risk

R := inf
{
R(f) : measurable f :Rd → R

}
.

While competing with R may seem a strenuous goal, in fact it simplifies many aspects of the learning
task. Firstly, due to the universal approximation properties of neural networks [Funahashi, 1989,
Hornik et al., 1989, Cybenko, 1989, Barron, 1993], we are effectively working over the space of all
measurable functions already. Secondly, as will be highlighted in the main result below, via the theory
of classification calibration [Zhang, 2004, Bartlett et al., 2006], competing with the Bayes (convex)
risk also recovers the true conditional model, and minimizes the misclassification loss; this stands
in contrast with the ostensibly more modest goal of minimizing misclassification over a restricted
class of predictors, namely the agnostic learning setting, which suffers a variety of computational
and statistical obstructions [Goel et al., 2020a,b, Yehudai and Shamir, 2020, Frei et al., 2020].

Our predictors are shallow ReLU networks, trained via gradient descent — the simplest architecture
which is not convex in its parameters, but satisfies universal approximation. In detail, letting (aj)

m
j=1

be uniformly random ±1 signs, (wj)
m
j=1 with wj ∈ Rd be standard Gaussians, and ρ > 0 be a

temperature, we predict on an input x ∈ Rd with

f(x; ρ, a,W ) := f(x;W ) :=
ρ√
m

m∑
j=1

ajσr(w
T

jx),

where σr(z) := max{0, z} is the ReLU; since only W is trained, both ρ and a are often dropped. To
train, we perform gradient descent with a constant step size on the empirical risk:

Wi+1 := Wi − η∇R̂(Wi), where R̂(W ) := R̂
(
x 7→ f(x;W )

)
.

Our guarantees are for an iterate with small empirical risk and small norm: W≤t := argmin{R̂(Wi) :
i ≤ t, ∥Wi −W0∥ ≤ Rgd}, where Rgd is our early stopping radius: if Rgd is guessed correctly, our
rates improve, but our analysis also handles the case Rgd = ∞ where no guess is made, and indeed
this is used in our final consistency analysis (a pessimistic, fully general setting).

Our goal is to show that this iterate W≤t has approximately optimal population risk: R(W≤t) ≈ R.
Certain prediction problems may seem simpler than others, and we want our analysis to reflect this
while abstracting away as many coincidences of the training process as possible. Concretely, we
measure simplicity via the performance and complexity of an infinite-width random feature model
over the true distribution, primarily based on the following considerations.

• By measuring performance over the population, random effects of the training sample are
removed, and it is impossible for the random feature model to simply revert to memorizing data,
as it never sees that training data.

• The random feature model has infinite width, and via sampling can be used as a benchmark for
all possible widths simultaneously, but is itself freed from coincidences of random weights.
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In detail, our infinite-width random feature model is as follows. Let U∞ : Rd → Rd be an
(uncountable) collection of weights (indexed by Rd), and define a prediction mapping via

f(x;U∞) :=

∫ 〈
U∞(v), x1[vTx ≥ 0]

〉
dN (v), whereby R(U∞) := R(x 7→ f(x;U∞)).

Note that for each Gaussian random vector v ∼ N , we construct a random feature x 7→ x1[vTx ≥ 0].
This particular choice is simply the gradient of a corresponding ReLU ∇vσr(v

Tx), and is motivated
by the NTK literature [Jacot et al., 2018, Li and Liang, 2018, Du et al., 2019]. A similar object has
appeared before in NTK convergence analyses [Nitanda and Suzuki, 2019, Ji and Telgarsky, 2020b],
but the conditions on U∞ were always strong (e.g., data separation with a margin).

What, then, does it mean for the data to be simple? In this work, it is when there exists a U∞ with
R(U∞) ≈ R, and moreover U∞ has low norm; for technical convenience, we measure the norm as
the maximum over individual weight norms, meaning supv ∥U∞(v)∥. To measure approximability,
for sake of interpretation, we use the binary Kullback-Leibler divergence (KL): defining a conditional
probability model ϕ∞ corresponding to U∞ via

ϕ∞(x) := ϕ(f(x;U∞)), where ϕ(r) :=
1

1 + exp(−r)
,

then the binary KL can be written as

Kbin(py, ϕ∞) :=

∫ (
py ln

py
ϕ∞

+ (1− py) ln
1− py
1− ϕ∞

)
dµx = R(U∞)−R.

This relationship between binary KL and the excess risk is a convenient property of the logistic loss,
which immediately implies calibration as a consequence of achieving the optimal risk.

The pieces are all in place to state our main result.

Theorem 1.1. Let width m ≥ ln(emd), temperature ρ > 0, and reference model U∞ be given with
R := max{4, ρ, supv ∥U∞(v)∥} < ∞, and define a corresponding conditional model ϕ∞(x) :=
ϕ(f(x;U∞)). Let optimization accuracy ϵgd and radius Rgd ≥ R/ρ be given, define effective radius

B := min
{
Rgd,

3R
ρ + 4e

ρ

√
t
√
eτ0R(U∞) +Rτn

}
, and generalization, linearization, and sampling

errors (τn, τ1, τ0) as

τn := Õ

(
(d ln(1/δ))3/2√

n

)
, τ1 := Õ

(
ρB4/3

√
d ln(1/δ)

m1/6

)
, τ0 := Õ

(
ρ ln(1/δ) +

√
d ln(1/δ)

m1/4

)
,

where it is assumed τ1 ≤ 2, and Õ hides constants and ln(nmd). Choose step size η := 4/ρ2, and
run gradient descent for t := 1/(8ϵgd) iterations, selecting iterate W≤t := argmin{R̂(Wi) : i ≤
t, ∥Wi −W0∥ ≤ Rgd}. Then, with probability at least 1− 25δ,

R(W≤t)−R (logistic error)

≤ Kbin(py, ϕ∞) +
(
eτ1+τ0 − 1

)
R(U∞) (reference model error)

+ eτ1R2ϵgd (optimization error)
+ eτ1(ρB +R)τn (generalization error),

where the classification and calibration errors satisfy

R(W≤t)−R (logistic error)

≥ 2

∫ (
ϕ(f(x;W≤t))− py

)2
dµx(x) (calibration error)

≥ 1

2

(
Rz(W≤t)−Rz

)2
(classification error).

Lastly, for any ϵ > 0, there exists U
(ϵ)

∞ with supv ∥U
(ϵ)

∞ (v)∥ < ∞ and whose conditional model

ϕ
(ϵ)
∞ (x) := ϕ(f((x, 1)/

√
2;U

(ϵ)

∞ )) satisfies Kbin(py, ϕ
(ϵ)
∞ ) ≤ ϵ.
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Remark 1.1. The key properties of Theorem 1.1 are as follows.

1. (Achieving error O(ϵ) in three different regimes.) As Theorem 1.1 is quite complicated,
consider three different situations, which vary the reference model U∞ and its norm upper
bound R := max{4, ρ, supv ∥U∞(v)∥} < ∞, as well as the early stopping radius Rgd. Let
target population (excess) risk ϵ > 0 be given, set ϵgd = ϵ and t = 1/(8ϵgd) as in Theorem 1.1,
and suppose n ≥ 1/ϵ2 samples: in each of the three following settings, the other parameters
parameters (namely ρ and m) will be chosen to ensure a final error R(W≤t)−R = O(ϵ).

(a) (Easy data.) Suppose a setting with easy data: specifically, suppose that for chosen target
accuracy ϵ > 0, there exists U∞ with Kbin(py, ϕ∞) = R(U∞) − R ≤ R(U∞) ≤ ϵ. If
we set ρ = 1 and m ≥ R8, then (τn, τ1, τ0) are all constant, and we get a final bound
R(W≤t)−R = O(ϵ).
Note crucially that m ≈ R8 sufficed for this setting; this was a goal of the present analysis,
as it recovers the polylogarithmic width analyses from prior work [Ji and Telgarsky, 2020b,
Chen et al., 2021]. Those works however either used a separation condition due to Nitanda
and Suzuki [2019] in the shallow case, or an assumption on the approximation properties
of the sampled weights (a random variable) in the deep case, and thus the present analysis
provides not just a re-proof, but a simplification and generalization. This was the motivation
for the strange multiplicative form of the errors in Theorem 1.1: had we used the more
common additive errors with standard linearization tools, a polylogarithmic width proof
would fail.

(b) (General data, clairvoyant early stopping radius Rgd.) Suppose that we are in the
general noisy case, meaning any U∞ we pick has a large error Kbin(py, ϕ∞), but we
magically know the R corresponding to a good U∞, and can choose Rgd = R/ρ. Unlike
the previous case, to achieve some target error ϵ, we need to work harder to control the
term

[
exp(τ1 + τ0)− 1

]
R(U∞), since we no longer have small R(U∞); to this end, since

τ1 = Õ(R4/3/(mρ2)1/6) and τ0 = Õ(ρ+ 1/m1/4), choosing ρ = m−1/8 and m = 1/ϵ8

gives τ1 = Õ(ϵ) and τ0 = Õ(ϵ), and together R(W≤t)−R = O(ϵ).
(c) (General data, worst-case early stopping.) Suppose again the case of general noisy data

with large error Kbin(py, ϕ∞) for any U∞ we pick, but now suppose we have no early
stopping hint, and pessimistically set Rgd = ∞. As a consequence of all of this, the term
B can scale as t2/3/ρ = 1/(ρϵ2/3), thus to control τ1 = Õ((1/ϵ)2/3/(mρ2)1/6) and τ0 =

Õ(ρ+ 1/m1/4), we can again choose ρ = m−1/8, but need a larger width m = 1/ϵ40/3.
Together, we once again achieve population excess risk R(W≤t)−R = O(ϵ).

Summarizing, a first key point is that arbitrarily small excess risk O(ϵ) is always possible; as
discussed, this is in contrast to prior work, which either only gave training error guarantees, or
required restrictive conditions for small test error. A second key point is that the parameters of
the bound, most notably the required width, will shrink greatly when either the data is easy, or
an optimal stopping radius Rgd is known.

2. (Consistency.) Consistency is a classical statistical goal of achieving the optimal test error
almost surely over all possible predictors as n → ∞; here it is proved as a consequence of
Theorem 1.1, namely the preceding argument that we can achieve excess risk O(ϵ) even with
general prediction problems and no early stopping hints (Rgd = ∞). The consistency guarantee
is stated formally in Corollary 2.3. The statement takes the width to infinity, and demonstrates
another advantage of using an infinite-width reference model: within the proof, after fixing a
target accuracy, the reference model is fixed and used for all widths simultaneously.

3. (Non-vacuous generalization, and an estimate of R.) There is extensive concern throughout
the community that generalization estimates are hopelessly loose [Neyshabur et al., 2014, Zhang
et al., 2016, Dziugaite and Roy, 2017]; to reduce the concern here, we raise two points. Firstly,
these concerns usually involve explicit calculations of generalization bounds which have terms
scaling with some combination of ∥W∥ (not ∥W −W0∥) and m; e.g,. one standard bound has
spectral norms ∥W∥2 and (2, 1) matrix norms ∥(W −W0)

T∥2,1, which are upper bounded by
∥W −W0∥

√
m [Bartlett et al., 2017]. By contrast, the present work uses a new generalization
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bound technique (cf. Lemma B.8) which first de-linearizes the network, then applies a linear
generalization bound which has only ∥W−W0∥ and no explicit poly(m), and then re-linearizes.

Secondly, there may still be concern that the story here is broken due to the term R, and namely
the non-existence of good choices for U∞. For this, we conducted a simple experiment. Noting
that we can freeze the initial features and train linear predictors of the form f (0)(x;V ) for
weights V ∈ Rm×d (cf. section 1.4), and that the performance converges to the infinite-width
performance as m → ∞, we fixed a large width and trained two prediction tasks: an easy task of
MNIST 1 vs 5 until Reasy/

√
n ≈ 1/2, and a hard task of MNIST 3 vs 5 until Rhard/

√
n ≈ 1/2.

After training, we obtained test error R(Veasy) ≈ 0.01 and R(Vhard) ≈ 0.08. Plugging all of
these terms back in to the bound, firstly these techniques can yield a non-vacuous generalization
bound, secondly they do not exhibit bad scaling with large width, and thirdly they do reflect the
difficulty of the problem, as desired.

4. (Early stopping and the NTK.) As discussed above, when the data is noisy, the method is
explicitly early stopped, either by clairvoyantly choosing Rgd, or by making t small. In this
setting, the optimization accuracy ϵgd is an excess empirical risk, meaning in particular that 0
training error (the interpolation regime [Belkin et al., 2018a]) will not be reached. This is in
stark contrast to standard NTK analyses [Allen-Zhu et al., 2018b], which guarantee zero training
error, but can not ensure good test error in general. Since the NTK itself is an early stopping (as
in, if one continues to optimizes, one exits the NTK), then the early stopping in this work is even
earlier than the NTK early stopping; this situation is summarized in Figure 1 in the appendix,
and will be revisited for the lower bound in Section 1.2.

5. (Classification and calibration.) The relationship to classification and calibration errors is
merely a restatement of existing results [Zhang, 2004, Bartlett et al., 2006], though it is reproved
here in an elementary way for the special case of the logistic loss. Similarly, the guarantee that
Kbin(py, ϕ

(ϵ)
∞ ) can be made arbitrarily small is also not a primary contribution, and indeed most

of the heavy lifting is provided both by prior work in neural network approximation [Barron,
1993], and by the existing and reliable machinery for proving consistency [Schapire and Freund,
2012]. As such, the consistency result is stated only much later in Corollary 2.3, and our focus
is on the exact risk guarantees in Theorem 1.1.

6. (Inputs with bias: (x, 1)/
√
2 ∈ Rd+1.) The end of Theorem 1.1 appends a constant to the

input (and rescales), which simulates a bias term inside each ReLU; this is necessary since our
models are (sigmoid mappings of) homogeneous functions, whereas py is general. Biases are
also simulated in this way in the consistency result in Corollary 2.3.

Further discussion of Theorem 1.1, including the formal consistency result (cf. Corollary 2.3) and a
proof sketch, all appear in Section 2. Full proofs appear in the appendices.

1.2 Should we early stop?

Theorem 1.1 uses early stopping: it can blow up if R > 0 and the two gradient descent parameters
Rgd and 1/ϵgd are taken to ∞ in an uncoordinated fashion. Part of this is purely technical: as with
many neural network optimization proofs, the analysis breaks when far from initialization. It is
of course natural to wonder what happens if one trains indefinitely, entering the actively-studied
interpolation regime [Belkin et al., 2018b,a, Bartlett et al., 2019]. Furthermore, there is evidence that
gradient descent on shallow networks limits towards a particular interpolating choice, one with large
margins [Soudry et al., 2018, Lyu and Li, 2020, Chizat and Bach, 2020, Ji and Telgarsky, 2020a]. Is
this behavior favorable?

While we do not rule out that the interpolating solutions found by neural networks perform well, we
show that at least in the low-dimensional (univariate!) setting, if a prediction rule perfectly labels the
data and is not too wild between training points, then it is guaranteed to achieve poor test loss on
noisy problems. This negative observation is not completely at odds with the interpolation literature,
where the performance of some rules improves with dimension [Belkin et al., 2018b].

Proposition 1.2. Given a finite sample ((xi, yi))
n
i=1 with xi ∈ R and yi ∈ {±1}, let Fn denote the

collection of local interpolation rules (cf. Figure 2 in the appendix): letting x(i) index examples in
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sorted order, meaning x(1) ≤ x(2) ≤ · · · ≤ x(n), define Fn as

Fn :=
{
f : R → R : ∀i f(x(i)) = y(i), and

if y(i) = y(i+1), then inf
α∈[0,1]

f
(
αx(i) + (1− α)x(i+1)

)
y(i) > 0

}
.

Then there exists a constant c > 0 so that with probability at least 1−δ over the draw of ((xi, yi))
n
i=1

with n ≥ ln(1/δ)/c, every f ∈ Fn satisfies Rz(f) ≥ R̄z(f) + c.

Although a minor contribution, this result will be discussed briefly in Section 3, with detailed proofs
appearing in the appendices. For a similar discussion for nearest neighbor classifiers albeit under a
few additional assumptions, see [Nakkiran and Bansal, 2021].

1.3 Related work

Analyses of gradient descent. The proof here shares the most elements with recent works whose
width could be polylogarithmic in the sample size and desired target accuracy 1/ϵ [Ji and Telgarsky,
2020b, Chen et al., 2021]. Similarities include using a regret inequality as the core of the proof, using
an infinite-width target network [Nitanda and Suzuki, 2019, Ji and Telgarsky, 2020b], and using a
linearization inequality [Chen et al., 2021, Allen-Zhu et al., 2018b]. On the technical side, the present
work differs in the detailed treatment of the logistic loss, and in the linearization inequality which
is extended to hold over the population risk; otherwise, the core gradient descent analysis here is
arguably simplified relative to these prior works. It should be noted that the use of a regret inequality
here and in the previous works crucially makes use of a negated term which was dropped in some
classical treatments; this trick is now re-appearing in many places [Orabona and Pál, 2021, Frei et al.,
2020].

There are many other, somewhat less similar works in the vast literature of gradient descent on neural
networks, in particular in the neural tangent regime [Jacot et al., 2018, Li and Liang, 2018, Du et al.,
2019]. These works often handle not only training error, but also testing error [Allen-Zhu et al., 2018a,
Arora et al., 2019, Cao and Gu, 2019, Nitanda and Suzuki, 2019, Ji and Telgarsky, 2020b, Chen et al.,
2021]. As was mentioned before, these works do not appear to handle arbitrary target models; see
for instance the modeling discussion in [Arora et al., 2019, Section 6]. As another interesting recent
example, some works explicitly handle certain noisy conditional models, but with error terms that do
not go to zero in general [Liang et al., 2021].

Consistency. Consistency of deep networks with classification loss and some training procedure is
classical; e.g., in [Farago and Lugosi, 1993], the authors show that it suffices to run a computationally
intractable algorithm on an architecture chosen to balance VC dimension and universal approximation.
Similarly, the work here makes use of Barron’s superposition analysis in an infinite-width form to meet
the Bayes risk [Barron, 1993, Ji et al., 2020b]. The statistics literature has many other works giving
beautiful analyses of neural networks, e.g., even with minimax rates [Schmidt-Hieber, 2017], though
it appears this literature generally does not consider gradient descent and arbitrary classification
objectives.

In the boosting literature, most consistency proofs only consider classification loss [Bartlett and
Traskin, 2007, Schapire and Freund, 2012], though there is a notable exception which controls the
convex loss (and thus calibration), although the algorithm has a number of modifications [Zhang and
Yu, 2005]. In all these works, arbitrary py are not handled explicitly as here, but rather implicitly via
assumptions on the expressiveness of the weak learners. One exception is the logistic loss boosting
proof of Telgarsky [2013], which explicitly handles measurable py via Lusin’s theorem as is done
here, but ultimately the proof only controls classification loss.

Following the arXiv posting of this work, a few closely related works appeared. Firstly, Richards and
Kuzborskij [2021] show that the expected excess risk can scale with ∥Wt −W0∥F/n

α, though in
contrast with the present work, it is not shown that this ratio can go to zero for arbitrary prediction
problems, and moreover the bound is in expectation only. Secondly, the work of Braun et al. [2021]
is even closer, however it requires a condition on the Fourier spectrum of the conditional model py,
which is circumvented here via a more careful Fourier analysis due to Ji et al. [2020b].

Calibration. There is an increasing body of work considering the (in)ability of networks trained
with the logistic loss to recover the underlying conditional model. Both on the empirical side [Guo
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et al., 2017] and on the theoretical side [Bai et al., 2021], the evidence is on the side of the logistic
loss doing poorly, specifically being overconfident, meaning the sigmoid outputs are too close to 0 or
1. This overconfident regime corresponds to large margins; indeed, since gradient descent can be
proved in some settings to exhibit unboundedly large unnormalized margins on all training points
[Lyu and Li, 2020], the sigmoid mapping of the predictions will necessarily limit to exactly 0 or
1. On the other hand, as mentioned in [Bai et al., 2021], regularization suffices to circumvent this
issue. In the present work, a combination of early stopping and small temperature are employed.
As mentioned before, calibration is proved here as an immediate corollary of meeting the optimal
logistic risk via classification calibration [Zhang, 2004, Bartlett et al., 2006].

1.4 Further notation and technical background

The loss ℓ, risks R and R̂, and network f have been defined. The misclassification risk Rz(f) =
Pr[sgn(f(X)) ̸= Y ] appeared in Theorem 1.1, where sgn(f(x)) = 2 · 1[f(x) ≥ 0]− 1.

Next, consider the “gradient” of f with respect to weights W :

∇f(x;W ) :=
ρ√
m

m∑
j=1

aj1[w
T

jx ≥ 0]ejx
T;

it may seem the nondifferentiability at 0 is concerning, but in analyses close to initialization (as is the
one here), few activations change, and their behavior is treated in a worst-case fashion. Note that, as
is easily checked with this expression, ∥∇f(W )∥ ≤ ρ, which is convenient in many places in the
proofs. Here ∥ · ∥ denotes the Frobenius norm; ∥ · ∥2 will denote the spectral norm.

Given weight matrix Wi at time i, let (wT
i,j)

m
j=1 refer to its rows. Define features f (i) at time i and a

corresponding empirical risk R̂(i) using the features at time i as

f (i)(x;V ) :=
〈
∇f(x;Wi), V

〉
=

ρ√
m

∑
j

ajv
T

jx1[w
T

i,jx ≥ 0],

R̂(i)(x;V ) := R̂(x 7→ f (i)(x;V )).

By 1-homogeneity of the ReLU, f (i)(x;Wi) = f(x;Wi), which will also be used often. These
features at time i, meaning f (i) and R̂(i), are very useful in analyses near initialization, as they do
not change much. As such, f (0) and R(0) and R̂(0) will all appear often as well.

To be a bit pedantic about the measure µ: as before, there is a joint distribution µ, which is over the
Borel σ-algebra on Rd × {±1}, where ∥x∥ ≤ 1 almost surely. This condition suffices to grant both
a disintegration of µ into marginal µx and conditional py [Kallenberg, 2002, Chapter 6], and also
Lusin’s theorem [Folland, 1999, Theorem 7.10], which is used to switch from a measurable function
to a continuous one in the consistency proof (cf. Corollary 2.3).

2 Discussion and proof sketch of Theorem 1.1

This section breaks down the proof and discussion into four subsections: a section with common
technical tools, then sections for the analysis of generalization, optimization, and approximation.

2.1 Key technical lemmas

There are two main new technical ideas which power many parts of the proofs: a multiplicative error
property of the logistic loss, and a linearization over the sphere.

The logistic loss property is simple enough: for any a ≥ b, it holds that ℓ(−a)/ℓ(−b) ≤ exp(a− b).
On the surface, this seems innocuous, but this simple inequality allows us to reprove existing
polylogarithmic width results for easy data [Ji and Telgarsky, 2020b, Chen et al., 2021], however
making use of a proof scheme which is slightly more standard, or at the very least more apparently
a smooth convex proof with just this one special property of the logistic loss (as opposed to a few
special properties).
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The second tool is more technical, and is used crucially in many places in the proof. Many prior
analyses near initialization bound the quantity

f(x;V )− f(x;W )−
〈
∇f(x;W ), V −W

〉
,

where V and W are both close to initialization [Allen-Zhu et al., 2018b, Cao and Gu, 2019, Chen
et al., 2021]. These proofs are typically performed on a fixed example xk, and then a union bound
carries them over to the whole training set. Here, instead, such a bound is extended to hold over the
entire sphere, as follows.
Lemma 2.1 (Simplification of Lemma B.7). Let scalars δ > 0 and RV ≥ 1 and RB ≥ 0 be given.

1. With probability at least 1− 3nδ,

sup
∥Wi−W0∥≤RV

∥Wj−W0∥≤RV

∥B−W0∥≤RB

R̂(i)(B)

R̂(j)(B)
≤ exp

(
6ρ (RB + 2RV )R

1/3
V ln(e/δ)1/4

m1/6

)
.

2. Suppose m ≥ ln(edm). With probability at least 1− (1 + 3(d2m)d)δ,

sup
∥Wi−W0∥≤RV

R(Wi)

R(0)(Wi)
≤ exp

(
25ρR

4/3
V

√
ln(edm/δ)

m1/6

)
.

The preceding lemma combines both the linearization technique and the multiplicative error property:
it bounds how much the empirical and true risk change for a fix weight matrix if we swap in and
out the features at different iterations. That these bounds are a ratio is due to the multiplicative error
property. That the second part holds over the true risk, in particular controlling behavior over all
∥x∥ ≤ 1, is a consequence of the new more powerful linearization technique. This linearization
over the sphere is used crucially in three separate places: we use it when controlling the range in
the generalization proofs, when de-linearizing after generalization, and when sampling from the
infinite-width model U∞. The method of proof is inspired by the concept of co-VC dimension
[Gurvits and Koiran, 1995]: the desired inequality is first union bounded over a cover of the sphere,
and then relaxed to all points on the sphere. A key difficulty here is the non-smoothness of the ReLU,
and a key lemma establishes a smoothness-like inequality (cf. Lemma B.5). These techniques appear
in full in the appendices.

2.2 Generalization analysis

The generalization analysis ends up being easy thanks to the multiplicative error control in Lemma B.1,
and the aforementioned linearization over all points in the sphere. Specifically, to prove general-
ization, the network is first linearized, then generalization of linear predictors is applied, and then
de-linearization is applied on the population risk side. This generalization bound only pays logarith-
mically in the width m.

Typically the easiest step in proving generalization is to provide a worst-case estimate on the range of
the predictor. Here, since there is a goal of controlling the logistic loss over the population, brute
forcing this range estimate incurs a polynomial dependence on network width. The solution here
is again to apply the aforementioned Lemma B.3; the generalization statement appears in full as
Lemma B.8 together with its proof in the appendices.

2.3 Gradient descent analysis

A common tool in linear prediction is the regret inequality

∥vt − z∥2 + 2η
∑
i<t

R̂(vi+1) ≤ ∥v0 − z∥2 + 2tηR̂(z),

which can be derived by expanding the square in ∥vt − z∥2 and applying smoothness and convexity.
The term ∥vt − z∥2 is often dropped, but can be used in a very convenient way: by the triangle
inequality, if ∥vt − v0∥ ≥ 2∥z − v0∥, then the norm terms above may be canceled from both sides,
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which leaves only the empirical risk terms; overall, this argument ensures both small norm and small
empirical risk. This idea has appeared in a variety of works [Shamir, 2020, Ji et al., 2020a], and is
used here to provide a convenient norm control, allowing linearization and all other proof parts to go
through. Combining this idea with the earlier generalization analysis and a few other minor tricks
gives the following bounds, which in turn provide most of Theorem 1.1.

Lemma 2.2. Let temperature ρ > 0, step size η ≤ 4/ρ2, optimization accuracy ϵgd > 0, ra-
dius Rgd > 0, network width m ≥ ln(emd), reference matrix Z ∈ Rm×d, corresponding scalar
RZ ≤ Rgd where RZ ≥ max{1, ηρ, ∥W0 − Z∥}, and t ≥ 1/(2ηρ2ϵgd) be given; correspond-
ingly define W≤t := argmin{R̂(Wi) : i ≤ t, ∥Wi − W0∥ ≤ Rgd}. Define effective radius

B := min
{
Rgd, 3RZ + 2e

√
ηtR̂(0)(Z)

}
, and linearization and generalization errors

τ :=
25ρB4/3

√
d ln(em2d3/δ)

m1/6
, τn :=

80
(
d ln(em2d3/δ)

)3/2
√
n

,

and suppose τ ≤ 2. Then, with probability at least 1 − 3nδ, the selected iterate W≤t satisfies
∥W≤t −W0∥ ≤ B, along with the empirical risk guarantee

R̂(W≤t) ≤ e2τ R̂(0)(Z) + eτ (ρRZ)
2ϵgd,

and by discarding an additional 16δ failure probability, then R̂(0)(Z) ≤ R(0)(Z) + ρRZτn, and

R(W≤t) ≤ e4τR(0)(Z) + e3τ (ρRZ)
2ϵgd + e4τ (B +RZ)ρτn.

This version of the statement, unlike Theorem 1.1, features an arbitrary reference matrix Z. This is
powerful, though it can be awkward, since W0 is a random variable.

2.4 Approximation analysis, consistency, and the proof of Theorem 1.1

Rather than trying to reason about good predictors which may happen to be close to random initializa-
tion, the approach here is instead to start from deterministic predictors over the population (e.g., U∞),
and to use their structure to construct approximants near the initial iterate, the random matrix W0.
Specifically, the approach here is fairly brute force: given initial weights W0 with rows (wT

0,j)
m
j=1,

the rows (uj)
m
j=1 of the finite width reference matrix U ∈ Rm×d intended to mimic U∞ (which is

after all a mapping U∞ : Rd → Rd) are simply

uj :=
ajU∞(w0,j)

ρ
√
m

+ w0,j . (1)

By construction, ∥U −W0∥ ≤ R/ρ, where R := supv ∥U∞(v)∥. To argue that R(0)(U) and R(U∞)
are close, the abstract control over the sphere in Lemma B.3 is again used. Plugging this U into
Lemma 2.2 and introducing Kbin(py, ϕ∞) via Lemma B.1 gives the first part of Theorem 1.1, and the
second part of Theorem 1.1 is also from Lemma B.1.

It remains to prove that for any py , there exists U∞ with ϕ(x 7→ f((x, 1)/
√
2;U∞)) ≈ py (we must

include a bias term, as mentioned in Remark 1.1). If py were continuous, there is a variant of Barron’s
seminal universal approximation construction which explicitly gives an infinite-width network of the
desired form [Barron, 1993, Ji et al., 2020b]. To address continuity is even easier: Lusin’s theorem
[Folland, 1999, Theorem 7.10] lets us take the measurable function py, and obtain a continuous
function that agrees with it on all but a negligible fraction of the domain. This completes the proof.

As mentioned, a key property of the reference model U∞ is that it depends on neither the random
sampling of data, nor the random sampling of weights. This vastly simplifies the proof of consistency,
where the proof scheme first fixes an ϵ > 0 and chooses a U∞, and leaves it fixed as m and n vary.

Corollary 2.3. Let early stopping parameter ξ ∈ (0, 1) be given, and for each sample size n, define
a weight matrix Ŵn ∈ Rm(n)×(d+1) and corresponding conditional probability model ϕ̂n(x) :=

ϕ(f((x, 1)/
√
2; Ŵn)) as follows. For each sample size n, let (W (n)

i )i≥0 denote the corresponding
sequence of gradient descent iterates obtained with parameter choices ρ(n) := (m(n))−1/8, and
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m(n) := n
40
3 (1−ξ), and η(n) := 4/(ρ(n))2, and ϵ

(n)
gd := nξ−1, and t(n) := n1−ξ/8, and choose the

empirical risk minimizer over the sequence, meaning Ŵn := argmin
{
R̂(W

(n)
i ) : i ≤ t(n)

}
(in the

notation of Theorem 1.1, this is W≤t with Rgd = ∞). Then

R(Ŵn) −−−−−→ R a.s., Rz(Ŵn) −−−−−→ Rz a.s., ϕ̂n
L2(µx)−−−−−→ py a.s.,

where the last convergence is in the L2(µx) metric.

The use of a parameter ξ ∈ (0, 1) is standard in similar consistency results; see for instance the
analogous parameter in the consistency analysis of AdaBoost [Bartlett and Traskin, 2007]. Proofs, as
usual, are in the appendices.

3 Discussion and proof sketch of Proposition 1.2

Proposition 1.2 asserts that univariate local interpolation rules — predictors which perfectly fit
the data, and are not too wild between data points of the same label — will necessarily achieve
suboptimal population risk. The proof idea seems simple enough: if the true conditional probability
py is not one of {0, 1/2, 1} everywhere, and is also continuous, then there must exist a region where
it is well separated from these three choices. It seems natural that a constant fraction of the data in
these regions will form adjacent pairs with the wrong label; a local interpolation rule will fail on
exactly these adjacent noisy pairs, which suffices to give the bound. In reality, while this is indeed the
proof scheme followed here, the full proof must contend with many technicalities and independence
issues. It appears in the appendices.

While the motivation in Section 1.2 focused on neural networks which interpolate, and also maximum
margin solutions, the behavior on this noisy univariate data is also well-illustrated by k-nearest-
neighbors classifiers (k-nn). Specifically, 1-nn is a local interpolant, and Proposition 1.2 applies. On
the other hand, choosing k = Θ(ln(n)) is known to provide enough smoothing to achieve consistency
and avoid interpolation [Devroye et al., 1996].

It should be stressed again that even if the remaining pieces could be proved to apply this result to
neural networks, namely necessitating early stopping, it would still be a univariate result only, leaving
open many interesting possibilities in higher dimensions.

4 Concluding remarks and open problems

Empirical performance. Does the story here match experiments? E.g., is it often the case that if
a neural network performs well, then so does a random feature model? Do neural networks fail on
noisy data if care is not taken with temperature and early stopping? Most specifically, is this part of
what happens in existing results reporting such failures [Guo et al., 2017]?

Temperature parameter ρ. Another interesting point of study is the temperature parameter ρ. It
arises here in a fairly technical way: if py is often close to 1/2, then the random initialization of W0

gets in the way of learning py . The temperature ρ is in fact a brute-force method of suppressing this
weight initialization noise. On the other hand, temperature parameters are common across many
works which rely heavily on the detailed real-valued outputs of sigmoid and softmax mappings; e.g.,
in the distillation literature [Hinton et al., 2015]. The temperature also plays the same role as the
scale parameter in the lazy training regime [Chizat and Bach, 2019]. Is ρ generally useful, and does
the analysis here relate to its practical utility?

Random features, and going beyond the NTK. The analysis here early stops before the feature
learning begins to occur. How do things fare outside the NTK? Is there an analog of Theorem 1.1,
still stopping shy of the interpolation pitfalls of Proposition 1.2, but managing to beat random features
with some generality?

The logistic loss. One reason the logistic is used here is its simple interplay with calibration (e.g.,
see the elementary proof of Lemma B.1, as compared with the full machinery of classification
calibration [Zhang, 2004, Bartlett et al., 2006]). The other key reason was the multiplicative error
property Lemma B.1. Certainly, the logistic loss is widely used in practice; are the preceding technical
points at all related to the widespread empirical use of the logistic loss?
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A Missing figures

Due to space limitations, Figures 1 and 2, referenced in the body, have been moved to this initial
appendix section.

B Proof of Theorem 1.1 and supporting results

This appendix section proves all bounds necessary for Theorem 1.1, and also proves the consistency
statement in Corollary 2.3.

B.1 Technical preliminaries

First, the key logistic loss properties.
Lemma B.1. 1. For any a ≥ b,

ϕ(a)

ϕ(b)
≤ ea−b and

ℓ(−a)

ℓ(−b)
≤ ea−b.

In particular, for any f, g with sup∥x∥≤1 |f(x)− g(x)| ≤ τ ,

e−τR(f) ≤ R(g) ≤ eτR(f).

If only maxk |f(xk)− g(xk)| ≤ τ , then e−τ R̂(f) ≤ R̂(g) ≤ eτ R̂(f).

2. For any f : Rd → R and corresponding conditional model ϕf (x) := ϕ(f(x)),

1

2

(
Rz(f)−Rz

)2
≤ 2

∫
(ϕf (x)− py(x))

2 dµx(x) ≤ Kbin(py, ϕf ) = R(f)−R.

Early-stopped

Near initialization (Any parameters)

Zero training error

W0 W≤t

Figure 1: The setting of this paper, contrasted with standard settings. Theorem 1.1 considers iterate
W≤t, which is somewhere in the early-stopped ball around the initial random choice W0. This
early-stopped ball is well inside the near initialization or NTK ball, since in noisy settings, the
early-stopped ball will not reach zero training error, whereas the NTK ball will. Meanwhile, the NTK
itself requires early stopping and is a subset of the space of all parameters.

py

(a) Conditional model py and some noisy data. A
smoothed prediction rule would perform well.

py

(b) A local interpolation rule working very hard to
fit the noisy data.

Figure 2: When data is noisy, it’s best to give up on a few points. The shaded region here highlights
consecutive points with the wrong label; as in Proposition 1.2, prediction rules that locally interpolate
will have a large population risk in these regions.

14



Proof. 1. Since a ≥ b, then eb−a ≤ 1, and

ϕ(a)

ϕ(b)
=

1 + e−b

1 + e−a
= ea−b

(
eb−a + e−a

1 + e−a

)
≤ ea−b,

whereby ∫ a

−∞
ϕ(r) dr =

∫ b

−∞
ϕ(r + (a− b)) dr ≤ ea−b

∫ b

−∞
ϕ(r) dr.

Consequently,

ℓ(−a) = −
∫ ∞

−a

ℓ′(r) dr =

∫ ∞

−a

ϕ(−r) dr =

∫ a

−∞
ϕ(r) dr ≤ ea−b

∫ b

−∞
ϕ(r) dr = ea−bℓ(−b).

The first set of claims for risk follow from the fact that for any pair (x, y) and τ ≥ 0,

ℓ(yr + y2τ) ≤ ℓ(yr) ≤ ℓ(yr − y2τ),

whereby
R(f) = Eℓ(yf(x)) ≤ Eℓ(yg(x)− τ) ≤ eτEℓ(yg(x)) = eτR(g).

The proof for empirical risk is similar, but only relies upon behavior on the finite sample.

2. From standard results in the literature on classification calibration [Zhang, 2004, Bartlett et al.,
2006], the optimal logistic loss pointwise satisfies

r̄x := inf
r∈R

py(x)ℓ(r) + (1− py(x))ℓ(−r) = −py(x) ln py(x)− (1− py(x)) ln(1− py(x)).

Consequently, for any predictor f : Rd → R and corresponding probability model ϕf (x) :=
ϕ(f(x)), note that

R(f) =

∫ (
py(x) ln(1 + exp(−f(x))) + (1− py(x)) ln(1 + exp(f(x)))

)
dµx(x)

=

∫ (
−py(x) lnϕf (x)− (1− py(x)) ln(1− ϕf (x))

)
dµx(x),

and thus
R(f)−R = Kbin(py, ϕf ).

By Pinsker’s inequality,

Kbin(py, ϕf ) =

∫ (
py(x) ln

py(x)

ϕf (x)
+ (1− py(x)) ln

1− py(x)

1− ϕf (x)

)
dµx(x)

≥ 1

2

∫ (
|py(x)− ϕf (x)|+ |(1− py(x)) + (1− ϕf (x))|

)2
dµx(x)

= 2

∫ (
py(x)− ϕf (x)

)2
dµx(x).

If sgn(ϕf (x)− 1/2) ̸= sgn(py(x)− 1/2), then |ϕf (x)− py(x)| ≥ |py(x)− 1/2|, and so

Rz(f)−Rz =

∫
1[sgn(ϕf (x)− 1/2) ̸= sgn(py(x)− 1/2)] · |2py(x)− 1|dµx(x)

≤ 2

∫
|ϕf (x)− py(x)|dµx(x)

≤ 2

√∫
(ϕf (x)− py(x))2 dµx(x).

The remainder of this technical subsection develops a variety of concentration inequalities used
throughout, most notably the control over the sphere in Lemma B.3. First, a few standard Gaussian
inequalities, included here for completeness.

15



Lemma B.2. Suppose W ∈ Rm×d has iid Gaussian entries Wj,k ∼ N (0, 1), and let (wT
j)

m
j=1 denote

the rows.

1. For any τ > 0, with probability at least 1− 3δ,
m∑
j=1

1
[
|wT

jx| ≤ τ∥x∥
]
≤ mτ +

√
8mτ ln(1/δ).

2. With probability at least 1− δ,

∥W∥2 <
√
m+

√
d+

√
2 ln(1/δ).

3. With probability at least 1− 2δ,

−∥z∥
√

2 ln(1/δ) ≤ ∥σr(Wz)∥ − E∥σr(Wz)∥ ≤ ∥z∥
√
2 ln(1/δ),

where

∥z∥

(√
m

2
− 5√

8m

)
≤ E∥σr(Wz)∥ ≤ ∥z∥

√
m

2
.

4. With probability at least 1− δ, w ∈ Rd with coordinates wi ∼ N (0, 1) satisfies

∥w∥ ≤
√
d+

√
2 ln(1/δ).

Proof. 1. For any row j, define an indicator random variable
Pj := 1[|wT

jx| ≤ τ∥x∥].
By rotational invariance, Pj = 1[|wj,1| ≤ τ ], which by the form of the Gaussian density gives

Pr[Pj = 1] ≤ 2τ√
2π

≤ τ.

As such, by a multiplicative Chernoff bound [Blum et al., 2020, Theorem 12.6], with probability
at least 1− 3δ,

m∑
j=1

Pj ≤ mPr[P1 = 1] +
√
8mPr[P1 = 1] ln(1/δ) ≤ mτ +

√
8mτ ln(1/δ),

as desired.

2. This is a standard spectral norm concentration bound for Gaussian matrices [Davidson and
Szarek, 2001, Theorem II.13],

3. For the expectation, first note for a single row wT by rotational invariance of the Gaussian that

Eσr(w
Tx)2 = ∥x∥2Eσr(w1)

2 =
1

2
∥x∥2Ew2

1 =
∥x∥2

2
.

As such, for a full matrix W , the expected norm can be upper bounded via

E∥σr(Wx)∥ ≤
√
E∥σr(Wx)∥2 =

√√√√1

2

m∑
i=1

∥x∥2 = ∥x∥
√

m/2,

and by a second-order lower bound, letting x̃ = x/∥x∥ for convenience, and dividing through
by
√
m/2 to ease notation,

E
√
2∥σr(Wx)∥2/m = ∥x∥E

√
2∥σr(Wx̃)∥2/m

≥ ∥x∥E
(
1 + (2∥σr(Wx̃)∥2/m− 1)/2− (2∥σr(Wx̃)∥2/m− 1)2/2

)
= ∥x∥

(
1− E(2∥σr(Wx̃)∥2/m− 1)2/2

)
= ∥x∥

(
3

2
− m(m− 1)

2m2
− 6m

2m2

)
= ∥x∥

(
1− 5

2m

)
.
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For the concentration part, note firstly that σr is ℓ2-Lipschitz when applied coordinate-wise,
since

∥σr(u)− σr(v)∥2 =

m∑
i=1

(σr(ui)− σr(vi))
2 ≤

m∑
i=1

(ui − vi)
2 = ∥u− v∥2,

and thus

∥σr(Ax)∥ − ∥σr(Bx)∥ ≤
∥∥σr(Ax)− σr(Bx)

∥∥ ≤∥Ax−Bx∥ ≤∥A−B∥ ∥x∥,

and thus by standard Gaussian concentration, with probability at least 1− δ,

∥σr(Wx)∥ − E∥σr(Wx)∥ ≤ ∥x∥
√

2 ln(1/δ),

and vice versa.

4. This is a subset of the preceding proof: w 7→ ∥w∥ is 1-Lipschitz, thus by standard Gaussian
concentration, with probability at least 1− δ,

∥w∥ ≤ E∥w∥+
√

2 ln(1/δ),

where E∥w∥ ≤
√

E∥w∥2 =
√
d.

Next, finally, the control over the sphere, Lemma B.3. This lemma perhaps looks a bit underwhelming
or simply abstract or overly complicated, but is a key tool in many steps of the proofs here; in
particular, since it allows consideration for all ∥x∥ ≤ 1, it may be applied over the distribution.
This consideration over the entire sphere contrasts this lemma (and its applications) from similar
inequalities in prior work [Allen-Zhu et al., 2018b, Chen et al., 2021].

Lemma B.3. Let scalars RV ≥ 0, and ϵ ∈ (0, 1/(md)), and m ≥ ln(edm) be given, along with
a filter set S0 ⊆ Rm×d, and define S := S0 ∩ {V ∈ Rm×d : ∥V − W0∥ ≤ RV }. Let a function
hV : Rd → R be given with parameter V ∈ S, and define functions

H :=
{
x 7→ hV (x) +

〈
∇f(x;W0), V −W0

〉
: V ∈ S

}
.

Moreover, let additional scalars r1, r2, δ satisfy the following conditions.

1. For every x and z with ∥x− z∥ ≤ ϵ, then supV ∈S |hV (x)− hV (z)| ≤ r1.

2. For any fixed ∥x∥ ≤ 1, with probability at least 1− δ, then suph∈H |h(x)| ≤ r2.

Then with probability at least 1− (
√
d/ϵ)dδ,

sup
∥x∥≤1

sup
h∈H

|h(x)| ≤ r2 + r1 + 11RV ρ

(
ln(edm/δ)

m

)1/4

.

The proof of Lemma B.3 will need two technical lemmas. The first is a basic property of inner
products and arccosine which also makes a later appearance in Lemma B.11.

Lemma B.4. If ∥x− z∥ ≤ ϵ and x, z ̸= 0, then

1 ≥
〈

x

∥x∥
,

z

∥z∥

〉
≥ 1− 2ϵ2

∥x∥2
, and arccos

(〈
x

∥x∥
,

z

∥z∥

〉)
≤ ϵ

√
8

∥x∥
.
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Proof. The first inequalities follow from

1 ≥
〈

x

∥x∥
,

z

∥z∥

〉
= 1− 1

2

∥∥∥∥ x

∥x∥
− z

∥z∥

∥∥∥∥2
= 1− 1

2∥x∥2∥z∥2
∥∥x∥z∥ − z∥z∥+ z(∥z∥ − ∥x∥)

∥∥2
≥ 1− ∥x− z∥2∥z∥2 + ∥z∥2(∥z∥ − ∥x∥)2

∥x∥2∥z∥2

≥ 1− 2∥x− z∥2∥z∥2

∥x∥2∥z∥2

≥ 1− 2ϵ2

∥x∥2
.

To finish, since arccos is decreasing along [0, 1], and since for any a ∈ [0, 1],

arccos(1− a) =

∫ 1

1−a

dr√
1− r2

=

∫ a

0

dr√
2r − r2

≤
∫ a

0

dr√
r
= 2

√
a,

then

arccos

(〈
x

∥x∥
,

z

∥z∥

〉)
≤ arccos

(
1− 2ϵ2

∥x∥2

)
≤ 2

√
2ϵ2

∥x∥2
=

ϵ
√
8

∥x∥
.

The main heavy lifting in Lemma B.3 is encapsulated in the following concentration inequality. In
words, it controls the behavior of the initial features within a tiny localized region of the sphere; the
proof of Lemma B.3 combines this local control with a discrete cover of the sphere, together giving
control over the entire sphere.

Lemma B.5. Let any fixed ∥z∥ ≤ 1 be given (independent of W0), along with a scalar ϵ > 0 with
ϵ ≤ 1/(dm), where m ≥ ln(edm). Then, with probability at least 1− δ,

sup
∥x−z∥≤ϵ
∥x∥≤1

∥∇f(x;W0)−∇f(z;W0)∥2 ≤ 113ρ2
√

ln(edm/δ)

m
.

Proof. Throughout the proof, simplify notation via W := W0, and let (wT
j)

m
j=1 denote the rows of

W , and furthermore write

g(x, z;w) :=
ρ2

m

∥∥∥x1[wT

jx ≥ 0]− z1[wT

jz ≥ 0]
∥∥∥2 .

Lastly, for any x ∈ Rd under consideration, then ∥x∥ ≤ 1, so this condition will often be implicit.
Note that

sup
∥x−z∥≤ϵ

∥∇f(x;W )−∇f(z;W )∥2 =
ρ2

m
sup

∥x−z∥≤ϵ

m∑
j=1

∥x1[wT

jx ≥ 0]− z1[wT

jz ≥ 0]∥2

= sup
∥x−z∥≤ϵ

m∑
j=1

g(x, z;wj).

Next note that this quantity, treated as a function of the m rows of W , satisfies bounded differences
with constant ρ2/m: letting W ′ be a copy of W which differs only in a single row w′

i, and noting
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g ≥ 0, ∣∣∣∣∣∣ sup
∥x−z∥≤ϵ

m∑
j=1

g(x, z;wj)− sup
∥x−z∥≤ϵ

m∑
j=1

g(x, z;w′
j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ sup
∥x−z∥≤ϵ

m∑
j=1

g(x, z;wj)− sup
∥x−z∥≤ϵ

(
g(x, z;wi)− g(x, z;wi) +

m∑
j=1

g(x, z;w′
j)
)∣∣∣∣∣∣

≤ sup
∥x−z∥≤ϵ

∣∣g(x, z;w′
i)− g(x, z;wi)

∣∣ ≤ ρ2

m
.

As such, by McDiarmid’s inequality, with probability at least 1− δ,

sup
∥x−z∥≤ϵ

∥∇f(x;W )−∇f(z;W )∥2 ≤
√

ρ4 ln(1/δ)/(2m)

+ EW sup
∥x−z∥≤ϵ

∥∇f(x;W )−∇f(z;W )∥2. (2)

It remains to analyze this expectation. First consider the case that ∥z∥ ≤ 3
√
ϵ; then, for any W ,

sup
∥x−z∥≤ϵ

∥∇f(x;W )−∇f(z;W )∥2 =
ρ2

m
sup

∥x−z∥≤ϵ

m∑
j=1

∥x1[wT

jx ≥ 0]− z1[wT

jz ≥ 0]∥2

≤ 2ρ2

m
sup

∥x−z∥≤ϵ

m∑
j=1

(
∥x∥2 + ∥z∥2

)
≤ 2ρ2

m

m∑
j=1

(16ϵ+ 9ϵ) ≤ 50ϵρ2. (3)

For the rest of the proof, suppose ∥z∥ > 3
√
ϵ, which also implies ∥x∥ > 2

√
ϵ for every x satisfying

∥x− z∥ ≤ ϵ.

Since z is fixed, and in particular does not depend on W , we may use the rotational invariance of W
to leverage the condition ∥x− z∥ ≤ ϵ. Specifically, define a matrix M ∈ Rd×d whose first column is
z/∥z∥, and the remaining columns are orthonormal (we can not use x in the definition of M , since
x varies within the expectation). Defining (for any x) the two projections xz := zxTz/∥z∥2 and
x⊥ := x− xz (whereby zTx⊥ = 0), we may rotate the rows of W by M , giving

1
[
(Mwj)

Tz ≥ 0
]
= 1

[
wj,1∥z∥ ≥ 0

]
= 1

[
wj,1 ≥ 0

]
,

1
[
(Mwj)

Tx ≥ 0
]
= 1

[
wT

jM
T(xz + x⊥) ≥ 0

]
= 1

[
wj,1z

Tx/∥z∥ ≥ −wT

jM
Tx⊥

]
= 1

[
wj,1 ≥ −

wT
jM

Tx⊥

zTx/∥z∥

]
,

where the last division does not change the sign due to ∥z − x∥ ≤ ϵ and ∥z∥ > 3
√
ϵ, for instance as

verified by upcoming invocations of Lemma B.4. Now let Ej denote the event that for this wj , there
exists ∥x− z∥ ≤ ϵ such that these two indicators are not equal. Letting τ > 0 denote a free parameter
to be optimized later, this event is implied by the union of two simpler events: let wj,2: ∈ Rd−1

denote all but the first coordinate of wj , and define

Ej,1 :=
[
|wj,1| ≤ τ

]
, Ej,2 :=

[
sup

∥x−z∥≤ϵ

∥wj,2:∥ · ∥x⊥∥ · ∥z∥
zTx

> τ

]
;

by construction (and Cauchy-Schwarz), if the negation of both events holds, then the indicators are
the same. To upper bound the probability of the first event, by the form of the Gaussian density,

Pr[Ej,1] ≤ τ

√
2

π
< τ.
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To control the various terms in Ej,2, firstly by Lemma B.2, with probability at least 1− ϵ, then

∥wj,2:∥ ≤
√
d− 1 +

√
2 ln(1/ϵ) ≤

√
2d− 2 + 4 ln(1/ϵ);

this will be the only step of the derivation controlling Pr[Ej,2], and note that it depends only on wj

and z and not on any specific x. Next, by Lemma B.4, for any ∥x− z∥ ≤ ϵ, since ∥x∥ ≥ 2ϵ (whereby
2ϵ2/∥x∥2 < 1),

∥x⊥∥2 = ∥x∥2 − (zTx)2

∥z∥2
= ∥x∥2

(
1−

[
zTx

∥x∥∥z∥

]2)

≤ ∥x∥2
1−

[
1− 2ϵ2

∥x∥2

]2 = 4ϵ2 − 4ϵ4

∥x∥2
≤ 4ϵ2.

Similarly by Lemma B.4, using ϵ ≤ 1,

zTx

∥z∥
≥ ∥x∥ − 2ϵ2

∥x∥
> 2

√
ϵ− ϵ1.5 ≥

√
ϵ.

Combining all these pieces, with probability at least 1− ϵ,

∥wj,2:∥ · ∥x⊥∥ · ∥z∥
zTx

≤
√
2d− 2 + 4 ln(1/ϵ)

(
2ϵ√
ϵ

)
≤ 4
√

dϵ ln(e/ϵ).

This right hand side does not depend on the specific choice of x, and holds for any ∥x− z∥ ≤ ϵ. As
such, set τ := 4

√
dϵ ln(e/ϵ), whereby

Pr[Ej ] ≤ Pr[Ej,1] + Pr[Ej,2] ≤ τ + ϵ.

Moreover, by a multiplicative Chernoff bound [Blum et al., 2020, Theorem 12.6], with probability
at least 1− 3ϵ, the events (Ej)

m
j=1 hold for at most mτ := m(τ + ϵ) +

√
8m(τ + ϵ) ln(1/ϵ) rows.

Now let Eτ denote the event that (Ej)
m
j=1 holds for at most mτ rows. Then

EW sup
∥x−z∥≤ϵ

∥∇f(x;W )−∇f(z;W )∥2.

= EW

[
sup

∥x−z∥≤ϵ

∥∇f(x;W )−∇f(z;W )∥2 | Eτ

]
Pr[Eτ ]

+ EW

[
sup

∥x−z∥≤ϵ

∥∇f(x;W )−∇f(z;W )∥2 | Ec
τ

]
Pr[Ec

τ ]

≤ 2ρ2 sup
∥x−z∥≤ϵ

(
m

m
∥x− z∥2 + mτ

m
(∥x∥2 + ∥z∥2)

)
+ sup

∥x−z∥≤ϵ

(
3ϵ(∥x∥2 + ∥z∥2)

)
≤ 2ρ2

(
ϵ2 +

2mτ

m
+ 6ϵ

)
. (4)

The proof will now be completed by returning to the McDiarmid application resulting in eq. (2), and
combining all preceding bounds. Starting with a simplification via the assumption ϵ ≤ 1/(dm) and
m ≥ ln(edm), note

τ = 4
√

dϵ ln(e/ϵ) ≤ 4

√
ln(edm)

m
,

mτ

m
= τ + ϵ+

√
8(τ + ϵ) ln(1/ϵ)/m

≤ 5

√
ln(edm)

m
+

√
40
√
ln(edm) ln(edm)

m3/2
≤ 12

√
ln(edm)

m
.
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Combining the preceding simplifications with eqs. (3) and (4), continuing from the McDiarmid
application in eq. (2), with probability at least 1− δ,

sup
∥x−z∥≤ϵ
∥x∥≤1

∥∇f(x;W0)−∇f(z;W0)∥2 ≤ ρ2

(√
ln(1/δ)

2m
+ 50ϵ+ 2

(
ϵ2 +

2mτ

m
+ 6ϵ

))

≤ ρ2

(√
ln(1/δ)

2m
+

50

md
+

2

m2d2
+ 48

√
ln(edm)

m
+

12

md

)

≤ 113ρ2
√

ln(edm/δ)

m
.

Finally, the proof of Lemma B.3 via the preceding technical lemmas.

Proof of Lemma B.3. Let C denote a cover of each coordinate of ∥x∥ ≤ 1 at scale ϵ/
√
d, meaning

|C| ≤ (
√
d/ϵ)d (the grid elements can be 2ϵ/

√
d apart), and for any ∥x∥ ≤ 1, there exists z ∈ C with

∥z − x∥ =

√√√√ d∑
i=1

(zi − xi)2 ≤ ϵ.

This cover C will be used throughout the proof; it is crucial that its construction makes no reference
to W0, and in particular that the cover elements are independent of W0.

Union bound together and discard |C|δ failure probability so that for every z ∈ C, then
suph∈H |h(z)| ≤ r2. Additionally union bound together and discard |C|δ failure probability corre-
sponding to instantiating Lemma B.5 for each z ∈ C, whereby

max
z∈C

sup
∥x−z∥≤ϵ
∥x∥≤1

∥∇f(x;W0)−∇f(z;W0)∥2 ≤ 113ρ2
√

ln(edm/δ)

m
.

Now let an arbitrary ∥x∥ ≤ 1 be given, and let z ∈ C be a nearest cover element, whereby ∥z−x∥ ≤ ϵ.
Then

sup
h∈H

|h(x)| ≤ sup
h∈H

(
|h(z)|+ |h(z)− h(x)|

)
≤ r2 + sup

V ∈S
|hV (z)− hV (x)|+ sup

V ∈S
|
〈
∇f(x;W0)−∇f(z;W0), V −W0

〉
|

≤ r2 + r1 + sup
V ∈S

∥∥∇f(x;W0)−∇f(z;W0)
∥∥ ·∥V −W0∥

≤ r2 + r1 + 11RV ρ

(
ln(edm/δ)

m

)1/4

.

As a first application of Lemma B.3, the range of the mappings can be bounded for all ∥x∥ ≤ 1,
which is used later in the generalization analysis.
Lemma B.6. Let RV > 0 be given.

1. For any x ∈ Rd, with probability at least 1− 3δ, every V ∈ Rm×d satisfies∣∣∣〈∇f(x;W0), V
〉∣∣∣ ≤ ρ∥x∥

(
∥V −W0∥F + 2 ln(1/δ)

)
.

2. Suppose RV ≥ 1 and m ≥ ln(emd). With probability at least 1− (1 + 3(md3/2)d)δ,

sup
∥V−W0∥≤RV

sup
∥x∥≤1

∣∣∣〈∇f(x;W0), V
〉∣∣∣ ≤ 18RV ρ ln(emd/δ).
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Proof. For convenience throughout the proof, write W := W0.

1. Splitting terms via V = V −W +W ,∣∣∣〈∇f(x;W ), V
〉∣∣∣ ≤ ∣∣∣〈∇f(x;W ),W

〉∣∣∣+∣∣∣〈∇f(x;W ), V −W
〉∣∣∣ .

For the first term, since W is independent of a and can be treated as fixed, by Hoeffding’s
inequality, with probability at least 1− 2δ over the draw of a,∣∣∣〈∇f(x;W ),W

〉∣∣∣ = ∣∣f(x;W )
∣∣ ≤ ρ√

m
∥σr(Wx)∥

√
ln(1/δ)/2.

By Lemma B.2, with additional failure probability δ,

∥σr(Wx)∥ ≤ E∥σr(Wx)∥+ ∥x∥
√
2 ln(1/δ) ≤ ∥x∥

(√
m/2 +

√
2 ln(1/δ)

)
.

Together, ∣∣∣〈∇f(x;W ),W
〉∣∣∣ ≤ ρ∥x∥

(
1 +

√
2 ln(1/δ)/m

)√
ln(1/δ)/2.

For the second term, due to the scale of the first term, it suffices to worst-case everything: by
Cauchy-Schwarz,∣∣∣〈∇f(x;W ), V −W

〉∣∣∣ ≤ ∥∇f(x;W )∥F · ∥V −W∥F ≤ ρ∥x∥ · ∥V −W∥F.

Combining everything, with probability at least 1− 3δ,∣∣∣〈∇f(x;W ), V
〉∣∣∣ ≤ ρ∥x∥

(
∥V −W∥F +

√
ln(1/δ)/2 + ln(1/δ)/

√
m
)

≤ ρ∥x∥
(
∥V −W∥F + 2 ln(1/δ)

)
2. This item proceeds by combining the previous item with the covering argument from Lemma B.3.

Concretely, define the function
hV (x) := f (0)(x);

that is, hV has no dependence on V ∈ Rm×d, but note that〈
∇f(x;W ), V

〉
=
〈
∇f(x;W ), V −W

〉
+
〈
∇f(x;W ),W

〉
=
〈
∇f(x;W ), V −W

〉
+hV (x),

which is precisely the expression controlled by Lemma B.3. Let H denote the class of functions
defined there.

By the preceding item, for any fixed ∥x∥ ≤ 1, with probability at least 1− δ,

sup
h∈H

|h(x)| ≤ ρ
(
RV + 2 ln(1/δ)

)
=: r2.

Moreover, by Lemma B.2, with probability at least 1−δ, then ∥W∥2 ≤
√
m+

√
d+
√
2 ln(1/δ),

thus for any ∥x− z∥ ≤ ϵ, with ϵ to be determined later,

|f(x;W )− f(z;W )| ≤ ρ√
m
∥a∥ · ∥W (x− z)∥ ≤ ρ∥W∥2∥x− z∥

≤ ρ(
√
m+

√
d+

√
2 ln(1/δ))ϵ =: r1.

As such, by Lemma B.3, choosing ϵ := 1/(md) and S0 = Rm×d, with probability at least
1− 3(md3/2)dδ,

sup
∥V−W∥≤RV

sup
∥x∥≤1

hV (x) ≤ r2 + r1 + 11RV ρ

(
ln(edm/δ)

m

)1/4

.

≤ ρ
(
RV + 2 ln(1/δ)

)
+ ρ(

√
m+

√
d+

√
2 ln(1/δ))ϵ

+ 11RV ρ

(
ln(edm/δ)

m

)1/4

.

≤ 18RV ρ ln(emd/δ).

22



Next, the linear approximation bounds; the last two items use Lemma B.3 to control all points on
the sphere. As mentioned before, this is in contrast to prior presentations of linear approximation
inequalities, which only establish the bounds on the finite training sample [Chen et al., 2021, Allen-
Zhu et al., 2018b]. Note that the bounds over the sphere have a more restrictive statement; the present
proof does not handle the more general form presented for a finite sample.
Lemma B.7 (See also Lemma 2.1). Let scalars δ > 0 and RV ≥ 1 and RB ≥ 0 be given.

1. For any fixed x ∈ Rd, with probability at least 1− 3δ, for any V ∈ Rm×d and B ∈ Rm×d with
∥V −W0∥ ≤ RV and ∥B −W0∥ ≤ RB ,∣∣∣〈∇f(x;V )−∇f(x;W0), B

〉∣∣∣ ≤ 3ρ∥x∥ (RB + 2RV )R
1/3
V ln(e/δ)1/4

m1/6
=: τ1.

2. Let τ1 be as in the previous part. With probability at least 1− 3nδ,

sup
∥Wi−W0∥≤RV

sup
∥Wj−W0∥≤RV

sup
∥B−W0∥≤RB

R̂(i)(B)

R̂(j)(B)
≤ e2τ1 .

3. Suppose m ≥ ln(edm). With probability at least 1− (1 + 3(d2m)d)δ,

sup
∥V−W0∥≤RV

sup
∥x∥≤1

∣∣∣〈∇f(x;V )−∇f(x;W0), V
〉∣∣∣ ≤ 25ρR

4/3
V

√
ln(edm/δ)

m1/6
=: τ3.

4. Let τ3 be as in the previous part and again suppose m ≥ ln(edm). With probability at least
1− (1 + 3(d2m)d)δ,

sup
∥Wi−W0∥≤RV

R(Wi)

R(0)(Wi)
≤ eτ3 .

Proof of Lemmas 2.1 and B.7. The first item implies the second via Lemma B.1, and moreover
implies the third item via Lemma B.3. Similarly, the third item implies the fourth via Lemma B.1.
Throughout the proof, write W := W0 with rows (wT

j)
m
j=1 for convenience.

1. Fix x ∈ Rd. Fix a parameter r > 0, which will be optimized at the end of the proof. Let V and
B be given with ∥V −W∥ ≤ RV and ∥B −W∥ ≤ RB .

Define the sets

S1 :=
{
j ∈ [m] : |wT

jx| ≤ r∥x∥
}
,

S2 :=
{
j ∈ [m] : ∥vj − wj∥ ≥ r

}
S := S1 ∪ S2.

By Lemma B.2, with probability at least 1− 3δ,

|S1| ≤ rm+
√

8rm ln(1/δ).

On the other hand,

R2
V ≥ ∥V −W∥2 ≥

∑
j∈S2

∥vj − wj∥2 ≥ |S2|r2,

meaning |S2| ≤ R2
V /r

2. For any j ̸∈ S, if wT
jx > 0, then

vT

jx ≥ wT

jx− ∥vj − wj∥ · ∥x∥ > ∥x∥ (r − r) = 0,

meaning 1[wT
jx ≥ 0] = 1[vT

jx ≥ 0]; the case that j ̸∈ S and wT
jx < 0 is analogous. Together,

|S| ≤ rm+
√

8rm ln(1/δ) +
R2

V

r2
and j ̸∈ S =⇒ 1[wT

jx ≥ 0] = 1[vT

jx ≥ 0].
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Continuing,
√
m

ρ

∣∣∣〈∇f(x;V )−∇f(x;W ), B
〉∣∣∣

≤
√
m

ρ

∣∣∣〈∇f(x;V )−∇f(x;W ), V
〉∣∣∣+ √

m

ρ

∣∣∣〈∇f(x;V )−∇f(x;W ), V −B
〉∣∣∣

=
∣∣∣aT
(
diag(1[V Tx ≥ 0])− diag(1[W Tx ≥ 0])

)
V x
∣∣∣

+
∣∣∣aT
(
diag(1[V Tx ≥ 0])− diag(1[W Tx ≥ 0])

)
(V −B)x

∣∣∣ .
Handling these two terms separately, the second term is easier: by Cauchy-Schwarz,∣∣∣aT
(
diag(1[V Tx ≥ 0])− diag(1[W Tx ≥ 0])

)
(V −B)x

∣∣∣ ≤√|S|
∥∥(V −W − (B −W ))x

∥∥
≤
√
|S| (RV +RB) ∥x∥.

For the first term,∣∣∣aT
(
diag(1[V Tx ≥ 0])− diag(1[W Tx ≥ 0])

)
V x
∣∣∣ ≤ m∑

j=1

1[sgn(vT

jx) ̸= sgn(wT

jx)] · |vT

jx|.

If vT
jx and wT

jx have different signs, then |vT
jx| ≤ |vT

jx − wT
jx| ≤ ∥vj − wj∥ · ∥x∥; plugging

this in, by Cauchy-Schwarz,
m∑
j=1

1[sgn(vT

jx) ̸= sgn(wT

jx)] · |vT

jx| ≤
m∑
j=1

1[sgn(vT

jx) ̸= sgn(wT

jx)] · ∥vj − wj∥ · ∥x∥

≤
∑
j∈S

∥vj − wj∥ · ∥x∥

≤
√
|S|∥V −W∥F∥x∥

≤ RV

√
|S|∥x∥.

Combining these derivations,∣∣∣〈∇f(x;V )−∇f(x;W ), B
〉∣∣∣ ≤ ρ√

m

(√
|S| (RV +RB) ∥x∥+RV

√
|S|∥x∥

)
≤

ρ
√

|S|∥x∥ (2RV +RB)√
m

.

Rearranging, and expanding the definition of |S| with the choice r := R
2/3
V m−1/3, and using

RV ≥ 1,∣∣∣〈∇f(x;V )−∇f(x;W ), B
〉∣∣∣ ≤ ρ∥x∥ (RB + 2RV )√

m

√
rm+

√
8rm ln(1/δ) +

R2
V

r2

≤
ρ∥x∥ (RB + 2RV )R

1/3
V m1/3 ln(e/δ)1/4√
m

√
1 +

√
8 + 1

≤
3ρ∥x∥ (RB + 2RV )R

1/3
V ln(e/δ)1/4

m1/6
.

2. Union bounding the previous part over all (xk)
n
k=1, with probability at least 1 − δ, for any

iterations (i, j) and for any matrices (Wi,Wj , B) satisfying max{∥Wi−W0∥, ∥Wj−W0∥, ∥B−
W0∥} ≤ RV

max
k

∣∣∣〈∇f(xk;Wi)−∇f(xk;W ), B
〉∣∣∣ ≤ τ1.

In particular, by Lemma B.1,

e−τ1 ≤ R̂(i)(B)

R̂(0)(B)
≤ eτ1 .
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Applying this twice gives

e−2τ1 ≤ R̂(i)(B)

R̂(0)(B)

(
R̂(0)(B)

R̂(j)(B)

)
=

R̂(i)(B)

R̂(j)(B)
≤ e2τ1 .

3. This part follows from the first via Lemma B.3. As such, for every ∥V −W∥ ≤ RV , define

hV (x) := f(x;W )− f(x;V );

by this choice,〈
∇f(x;V )−∇f(x;W ), V

〉
=
〈
∇f(x;V ), V

〉
−
〈
∇f(x;W ),W

〉
−
〈
∇f(x;W ), V −W

〉
= f(x;V )− f(x;W )−

〈
∇f(x;W ), V −W

〉
= −hV (x)−

〈
∇f(x;W ), V −W

〉
,

which matches the (negation of) functions considered in the function class H in Lemma B.3.

By the previous part, with RB := 0, for any fixed ∥x∥ ≤ 1, with probability at least 1− 3δ,

sup
h∈H

|h(x)| ≤
6ρR

4/3
V ln(e/δ)1/4

m1/6
=: r2.

Next, with probability at least 1− δ, Lemma B.2 gives

∥W∥2 ≤
√
m+

√
d+

√
2 ln(1/δ),

and thus for any ∥x− z∥ ≤ ϵ, since the ReLU is 1-Lipschitz even when applied to vectors,

|hV (x)− hV (z)| ≤ |f(x;V )− f(z;V )|+ |f(x;W )− f(z;W )|
≤ ρ∥(V −W +W )(x− z)∥+ ρ∥W (x− z)∥

≤ 2ρϵ(RV /2 +
√
m+

√
d+

√
2 ln(1/δ)) =: r1.

Together, by Lemma B.3, choosing ϵ := 1/(dm) and S0 := Rm×d, with probability at least
1− (1 + 3(md3/2)d)δ,

sup
∥x∥≤1

sup
h∈H

|h(x)| ≤ r2 + r1 + 11RV ρ

(
ln(edm/δ)

m

)1/4

≤
25ρR

4/3
V

√
ln(edm/δ)

m1/6
.

4. By the previous item, with probability at least 1− (1 + 3(md3/2)d)δ,

sup
∥Wi−W0∥≤RV

sup
∥x∥≤1

∣∣∣f (0)(x;Wi)− f(x;Wi)
∣∣∣ ≤ τ3.

Consequently, by Lemma B.1, for any Wi with ∥Wi −W0∥ ≤ RV ,

R(Wi) = Ex,yℓ(yf(x;Wi)) ≤ eτ3Ex,yℓ(yf
(0)(x;Wi)) = eτ3R(0)(Wi).

B.2 Generalization proofs

As mentioned before, the usual hard part of such a proof is the Rademacher complexity estimate, but
here it is easy: linear predictors, as this bound is applied after linear approximation. The difficult step
is to control the range, which was presented before in Lemma B.6, which invokes the sphere control
technique in Lemma B.3.
Lemma B.8. Let RV ≥ 1 and m ≥ ln(edm) be given. With probability at least 1− 6δ,

sup
∥V−W0∥≤RV

R(0)(V )− R̂(0)(V ) ≤
80ρRV

(
d ln(em2d3/δ)

)3/2
√
n

.

Similarly, the negation of this bound holds with probability at least 1− 6δ.
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Proof. This proof will use a constant δ0, chosen at the end. First note that the Rademacher complexity
is as for linear predictors:

nRad
({

x 7→
〈
∇f(x;W0), V

〉
: ∥V −W0∥ ≤ RV

})
= Eϵ sup

V ∈V

n∑
k=1

ϵk
〈
∇f(xk;W0), V

〉
= Eϵ sup

V ∈V

n∑
k=1

ϵk
〈
∇f(xk;W0), V −W0 +W0

〉
= Eϵ sup

V ∈V

n∑
k=1

ϵk
〈
∇f(xk;W0), V −W0

〉
≤ ∥V −W0∥F

√√√√ n∑
k=1

∥∇f(xk;W0)∥2

≤ ρRV

√
n.

Next, by Lemma B.6, with probability at least 1 − (1 + 3(md2)d)δ0, the mappings (x, y) 7→
ℓ(yf (0)(x;V )) are nonnegative, centered at ℓ(0), and vary by at most 18ρRV ln(emd/δ0), thus take
their amplitude to be 36ρRV ln(emd/δ0) for simplicity. As such, since ℓ is 1-Lipschitz, by a standard
Rademacher bound [Shalev-Shwartz and Ben-David, 2014], with additional failure probability at
most 2δ0,

sup
∥V−W0∥≤RV

R(0)(V )− R̂(0)(V ) ≤ 2ρRV√
n

+
108ρRV ln(emd/δ0)

√
ln(1/δ0)√

2n

≤ 80ρRV ln(emd/δ0)
3/2

√
n

,

and the bound is complete by noting the total failure probability was at most (3 + 3(md2)d)δ0 ≤
6(md2)dδ0, and setting δ0 := δ/(md2)d and simplifying.

For the reverse inequality, it follows by negating every element in the loss class and repeating the
proof.

B.3 Optimization proofs

First, a smoothness inequality which fixes the feature mapping across a pair of iterates. This lemma
doesn’t seem to have appeared before, but is not necessarily an improvement, other than allowing
slightly larger step sizes.
Lemma B.9. For any step size η ≥ 0,

η(1− ηρ2/8)∥∇R̂(Wi)∥2 ≤ R̂(i)(Wi)− R̂(i)(Wi+1).

If η ≤ 8/ρ2, then R̂(i)(Wi+1) ≤ R̂(i)(Wi), and any choice η ≤ 4/ρ2 grants
η

2
∥∇R̂(Wi)∥2 ≤ R̂(i)(Wi)− R̂(i)(Wi+1).

Proof. For notational convenience, define gk(W ) := ykf(xk;W ) and g
(i)
k (W ) := ykf

(i)(xk;W ),
whereby ∇gk(W ) = yk∇f(xk;W ). Since ℓ is 1/4-smooth and since, for every example (xk, yk),
∥∇f(xk;V )∥2 = ρ2

∑m
j=1 ∥aj1[wT

jxk ≥ 0]xk∥2/m ≤ 1, then

ℓ(g
(i)
k (Wi+1)) ≤ ℓ(g

(i)
k (Wi)) + ℓ′(g

(i)
k (Wi))(g

(i)
k (Wi+1)− g

(i)
k (Wi)) +

1

8

(
g
(i)
k (Wi+1)− g

(i)
k (Wi)

)2
= ℓ(g

(i)
k (Wi)) +

〈
ℓ′(g

(i)
k (Wi))∇gk(Wi),Wi+1 −Wi

〉
+

1

8

〈
∇gk(Wi),Wi+1 −Wi

〉2
= ℓ(g

(i)
k (Wi))− η

〈
ℓ′(g

(i)
k (Wi))∇gk(Wi),∇R̂(Wi)

〉
+

1

8

〈
∇gk(Wi), η∇R̂(Wi)

〉2
≤ ℓ(g

(i)
k (Wi))− η

〈
ℓ′(g

(i)
k (Wi))∇gk(Wi),∇R̂(Wi)

〉
+

ρ2η2

8

∥∥∥∇R̂(Wi)
∥∥∥2 ,
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which after averaging over examples gives

R̂(i)(Wi+1) ≤ R̂(i)(Wi)−
η

n

n∑
k=1

〈
ℓ′(g

(i)
k (Wi))∇gk(Wi),∇R̂(Wi)

〉
+

ρ2η2

8

∥∥∥∇R̂(Wi)
∥∥∥2

= R̂(i)(Wi)− η(1− ρ2η/8)
∥∥∥∇R̂(Wi)

∥∥∥2 ,
which rearranges to give the first inequality. Lastly, note if η ≤ 4/ρ2, then η

(
1− ρ2η/8

)
≥ η/2.

Next, the familiar regret inequality, making use of feature mappings induced by specific gradient
descent iterates. Note that this inequality does not need to make any assumptions on nonlinearity and
activation changes, though such effects must be controlled in the eventual application of this bound.
Lemma B.10. For any step size η ≤ 4/ρ2, any Z ∈ Rm×d and any t,

∥Wt − Z∥2 + 2η
∑
i<t

R̂(i)(Wi+1) ≤ ∥W0 − Z∥2 + 2η
∑
i<t

R̂(i)(Z).

Proof. As usual, using Lemma B.9,

∥Wi+1 − Z∥2 = ∥Wi − Z∥2 − 2η
〈
∇R̂(Wi),Wi − Z

〉
+ η2∥∇R̂(Wi)∥2

≤ ∥Wi − Z∥2 + 2η
〈
∇R̂(Wi), Z −Wi

〉
+ 2η

(
R̂(i)(Wi)− R̂(i)(Wi+1)

)
,

where 〈
∇R̂(Wi), Z −Wi

〉
=

1

n

∑
k

ℓ′(ykf(xk;Wi))
〈
yk∇f(xk;Wi), Z −Wi

〉
=

1

n

∑
k

ℓ′(ykf(xk;Wi))
(
ykf

(i)(xk;Z)− ykf
(i)(xk;Wi)

)
≤ 1

n

∑
k

(
ℓ(ykf

(i)(xk;Z))− ℓ(ykf
(i)(xk;Wi))

)
= R̂(i)(Z)− R̂(i)(Wi),

together giving

∥Wi+1 − Z∥2 ≤ ∥Wi − Z∥2 + 2η
(
R̂(i)(Z)− R̂(i)(Wi+1)

)
,

which after telescoping and rearranging gives the final bound.

Lastly, the proof of Lemma 2.2, the central optimization guarantee, which immediately yields the
bulk of Theorem 1.1.

Proof of Lemma 2.2. The start of this proof establishes a few inequalities used throughout. By
the second part of Lemma B.7, with probability at least 1 − 3nδ, for any iterations (i, j) with
∥Wi −W0∥ ≤ B and ∥Wj −W0∥ ≤ B,

sup
∥V−W0∥≤B

R̂(i)(V )

R̂(j)(V )
≤ eτ . (5)

Crucially, eq. (5) holds with V := Z, since B ≥ RZ by definition. Additionally, by Lemma B.10,
the following inequality holds unconditionally for every j ≤ t:

∥Wj − Z∥2 + 2η
∑
i<j

R̂(i)(Wi+1) ≤ ∥W0 − Z∥2 + 2η
∑
i<j

R̂(i)(Z). (6)

The remainder of the proof is broken into three parts, for the three separate guarantees:

∥W≤t −W0∥ ≤ B (norm), (7)

R̂(W≤t) ≤ e2τ R̂(0)(Z) + eτ (ρRZ)
2ϵgd (empirical risk), (8)

R(W≤t) ≤ e4τR(0)(Z) + e3τ (ρRZ)
2ϵgd + e4τρ(B +RZ)τn (risk). (9)
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Norm guarantee (cf. eq. (7)). There are two cases to consider: B = Rgd, or B < Rgd. If B = Rgd,
the claim follows by the definition of W≤t.

Now suppose B < Rgd, meaning B = 3RZ+2e

√
ηtR̂(0)(Z). It will now be argued via contradiction

that maxi≤t ∥Wi −W0∥ ≤ B. Assume contradictorily the claim does not hold, and let s ≤ t be the
earliest violation. But that means the claim holds for all i < s, which also means, combining eq. (5)
(which must hold for all i < s) and eq. (6) and using τ ≤ 2 and ℓ ≥ 0,

B2 < ∥Ws −W0∥2 ≤ 2∥Ws − Z∥2 + 2∥Z −W0∥2

≤ 2∥Ws − Z∥2 + 4η
∑
i<s

R̂(i)(Wi+1) + 2∥Z −W0∥2

≤ 4∥W0 − Z∥2 + 4η
∑
i<s

R̂(i)(Z)

≤ 4∥W0 − Z∥2 + 4ηte2R̂(0)(Z)

≤
(
2∥W0 − Z∥+ 2e

√
ηtR̂(0)(Z)

)2

≤ B2,

a contradiction.

Empirical risk guarantee (cf. eq. (8)). Now let T denote the earliest time when ∥Wi−W0∥ > 2RZ ,
or T = ∞ if this situation never occurs. Note that for any i < T ,

∥Wi −W0∥ ≤ 2RZ ≤ B,

and even for WT ,
∥WT −W0∥ ≤ ∥WT−1 −W0∥+ η∥∇R̂(WT−1)∥ ≤ 2RZ + ηρ ≤ B;

as such, eq. (5) holds for all Wi with i ≤ T , including the edge case WT . The remainder of the proof
divides into two cases: either T > t (which includes the situation T = ∞), or T ≤ t.

If T ≤ t, by the triangle inequality,
2∥Z −W0∥ < ∥WT −W0∥ ≤ ∥Z −WT ∥+ ∥Z −W0∥,

which rearranges to give ∥Z −W0∥ < ∥Z −WT ∥, and thus, by eq. (6),

∥Z −W0∥2 + 2η
∑
i<T

e−τ R̂(Wi+1) < ∥WT − Z∥2 + 2η
∑
i<T

R̂(i)(Wi+1)

≤ ∥Z −W0∥2 + 2η
∑
i<T

R̂(i)(Z)

≤ ∥Z −W0∥2 + 2η
∑
i<T

eτ R̂(0)(Z),

which after canceling from both sides and using the definition of W≤t,

R̂(W≤t) ≤ min
i<T

R̂(Wi) ≤
1

T

∑
i<T

R̂(Wi) ≤ e2τ R̂(0)(Z),

establishing eq. (8) when T ≤ t.

If T > t, the proof is simpler: since maxi≤t ∥Wi −W0∥ ≤ 2RZ ≤ B, then eq. (5) holds for all Wi

with i ≤ t, and thus by eq. (6) and the definition of W≤t,

2ηe−τ
∑
i<t

R̂(Wi+1) ≤ 2η
∑
i<t

R̂(i)(Wi+1) ≤ ∥Wt − Z∥2 + 2η
∑
i<t

R̂(i)(Wi+1)

≤ ∥W0 − Z∥2 + 2η
∑
i<t

R̂(i)(Z)

≤ ∥W0 − Z∥2 + 2tηeτ R̂(0)(Z),

which after rearranging and using the definition of W≤t gives

R̂(W≤t) ≤
1

t

∑
i<t

R̂(Wi+1) ≤ e2τ R̂(0)(Z) +
eτ∥W0 − Z∥2

2tη
≤ e2τ R̂(0)(Z) + eτ (ρRZ)

2ϵgd,

completing the proof of eq. (8).
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Risk guarantee (cf. eq. (9)). By Lemma B.8 applied once with radius B and once with radius RZ ,
with probability at least 1− 12δ

R(0)(W≤t) ≤ R̂(0)(W≤t) + ρBτn, R̂(0)(Z) ≤ R(0)(Z) + ρRZτn.

Moreover, by the last part of Lemma B.7 applied with radius B with probability at least 1− 4δ,

R(W≤t) ≤ eτR(0)(W≤t).

Combining all these inequalities with the empirical risk guarantee,

R(W≤t) ≤ eτR(0)(W≤t)

≤ eτ R̂(0)(W≤t) + eτρBτn

≤ e2τ R̂(W≤t) + eτρBτn

≤ e4τ R̂(0)(Z) + e3τ (ρRZ)
2ϵgd + eτρBτn

≤ e4τR(0)(Z) + e3τ (ρRZ)
2ϵgd + ρ

(
eτB + e4τRZ

)
τn,

thus establishing eq. (9) and completing the proof.

B.4 Approximation proofs

First, the lemma and proof that we can sample from U∞; as the gap is over the risk, the proof uses
the technique in Lemma B.3 to control all points on the sphere. This proof also makes crucial use of
the arccos bound in Lemma B.4.
Lemma B.11. Let U∞ be given with R := supv∈Rd ∥U∞(v)∥, and suppose m ≥ ln(emd). With
probability at least 1− 6δ,

R(0)(U) ≤ eτR(U∞), where τ ≤ 6ρd ln(emd2/δ) +
20R

√
d ln(em2d3/δ)

m1/4
.

Proof of Lemma B.11. Throughout this proof, the subscript will be dropped and simply W := W0,
with rows (wT

j)
m
j=1.

The bound on R(0)(U)−R(U∞) follows by showing that with probability at least 1− 6δ,

sup
∥x∥≤1

∣∣∣f(x;U∞)− f (0)(x;U)
∣∣∣ ≤ τ,

and then as usual applying Lemma B.1 and taking an expectation to obtain a bound between R(0)(U)
and R(U∞). Meanwhile, this intermediate bound is first established for any fixed x ∈ Rd, and then
general ∥x∥ ≤ 1 are handled via Lemma B.3.

Fix an example x ∈ Rd and failure probability δ0 to be determined later when Lemma B.3 is invoked.
To first calculate the expected difference, note by definition of U that

E
〈
∇f(x;W ), U −W

〉
= E

ρ√
m

m∑
j=1

aj

〈
uj − wj , x1[w

T

jx ≥ 0]
〉

=
1

m

m∑
j=1

E
〈
U∞(wj), x1[w

T

jx ≥ 0]
〉

= f(x;U∞),

whereas

E
〈
∇f(x;W ),W

〉
= Ea

m∑
j=1

ajEwj
σr(w

T

jx) = 0,

thus
Ef (0)(x;U) = E

(
f (0)(x;U −W ) + f (0)(x;W )

)
= f(x;U∞).
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Controlling the deviations (still for this fixed x) will also consider the terms separately. The term
f (0)(x;U−W ) will use McDiarmid’s inequality; to verify the bounded differences property, consider
pairs (a,W ) and (a′,W ′) which differ in only one element (a′j , w

′
j), which also defines pairs U and

U
′

differing in just one j, meaning the vectors uj and u′
j ; by Cauchy-Schwarz and the definition of

R, ∣∣∣〈∇f(W ), U −W
〉
−
〈
∇f(W ′), U ′ −W ′〉∣∣∣

=

∣∣∣∣ ρ√
m
aj

〈
uj − wj , x1[w

T

jxj ≥ 0]
〉
− ρ√

m
a′j

〈
u′
j − w′

j , x1[(w
′
j)

Txj ≥ 0]
〉∣∣∣∣

=
1

m

∣∣∣∣a2j 〈U∞(wj), x1[w
T

jxj ≥ 0]
〉
− (a′j)

2
〈
U∞(w′

j), x1[(w
′
j)

Txj ≥ 0]
〉∣∣∣∣

≤ 2R∥x∥
m

.

Thus, by McDiarmid’s inequality, with probability at least 1− 2δ0,∣∣∣f (0)(x;U)− f(x;U∞)
∣∣∣ = ∣∣∣f (0)(x;U)− Ea,W f (0)(x;U)

∣∣∣ ≤√2R2∥x∥2 ln(1/δ0)
m

.

Meanwhile, the term f (0)(x;W ) is explicitly controlled in in the first part of Lemma B.6: with
probability at least 1− 3δ0,

|f (0)(x;W )| ≤ 2ρ∥x∥ ln(1/δ0).
Together, with probability at least 1− 5δ0,∣∣∣f (0)(x;U)− f(x;U∞)

∣∣∣ ≤ 2ρ ln(1/δ0) +R

√
2 ln(1/δ0)

m
=: r2.

Controlling the behavior for all ∥x∥ ≤ 1 simultaneously now relies upon Lemma B.3, but invoked to
control a single matrix, namely choosing S0 := {U}, and radius RV := R/ρ ≥ ∥U −W∥. For the
sake of applying Lemma B.3, define for any V ∈ Rm×d the mapping

hV (x) := f(x;W )− f(x;U∞),

which has no dependence on V , and note a corresponding function h ∈ H as defined in Lemma B.3
has the form

h(x) = f(x;W )− f(x;U∞) +
〈
∇f(x;W ), V −W

〉
=
〈
∇f(x;W ), V

〉
− f(x;U∞);

since S0 = {U}, we only need to check the conditions of Lemma B.3 for V = U . As above, for any
fixed ∥x∥ ≤ 1, with probability at least 1− 5δ0, |h(x)| ≤ r2. To invoke Lemma B.3, the restricted
continuity property must be established. Specifically, let ∥x−z∥ ≤ ϵ be given, with ϵ > 0 determined
later. Writing ∣∣hV (x)− hV (z)

∣∣ ≤ ∣∣f(x;W )− f(z;W )
∣∣+∣∣∣f(x;U∞)− f(z;U∞)

∣∣∣ ,
it suffices to check the restricted continuity property in both terms separately. For the first term, by
Lemma B.2, with probability at least 1− δ0,

∥W∥2 ≤
√
m+

√
d+

√
2 ln(1/δ0),

whereby the 1-Lipschitz property of the ReLU over vectors gives∣∣f(x;W )− f(z;W )
∣∣ ≤ ρ∥σr(Wx)−σr(Wz)∥ ≤ ρ∥W (x−z)∥ ≤ ρ

(√
m+

√
d+

√
2 ln(1/δ0)

)
ϵ.

For the other term, first note by a standard Gaussian calculation that∣∣∣f(z;U∞)− f(x;U∞)
∣∣∣ = ∣∣∣∣∫ 〈U∞(v), z1[vTz ≥ 0]− x1[vTx ≥ 0]

〉
dN (v)

∣∣∣∣
≤ R

∫ ∥∥z1[vTz ≥ 0]− x1[vTx ≥ 0]
∥∥ dN (v)

≤ R∥z − x∥ Pr
v∼N

[
1[vTz ≥ 0] = 1[vTx ≥ 0]

]
+R(∥x∥+ ∥z∥) Pr

v∼N

[
1[vTz ≥ 0] ̸= 1[vTx ≥ 0]

]
≤ R∥z − x∥+R(∥x∥+ ∥z∥)

2 arccos(
〈
x/∥x∥, z/∥z∥

〉
)

2π
.
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If ∥x∥ ≤ 2ϵ, then z ≤ 3ϵ, and the last term can be upper bounded as 5Rϵ. On the other hand, if
∥x∥ > 2ϵ, whereby ∥x∥+ ∥z∥ ≤ 2∥x∥+ ϵ ≤ 3∥x∥, then Lemma B.4 implies

R(∥x∥+ ∥z∥)
2 arccos(

〈
x/∥x∥, z/∥z∥

〉
)

2π
≤ R(∥x∥+ ∥z∥) ϵ

√
8

∥x∥π
≤ 3Rϵ,

Thus, by Lemma B.3 with radius RV := R/ρ and filter set S0 := {U} as above, and additionally
choosing ϵ := 1/(dm), with overall probability at least 1− (1 + 5(

√
d/ϵ)d)δ0,

sup
∥x∥≤1

∣∣∣f (0)(x;U)− f(x;U∞)
∣∣∣ ≤ 2ρ ln(e/δ0) +R

√
2 ln(e/δ0)

m

+ ϵρ
(√

m+
√
d+

√
2 ln(e/δ0)

)
+ (1 + 5)Rϵ

+ 11RV ρ

(
ln(edm/δ0)

m

)1/4

≤ 6ρ ln(e/δ0) + 20RV ρ

(
ln(edm/δ0)

m

)1/4

,

and the final bound comes via the choice δ0 := δ/(md2)d.

The next result establishes that for any py, there exists a conditional probability model defined by
U∞ which is arbitrarily close, which is one of the keys to the consistency proof (cf. Corollary 2.3).
As discussed briefly in Remark 1.1, this construction requires a bias term, which is simulated by
replacing the input x ∈ Rd with (x, 1)/

√
2 ∈ Rd+1, and otherwise proceeding without modification.

Lemma B.12. Suppose µx and py are Borel measurable, and µx is supported on ∥x∥ ≤ 1. Given
any x ∈ Rd, let x̃ := (x, 1)/

√
2 ∈ Rd+1 denote the vector obtained by appending the constant

1. Then for any ϵ > 0, there exist infinite-width weights U∞ : Rd+1 → Rd+1 satisfying R :=
supṽ∈Rd+1 U∞(ṽ) < ∞ and

R(U∞) ≤ R+ ϵ.

Proof. Throughout this proof, define τ := min{ϵ/4, 1/2}.

As is standard in the theory of classification calibration [Zhang, 2004, Bartlett et al., 2006], for the
logistic loss, the optimal population risk is achieved by a measurable function f̄ : R → R̄ which
satisfies

f̄(x) := argmin
r∈R∪±∞

py(x)ℓ(r) + (1− py(x))ℓ(−r) = ϕ−1(py(x)) = ln
py(x)

1− py(x)
µx-a.e. x,

which may take on the values ±∞. To avoid these ±∞, define a clamping of py as
p1(x) := max{τ,min{1− τ, py(x)}},

and clamped logits f1(x) := ϕ−1(p1(x)) (which now is bounded). As is again usual in the literature
on classification calibration [Zhang, 2004, Bartlett et al., 2006],

R(f1)−R =

∫ (
py(x) ln

py(x)

p1(x)
+ (1− py(x)) ln

1− py(x)

1− p1(x)

)
dµx(x)

=

∫
py(x)∈[0,τ)

(
py(x) ln

py(x)

τ
+ (1− py(x)) ln

1− py(x)

1− τ

)
dµx(x)

+

∫
py(x)∈(1−τ,1]

(
py(x) ln

py(x)

1− τ
+ (1− py(x)) ln

1− py(x)

τ

)
dµx(x)

≤ τ

1− τ
≤ 2τ.

Since p1 is Borel measurable (due to Borel measurability of py), then f1 is Borel measurable (since
ϕ−1 is continuous along [τ, 1− τ ]), and therefore we may apply Lusin’s Theorem [Folland, 1999,
Theorem 7.10]: there exists a continuous function g and a set S satisfying

|g| ≤ |f1| ≤ sup
x

|f1(x)| < ∞, g|S = (f1)|S , µx(S
c) ≤ τ

ℓ(0) + supx |f1(x)|
,
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whereby since ℓ is 1-Lipschitz,

R(g)−R(f1) ≤
∫
1[x ∈ Sc]ℓ(−yg(x)) dµ(x, y)

≤
∫
1[x ∈ Sc]ℓ(|g(x)|) dµx(x)

≤ µx(S
c)(ℓ(0) + sup

x
|g(x)|)

≤ τ.

Since g is continuous, it is uniformly continuous over ∥x∥ ≤ 1, and thus there exists a δ > 0 so that
the modulus of continuity ωg(δ) at scale δ is at most τ , meaning

sup
∥x−x′∥≤δ

|g(x)− g(x′)| ≤ ωg(δ) ≤ τ.

By results in neural network universal approximation [Ji et al., 2020b, Theorem 4.3], there exists
infinite-width weights U∞ : Rd+1 → Rd+1 satisfying R := supx̃ ∥U∞(x̃)∥ < ∞ and

sup
∥x∥≤1

∣∣∣f(x̃;U∞)− g(x)
∣∣∣ ≤ ωg(δ) ≤ τ,

which again by the 1-Lipschitz property of ℓ means R(U∞)−R(g) ≤ τ . Combining all these pieces,

R(U∞)−R =
[
R(U∞)−R(g)

]
+
[
R(g)−R(f1)

]
+
[
R(f1)−R

]
≤ τ + τ + 2τ ≤ ϵ,

as desired.

B.5 Proofs of main results: Theorem 1.1 and Corollary 2.3

The proof of Theorem 1.1 and a precise restatement are as follows. This restatement has fully explicit
constants, and is invoked in the proof of Corollary 2.3 to ease sanity-checking.
Theorem B.13 (Refined restatement of Theorem 1.1). Let temperature ρ > 0 and reference model
U∞ be given with R := max{4, ρ, supv ∥U∞(v)∥} < ∞, and define a corresponding conditional
model ϕ∞(x) := ϕ(f(x;U∞)). Let optimization accuracy ϵgd and radius Rgd ≥ R/ρ be given,

define effective radius B := min
{
Rgd,

3R
ρ + 4e

ρ

√
t
√
eτ0R(U∞) +Rτn

}
, where generalization

error τn and additionally linearization error τ1 and sampling error τ0 are defined as

τn :=
80
(
d ln(em2d3/δ)

)3/2
√
n

,

τ1 :=
100ρB4/3

√
d ln(enm2d3/δ)

m1/6
,

τ0 := 6ρd ln(emd2/δ) +
20R

√
d ln(em2d3/δ)

m1/4
,

where it is assumed τ1 ≤ 2 and m ≥ ln(emd). Choose step size η := 4/ρ2, and run gradient descent
for t := 1/(8ϵgd) iterations, selecting iterate W≤t := argmin{R̂(Wi) : i ≤ t, ∥Wi −W0∥ ≤ Rgd}
with simultaneously small norm and empirical risk. Then, with probability at least 1− 25δ,

R(W≤t)−R (logistic error)

≤ Kbin(py, ϕ∞) +
(
eτ1+τ0 − 1

)
R(U∞) (reference model error)

+ eτ1R2ϵgd (optimization error)
+ eτ1(ρB +R)τn (generalization error),

where the classification and calibration errors satisfy

R(W≤t)−R (logistic error)

≥ 2

∫ (
ϕ(f(x;W≤t))− py

)2
dµx(x) (calibration error)

≥ 1

2

(
Rz(W≤t)−Rz

)2
(classification error).
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Lastly, for any ϵ > 0, there exists U
(ϵ)

∞ with supv ∥U
(ϵ)

∞ (v)∥ < ∞ and whose conditional model

ϕ
(ϵ)
∞ (x) := ϕ(f((x, 1)/

√
2;U

(ϵ)

∞ )) satisfies Kbin(py, ϕ
(ϵ)
∞ ) ≤ ϵ.

Proof of Theorem 1.1 and simultaneously Theorem B.13. This proof focuses on the first inequality,
upper bounding R(W≤t) − R; for the other two statements, the chain of inequalities with other
error metrics are from Lemma B.1, and the approximation of arbitrary Borel measurable py is from
Lemma B.12. (The only difference between Theorem B.13 here and Theorem 1.1 in the body is that
the “Õ” hides constants and ln(m) and ln(d) (but not ln(n)).

Returning to the first inequality, let U be the canonical sample of U∞ as in eq. (1), where ∥U−W0∥ ≤
R/ρ by construction. By Lemma B.11, with probability at least 1− 6δ, then R(0)(U) ≤ eτ0R(U∞),
where τ0 is as in the statement (cf. Theorem B.13).

Next instantiate Lemma 2.2 with reference matrix Z = U and RZ := R/ρ, whereby the definition of
R gives RZ ≥ {1, ηρ, ∥U −W0∥} as needed; as such, ignoring an additional failure probability at
most 19δ, setting τ := τ1/4 in the invocation, and lastly subtracting R from both sides,

R(W≤t)−R ≤ eτ1R(0)(U) + eτ1(ρRZ)
2ϵgd + eτ1(ρB + ρRZ)τn −R

≤
(
eτ1+τ0 − 1

)
R(U∞) +Kbin(py, ϕ∞) + eτ1R2ϵgd + eτ1(ρB +R)τn.

This invocation of Lemma 2.2 also guarantees R̂(0)(U) ≤ R(0)(U) +Rτn which together with the
earlier inequality R(0)(U) ≤ eτ0R(U∞) provides the form of B used in the statement (this B upper
bounds the one defined in Lemma 2.2, which is fine since it only relaxes the guarantees provided
there).

Making use of Theorem B.13, the proof of the consistency statement, Corollary 2.3, is as follows.
Note that we are always working with bias-augmented inputs within this statement and its proof; e.g.,
Ŵn ∈ Rm(n)×(d+1).

Proof of Corollary 2.3. Let ϵ > 0 be arbitrary, and define the event

En :=
[
R(Ŵn) ≥ R+ ϵ

]
.

Following a standard scheme for consistency proofs [Schapire and Freund, 2012, Corollary 12.3], it
suffices, thanks to the Borel-Cantelli lemma, to prove∑

n≥1

Pr[En] < ∞; (10)

that is to say, by the Borel-Cantelli lemma, eq. (10) implies lim supn→∞ R(Ŵn)−R ≤ ϵ almost
surely, and since R(Ŵn) ≥ R and since ϵ > 0 was arbitrary, it follows that R(Ŵn) → R almost
surely. Moreover, by Lemma B.1, for each n there are the inequalities

1

2

(
Rz(Ŵn)−Rz

)2
≤ 2

∫
(ϕ̂n(x)− py(x))

2 dµx(x) ≤ R(Ŵn)−R,

thus R(Ŵn) → R also implies ϕ̂n → py in L2(µx) almost surely, and Rz(Ŵn) → Rz almost surely.

To establish eq. (10), first use the last part of Theorem B.13 to fix a U∞ with Kbin(py, ϕ̂n) ≤ ϵ/2,
and define R := supv ∥U∞(v)∥ < ∞. To bound Pr[En], instantiate Theorem B.13 for every n
with reference model U∞ and corresponding R < ∞, and failure probability δ(n) := 1/n2, and
optimization radius Rgd = ∞, meaning a corresponding effective radius given by Theorem B.13 as

B(n) =
1

ρ(n)

(
3R+ 4e

√
t(n)
√

eτ
(n)
0 R(U∞) +Rτn

)
.

Inspecting all the terms in Theorem B.13, it will now be argued that while the term Kbin(py, ϕ̂n)

stays level and is at most ϵ/2 independent of n, all other terms go to 0. Returning to B(n), since
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τn = Õ(1/
√
n) and τ

(n)
0 → 0 (which will be shown later), then B(n) = Õ(

√
t(n)/ρ(n)), whereby

τ
(n)
1 = Õ

(
ρ(n)(B(n))4/3

(m(n))1/6

)
= Õ

(
(t(n))2/3

(m(n))1/6(ρ(n))1/3

)

= Õ

(
(t(n))2/3

(m(n))1/8

)
= Õ

(
n

2
3 (1−ξ)

n
5
3 (1−ξ)

)
= Õ

(
nξ−1

)
→ 0.

Next,

τ
(n)
0 = Õ

(
ρ(n) +

1

(m(n))1/4

)
= Õ

(
n

5
3 (ξ−1) + n

10
3 (ξ−1)

)
→ 0,

which together with the asymptotics of τ (n)1 gives exp(τ (n)0 +τ
(n)
1 )−1 → 0 and exp(τ

(n)
1 )R2ϵ

(n)
gd →

0. The final term to consider is

exp(τ
(n)
1 )ρ(n)B(n)τn = Õ

(√
t(n)

n

)
= Õ(n−ξ/2) → 0.

As such, all terms go to zero with n (excepting Kbin(py, ϕ̂n) ≤ ϵ/2, which is fine), and there exists
N0 so that for all n > N0, all conditions of the bound are met, and with the exclusion of a failure
probability of δ(n), the bound implies R(Ŵn) < R+ϵ. Thus n ≥ N0 implies Pr[En] ≤ δ(n) = 1/n2,
and ∑

n≥1

Pr[En] ≤
∑
n≤N0

1 +
∑
n>N0

1

n2
≤ N0 +

π2

6
< ∞,

which establishes eq. (10) and completes the proof.

C Proof of Proposition 1.2

Proposition 1.2 is a consequence of the following more refined statement, which also suggests the
method of proof, and is consistent with Figure 2.
Lemma C.1. Suppose marginal distribution µx is continuous and compactly supported on [0, 1],
py is continuous, and that either µx(p

−1
y ((0, 1/2))) > 0 or µx(p

−1
y ((1/2, 1)) > 0, meaning py is

outside {0, 1/2, 1} on a set which has positive measure according to µx.

Then there exists a constant c ∈ (0, 1/4) (depending only on µx and py) so that with probability at
least 1 − 7δ over the draw of ((xi, yi))

n
i=1 with n ≥ ln(1/δ)/c, there exists an interval I ⊆ [0, 1],

and a subset of pairs of indices indices S ⊆ [m]2 satisfying the following properties.

1. Either py ∈ [c, 1/2− c] everywhere on I , or py ∈ [1/2 + c, 1− c] everywhere on I; henceforth
let ŷ := sgn(py − 1/2) designate the correct (Bayes) prediction over I .

2. If (i, k) ∈ S, then xi < xk = min{xs : xs ≥ xi}, meaning xk is the first point to the right of xi,
and moreover the corresponding labels yi = yk = −ŷ agree with each other but are incorrect.

3. For any local interpolation rule f ∈ Fn (cf. Proposition 1.2),

Rz(f) ≥ Rz + c.

Proof of Lemma C.1 (and simultaneously Proposition 1.2). Consider any point x where py(x) ̸∈
{0, 1/2, 1} and µx > 0; such a point must exist by the assumptions. Define ŷ := sgn(py(x)− 1/2)
and c1 := min{py(x)/2, |py(x) − 1/2|/2, (1 − py(x))/2}, where c1 ∈ (0, 1/4) by construction.
Since py and µx are continuous, then there must exist some (potentially tiny) closed interval I
containing x so that sgn(py(x) − 1/2) = ŷ, and for any x′ ∈ I , both µx(x

′) > 0 and px′ ∈
(c1, 1/2− c1) ∪ (1/2 + c1, 1− c1).

To simplify the rest of the proof, suppose ŷ = −1; the other case is symmetric, but as in the preceding
paragraph, handling both cases simultaneously adds significant notational overhead.

Let S denote all adjacent pairs of points in I where (xi, xk) ∈ S means xi < xk = min{xs : xs >
xi} and yi = yk = −ŷ. With this choice, all that remains to be shown is the third item, the lower
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bound on the risk.To show this, it suffices to show that a constant fraction of µx’s probability mass is
contained between these pairs, meaning

µx

(
∪(i,k)∈Sµ([xi, xk])

)
≥ c2 > 0,

where crucially c2 is independent of n. To see that this suffices to establish the third property, suppose
that f : R → R satisfies the required condition, meaning f(x)ŷ < 0 for x ∈ ∪(i,k)∈Sµ([xi, xk]);
then by a standard calculation against the Bayes risk [Devroye et al., 1996],

Rz(f)−Rz =

∫
|1− 2py(x)|1

[
sgn(f) ̸= sgn(py(x)− 1/2)

]
dµx(x)

≥
∫

|1− 2py(x)|1
[
x ∈ ∪(i,k)∈S [xi, xk]

]
dµx(x)

≥ 2c1µx

(
∪(i,k)∈S [xi, xk]

)
= 2c1c2,

and the final statement and all properties are satisfied if we pick c ∈
(
0,min{c1, c2, 2c1c2}

]
.

As such, it remains to provide a lower bound on c2 which is independent of n, which will follow a
series of simplifications as follows.

The first step is to lower bound the cardinality of S. The expected number of points in I is nµx(I),
and if n ≥ 32 ln(1/δ)/µx(I), then by a multiplicative Chernoff bound [Blum et al., 2020, Theorem
12.6], with probability at least 1− 3δ,∣∣∣{i ∈ [m] : xi ∈ I

}∣∣∣ ≥ nµx(I)

2
.

and thus the number of consecutive pairs in I is at least nµx(I)/2− 1 ≥ nµx(I)/4.

Since these pairs may share endpoints, consider the set of at least nµx(I)/8 pairs that share no points.
Since the draw of y is independent of x, for each of these consecutive pairs, the probability that
both labels are wrong is at least (1− c1)

2 (and is independent of other pairs), meaning the expected
number of such points is at least nµx(I)(1− c1)

2/8; as such, if n ≥ 256 ln(1/δ)/(µx(I)(1− c1)
2),

by another multiplicative Chernoff bound, with probability at least 1− 3δ, the number of pairs with
agreeing but incorrect labels is at least nµx(I)(1 − c1)

2/16. Let S0 denote this set of pairs; by
construction, its cardinality also lower bounds that of S.

It remains to show that the union of the convex hulls of these pairs of points has a significant fraction
of total probability mass.

For any sample (x1, . . . , xn), let (x(1), . . . , x(n)) be the sample in sorted order, meaning x(1) <
x(2) < · · · < x(n) (strict inequalities almost surely since µx is continuous). Define a distance ∆ and
function F of the sample as

∆ :=
µx(I)(1− c1)

2

256n
,

F (x1, . . . , xn) :=

∣∣∣∣{i ∈ [m− 1] : µ([x(i), x(i+1)]) < ∆
}∣∣∣∣ ;

that is to say, F measures the number of consecutive pairs whose convex hulls have probability mass
strictly less than ∆. As will be established momentarily, F satisfies the bounded differences property
with a constant 2, meaning for any two samples (x1, . . . , xn) and (x′

1, . . . , x
′
n) that differ only in a

single example xi ̸= x′
i, ∣∣F (x1, . . . , xn)− F (x′

1, . . . , x
′
n)
∣∣ ≤ 2.

To argue this, suppose the disagreeing example xi occupies position j after sorting, meaning xi = x(j),
and consider adjusting one sample to the other by renaming this point to x′

i, removing it from its
current location, and moving it to its final location.

• First we remove x′
i from the interval (x(j−1), x(j+1)). If neither (x(j−1), x

′
i) nor (x′

i, x(j+1))
counts towards F , then neither will (x(j−1), x(j+1)), so F remains unchanged. If exactly
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one of (x(j−1), x
′
i) and (x′

i, x(j+1)) counts towards F , then (x(j−1), x(j+1)) does not count
towards F , so F decreases by 1. If both (x(j−1), x

′
i) and (x′

i, x(j+1)) counts towards F , then
(x(j−1), x(j+1)) may or may not count towards F , so F decreases by 1 or 2. So this operation
changes F by any of {−2,−1, 0}.

• Then we insert x′
i into a new interval. The range of possible changes to F is the exact opposite

as removing it from an interval, so this leads to a change by any of {+2,+1, 0}; together the
difference in F is within [−2,+2].

As such, by McDiarmid’s inequality, with probability at least 1− δ,

F (x1, . . . , xn) ≤ EF (x1, . . . , xn) +
√
2n ln(1/δ).

Upper bounding EF (x1, . . . , xn) can now be performed in a coarse way as follows. Partition
the support of µx, [0, 1], into two systems of intervals, I and J , as follows. I simply contains
the
⌈
1/(2∆)

⌉
consecutive intervals of mass 2∆ (except for the last, which may have less mass);

meanwhile, J contains a first initial interval of mass ∆, and then intervals of mass 2∆ until a
final interval of mass at most 2∆. Due to this staggered behavior, if some pair (x(i), x(i+1)) has
µx((x(i), x(i+1))) < ∆, then the pair must appear in a single interval in either I or J (the staggering
avoids boundary issues). Now consider the creation of the full data sample by sampling the data
points one by one, and the resulting effect on these bins; the goal is to upper bound the number
of times a point is inserted into an occupied bin, as this upper bounds the number of consecutive
pairs of points within some bin, which in turn upper bounds F . After inserting the ith point (twice),
let Ai denote the number of occupied bins, and Bi the number of times a point was inserted into
an occupied bin; necessarily, Ai = 2i − Bi (the factor two coming from simultaneous throws
to I and J ). The probability of landing in an occupied bin (and thus increasing Bi) is at most
Ai(2∆) = (2i−Bi)(2∆). By linearity of expectation,

EF ≤ EBn ≤
n−1∑
i=1

2E1 [xi+1 lands in an occupied bin ]

≤ 4∆

n−1∑
i=1

(2i− EBi) ≤ 4∆(n− 1)n ≤ nµx(I)(1− c1)
2

64
.

Together, supposing that n ≥ 8192 ln(1/δ)/(µx(I)
2(1 − c1)

4), it follows that with probability at
least 1− δ,

F (x1, . . . , xn) ≤
nµx(I)(1− c1)

2

64
+
√
2n ln(1/δ) ≤ nµx(I)(1− c1)

2

32
.

To finish the proof, since the preceding quantity is less than half the cardinality of S0, we are
guaranteed that at least half the pairs in S0 have µx((xi, xk)) ≥ ∆; letting S1 denote this half, then

µx(∪i,k∈S [xi, xk]) ≥
∑

(i,k)∈S1

µx([xi, xk])

≥ |S1|∆ ≥ nµx(I)(1− c1)
2

32
·∆ ≥ µx(I)

2(1− c1)
4

8192
=: c3.

It only remains to determine the final value of the constant c. By the preceding calculation and
the comments near the start of the proof establishing that c ∈ (0,min{c1, c2, 2c1c2}] suffices, the
quantity c3 here is indeed a lower bound on c2, and thus, defining c4 := min{c1, c3, 2c1c3}, it
suffices to require c ∈ (0, c4]. On the other hand, inspecting all the necessary lower bounds on n
throughout the proof, the maximum across all of them is that we need n ≥ ln(1/δ)/c3. As such, all
properties are satisfied if we take c := c4 > 0 as our final constant, which depends only on µx and py
(but not on n) as promised.
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