
Under review as submission to TMLR

Target Entity Prompt True Positive Rate True Negative Rate

Spider
“Is there a spider in this image?" 22.27% 100.00%
“Spiders in Minecraft are black.
Is there a spider in this image?" 73.42% 94.54%

“Spiders in Minecraft are black
and have red eyes and long, thin

legs. Is there a spider in this image?"
50.50% 99.85%

Cow
“Is there a cow in this image?" 71.00% 45.41%

“Cows in Minecraft are black and white.
Is there a cow in this image?" 98.22% 2.00%

“Cows in Minecraft are black and white
and have four legs.

Is there a cow in this image?"
96.67% 7.35%

Sheep
“Is there a sheep in this image?" 88.00% 59.83%
“Sheep in Minecraft are white.
Is there a sheep in this image?" 100.00% 0.00%

“Sheep in Minecraft are white and
have four legs.

Is there a sheep in this image?"
100.00% 0.00%

Table 5: InstructBLIP’s performance at decoding text indicating that it detected the presence of a target
entity when given different prompts. We use this as a proxy metric for prompt engineering for RL, allowing
us to determine which prompt to use for PR2L.

A Prompt Evaluation for RL in Minecraft

We discuss how to evaluate prompts to use with PR2L, by showcasing an example for a Minecraft task. We
start by noting that the presence and relative location of the entity of interest for each task (i.e., spiders,
sheep, or cows) are good features for the policy to have. To evaluate if a prompt elicits these features from
the VLM, we collect a small dataset of videos in which each Minecraft entity of interest is on the left, right,
middle, or not on screen for the entirety of the clip. Each video is collected by a human player screen
recording visual observations from Minecraft of the entity from different angles for around 30 seconds at 30
frames per second (with the exception of the video where the entity is not present, which is a minute long).

We propose prompts that target each of the two features we labeled. First, we evaluate prompts that ask
“Is there a(n) [entity] in this image?” As the answers to these questions are just yes/no, we see how well
the VLM can directly generate the correct answer for each frame in the collected videos. The VLM should
answer “yes” for frames in the three videos where the target entity is on the left, right, or middle of the screen
and “no” for the final video. Second, we evaluate if our prompts can extract the entity’s relative position
(left, right, or middle) in the videos where it is present. We note that the prompts we tried could not extract
this feature in the decoded text (e.g., asking “Is the [entity] on the left, right, or middle of the screen?” will
always cause the VLM to decode the same text). Thus, we try to see if this feature can be extracted from the
decoded texts’ representations. We measure this by fitting a three-category linear classifier of the entity’s
position given the token-wise mean of the decoded tokens’ final embeddings. This is an unsophisticated and
unexpressive classifier, i.e., we do not have to worry about the model potentially memorizing the data, which
means that good classification performance corresponds to an easy extractability of said feature.

We evaluate three types of prompts per task entity for the first feature: one simply asking if the entity is
present in the image (e.g., “Is there a spider in this image?”) and two others adding varying amounts of
auxiliary information about visual characteristics of the entity (e.g., “Spiders in Minecraft are black. Is there
a spider in this image?” and “Spiders in Minecraft are black and have red eyes and long, thin legs. Is there a
spider in this image?”). We present evaluations of all such prompts in Table 5. We find that the VLM benefits
greatly from auxiliary information for the spider case only, likely because spiders in Minecraft are the most
dissimilar to the ones present in natural images of real spiders, whereas cows and sheep are still comparatively
similar, especially in terms of scale and color. However, adding too much auxiliary information degrades

18

Under review as submission to TMLR

Figure 3: Example tasks, observations, and task-relevant prompts from MineDojo and Habitat.

performance, perhaps because the input prompt becomes too long, and therefore is out-of-distribution for
the types of prompts that the VLM was pre-trained on. This same argument may explain why auxiliary
information degrades performance for the other two target entities as well, causing them to almost always
answer that said entities are present, even when they are not. Once more, considering that these targets
exhibit a higher degree of visual resemblance to to their real counterparts compared to Minecraft spiders,
it is reasonable to infer that the VLM would not benefit from auxiliary information. Furthermore, taking
into account that the auxiliary information we gave is more common-sense than the information given for
the spider, it could imply that the prompts are also more likely to be out-of-distribution (given that “sheep
are white” is so obvious that people would not bother expressing it in language), causing the systematic
performance degradation.

For the probing evaluation, we find that all three prompts reach similar final linear classifiabilities for each
of their target entities, as shown in Figure 4. While this does not aid in choosing one prompt over another, it
does confirm that the VLM’s decoded embeddings for each prompt still contains this valuable and granular
position information about the target entity, even though the input prompt did not ask for it.

B MineDojo Details

B.1 Environment Details

Spaces. The observation space for the Minecraft tasks consists of the following:

1. RGB: Egocentric RGB images from the agent. (160, 256, 3)-size tensor of integers ∈ {0, 1, ..., 255}.

2. Position: Cartesian coordinates of agent in world frame. 3-element vector of floats.

3. Pitch, Yaw: Orientation of agent in world frame in degrees. Note that we limit the pitch to 15◦

above the horizon to 75◦ below for combat spider, which makes learning easier (as the agent otherwise
often spends a significant amount of time looking straight up or down). Two 1-element vectors of
floats.

19

Under review as submission to TMLR

4. Previous Action: The previous action taken by the agent. Set to no operation at the start of each
episode. One-hot vector of size |A| = 53 for combat spider and 89 otherwise (see below).

This differs from the simplified observation space used in Fan et al. (2022) in that we do not use any nearby
voxel label information and impose pitch limits for combat spider. This observation space is the same for all
Minecraft experiments.

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Linear Classifier Accuracy of Relative Position of Spider

Is there a spider in this image?
Spiders in Minecraft are black. Is there a spider in this image?
Spiders in Minecraft are black and have red eyes and long, thin legs.
Is there a spider in this image?

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Linear Classifier Accuracy of Relative Position of Cow

Is there a cow in this image?
Cows in Minecraft are black and white. Is there a cow in this image?
Cows in Minecraft are black and white and have four legs.
Is there a cow in this image?

0 100 200 300 400 500
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Linear Classifier Accuracy of Relative Position of Sheep

Is there a sheep in this image?
Sheep in Minecraft are white. Is there a sheep in this image?
Sheep in Minecraft are white and have four legs.
Is there a sheep in this image?

Figure 4: We train a linear classifier to predict the relative
position of the target entity (left/right/middle) based on the av-
erage VLM embeddings decoded in response to each associated
candidate prompt. We find that all three candidate prompts
per task elicit embeddings that are similarly highly conducive
to this classification scheme.

The action space is discrete, consisting of 53 or 89
different actions:

1. Turn: Change the yaw and pitch of the
agent. The yaw and pitch can be changed
up to ±90◦ in multiples of 15◦. As they can
both be changed at the same time, there
are 9 × 9 = 81 total different turning ac-
tions. The turning action where the yaw
and pitch changes are both 0◦ is the no op-
eration action. Note that, since we impose
pitch limits for the spider task, we also limit
the change in pitch to ±30◦, meaning there
are only 45 turning actions in that case.

2. Move: Move forward, backward, left, right,
jump up, or jump forward for 6 actions to-
tal.

3. Attack: Swing the held item at whatever
is targeted at the center of the agent’s view.

4. Use Item: Use the held item on what-
ever is targeted at the center of the agent’s
view. This is used to milk cows or shear
sheep (with an empty bucket or shears re-
spectively). If holding a sword and shield,
this action will block attacks with the latter.

This non-combat spider action space is the same as
the simplified one in Fan et al. (2022). All experi-
ments for a given task share the same action space.

World specifications. MineDojo implements a
fast reset functionality that we use. Instead of gen-
erating an entirely new world for each episode, fast
reset simply respawns the player and all specified en-
tities in the same world instance, but with fully re-
stored items, health points, and other relevant task
quantities. This lowers the time overhead of re-
sets significantly, but also means that some changes
to the world (like block destruction) are persistent.
However, as breaking blocks generally takes multi-
ple time steps of taking the same action (and does not directly lead to any reward), the agent empirically
does not break many blocks aside from tall grass (which is destroyed with a single strike from any held item).
We keep all reset parameters (like the agent respawn radius, how far away entities can spawn from the agent,
etc) at their default values provided by MineDojo.

We stage all tasks in the same area of the same programmatically-generated world: namely, a sunflower
plains biome in the world with seed 123. This is the default location for the implementation of the spider

20

Under review as submission to TMLR

Hyperparameter Task
Combat Spider Milk Cow Shear Sheep Combat Zombie Combat Enderman Combat Pigman

Total Train Steps 150000 100000
Rollout Steps 2048

Action Entropy Coefficient 5e-3
Value Function Coefficient 0.5

Max LR 5e-5 1e-4 1e-4 5e-5 1e-4 5e-5
Min LR 5e-6 1e-4 1e-4 5e-6 1e-4 5e-6

Batch Size 64
Update Epochs 10

γ 0.99
GAE λ 0.95

Clip Range 0.2
Max Gradient Norm 0.5
Normalize Advantage True

Table 6: PPO hyperparameters for Minecraft tasks, shared by the baselines, our method, and ablations.

combat task in MineDojo. We choose this specific world/location as it represents a prototypical Minecraft
scene with relatively easily-traversable terrain (thus making learning faster and easier).

Additional task details and reward functions. We provide additional notes about our Minecraft tasks.

Combat spider : Upon detecting the agent, the spider approaches and attacks; if the agent’s health is depleted,
then the episode terminates in failure. The agent receives +1 reward for striking any entity and +10 for
defeating the spider. We also include several distractor animals (a cow, pig, chicken, and sheep) that passively
wander the task space; the agent can reward game by striking these animals, making credit assignment of
success rewards and the overall task harder.

Milk cow: The agent also holds wheat in its off hand, which causes the cow to approach the agent when
detected and sufficiently nearby. For each episode, we track the minimum visually-observed distance between
the agent and the cow at each time step. The agent receives +0.1|∆dmin| reward for decreasing this minimum
distance (where ∆dmin ≤ 0 is the change in this minimum distance at a given time step) and +10 for
successfully milking the cow.

Shear sheep: As with milk cow, the agent holds wheat in its off hand to cause the sheep to approach it.
The reward function also has the same structure as that task, albeit with different coefficients: +|∆dmin| for
decreasing the minimum distance to the sheep and +10 for shearing it.

Combat zombie: Same as combat spider, but the enemy is a zombie. We increase the episode length to 1000,
as the zombie has more health points than the spider.

Combat enderman: Same as combat spider, but the enemy is an Enderman. As with combat zombie,
we increase the episode length to 1000. Note that Endermen are non-hostile (until directly looked at for
sufficiently long or attacked) and have significantly more health points than other enemies. We thus enchant
the agent’s sword to deal more damage and decrease the initial spawn distance of the enderman from the
agent.

Combat pigman: Same as combat spider, but the enemy is a hostile zombie pigman. As with combat zombie,
we increase the episode length to 1000.

B.2 Policy and Training Details

For our actual RL algorithm, we use the Stable-Baselines3 (version 2.0.0) implementation of clipping-based
PPO (Raffin et al., 2021), with hyperparameters presented in Table 6. Many of these parameters are the
same as the ones presented by Fan et al. (2022). For the spider trials, we use a cosine learning rate schedule:

LR(current train step) = Min LR + (Max LR − Min LR)

1 + cos
(

π current train step
total train steps

)
2

 (1)

21

Under review as submission to TMLR

Policy Transformer Hyperparameters

Transformer Token Size 512 / 128
Transformer Feedforward Dim 512 / 128
Transformer Number Heads 2

Transformer Number Decoder Layers 1
Transformer Number Encoder Layers 1

Transformer Output Dim 128
Transformer Dropout 0.1

Transformer Nonlinearity ReLU

Policy MLP Hyperparameters

Number Hidden Layers 1
Hidden Layer Size 128

Activation Function tanh

VLM Generation Hyperparameters

Max Tokens Generated 6
Min Tokens Generated 6

Decoding Scheme Greedy

Table 7: All policy hyperparameters for all Minecraft tasks. Smaller token sizes and feedforward dimensions
are used for combat [zombie/enderman/pigman].

We also present the policy and VLM hyperparameters in Table 7. The hyperparameters and architecture
of the MLP part of the policy are primarily defined by the default values and structure defined by the
Stable-Baselines3 ActorCriticPolicy class. Note that the no generation ablation, VLM image encoder
baseline, and MineCLIP trials do not generate text with the VLM, and so all do not use the associated
process’s hyperparameters. The MineCLIP trials also do not use a Transformer layer in the policy, due
to not receiving token sequence embeddings. It instead just uses a MLP, but with two hidden layers (to
supplement the lowered policy expressivity due to the lack of a Transformer layer).

Additionally, InstructBLIP’s token embeddings are larger than ViT-g/14’s (used in the VLM image en-
coder baseline), and so may carry more information. However, the VLM does not receive any privileged
information over the image encoder from the task environment – any additional information in the VLM’s
representations is therefore purely from the model’s prompted internal knowledge. Still, to ensure consistent
policy expressivity, we include a learned linear layer projecting all representations for this baseline and our
approach to the same size (512 dimensions) so that the rest of the policy is the same for both.

Minecraft training runs were run on 16 A5000 GPUs (to accommodate the 16 seeds).

C Habitat ObjectNav Details

C.1 Environment Details

The spaces and agent/task specifications are largely the same as the defaults provided by Habitat, as specified
in the HM3D ObjectNav configuration file (Savva et al., 2019).

Spaces. The observation space for Habitat consists of the following:

1. RGB: Egocentric RGB images from the agent. (480, 640, 3)-size tensor of integers ∈ {0, 1, ..., 255}.
By default, agents also receive depth images, but we remove them to ensure that state representations
are grounded primarily in visual observations.

2. Position: Horizontal Cartesian coordinates of agent. 2-element vector of floats.

3. Compass: Yaw of the agent. Single floats.

22

Under review as submission to TMLR

4. Previous Action: The previous action taken by the agent. Set to no operation at the start of each
episode. One-hot vector of size |A| = 4.

5. Object Goal: Which object the agent is aiming to find. One-hot vector of size 3.

The action space is the standard Habitat-Lab action space, though we remove the pitch-changing actions,
leaving only four:

1. Turn: Turn left or right, changing the yaw by 30◦.

2. Move Forward: Move forward a fixed amount or until the agent collides with something.

3. Stop: Ends the episode, indicating that the agent believes it has found the goal object.

All observations, actions, and associated dynamics are deterministic.

World specifications. In ObjectNav, an agent is spawned in a household environment and must find and
navigate to an instance of a specified target object in as efficient a path as possible. Doing so effectively
requires a common-sense understanding of where household objects are often found and the structure of
standard homes.

Habitat provides a standardized train-validation split, consisting of 80 household scenes for training (from
which one can run online RL or collect data for offline RL or BC) and 20 novel scenes for validation, thereby
testing policies’ generalization capabilities. These scenes come from the Habitat-Matterport 3D v1 dataset
(Ramakrishnan et al., 2021).

C.2 Policy and Training Details

In line with previous work (Ramrakhya et al., 2023; Yadav et al., 2023b; Majumdar et al., 2023), we train our
policies with behavior cloning (BC) on the Habitat-Web human demonstration dataset of 77k trajectories
(12M steps) (Ramrakhya et al., 2022). We adopt many of the same design choices provided by said prior
works, but with a few critical differences:

1. Due to compute limitations, we were unable to train on the full dataset (as those original works
used 512 parallel environments to roll out demo trajectories and collect data). Instead, we used a
subset of the dataset, built by dividing the dataset by both target object and scene, then sampling
every tenth demo. This would ensure that our training data still contained examples from every
training scene + target object combination that existed. In total, our subsampled dataset contains
approximately 1.1M steps over 7550 trajectories.

2. We adopt the same optimizer, scheduler, and associated hyperparameters as Majumdar et al. (2023),
but find a learning rate of 1e − 4 to be more effective than their 1e − 3.

3. Rather than sampling partial trajectory rollouts from 512 parallel environments as done by Ma-
jumdar et al. (2023), our batches contain full trajectories, though with the same total number of
transitions per batch as in that work. This means that our batches potentially contain less diverse
data (due to observations from fewer different total scenes being present), but allow us to com-
pute up-to-date full trajectory hidden states for the RNN portion of our policy. We use gradient
accumulation to achieve this, once again due to compute limitations.

4. While Majumdar et al. (2023) trains for 24k gradient steps (observing approximately 400M transi-
tions.), we find using only approximately a tenth of that (40 epochs through our smaller dataset,
so around 40M transitions) to reach peak performance for our policy. The scheduler still assumes
the full training run will last for 400M transitions, so our LR decays at the same rate as with VC-1.
Furthermore, for fairness, we leave our VC-1 baseline policies (trained on our subsampled datasets)
training beyond 40 epochs, and report their validation performance at both 40 and 120 epochs (when
its performance saturates).

23

Under review as submission to TMLR

5. For policies that receive visual observations as a sequence of tokens (PR2L, VC-1 with patch embed-
dings), we apply 2D average pooling with kernel sizes of 4 × 4 to reduce down to 16 tokens. Then,
we pass those tokens through a learned Transformer layer, instead of the learned compression layer
used by Majumdar et al. (2023). We do this to ensure that policy performance differences are due
to representation quality, not architecture.

6. We employ inflection upweighting during training, as done by Ramrakhya et al. (2023); Yadav et al.
(2023b); Majumdar et al. (2023). However, we also categorically upweight the cross entropy loss
of stopping and turning by 1.5 (due to them being uncommon but important), as we observe this
increases learning speed for all policies.

7. We do not employ any image augmentation or loss regularization to prevent overfitting. However, we
find our policy exhibits strong generalization performance in unseen validation scenes nonetheless.

For PR2L-specific design choices:

1. Our chosen VLM is the Prismatic VLM (Karamcheti et al., 2024) with Dino+SigLIP as a vision
backbone and Llama2-7B-pure as the language backbone. We use the 224px version, which maps
images to 256 visual tokens (which, as described above, get compressed into 16 via pooling).

2. To reduce the size of VLM representations for PR2L, we embed one observation (sampled uniformly
at random) from each trajectory in our subsampled dataset with our VLM, then compute all resulting
tokens’ principle component vectors. We then use said vectors to lower all tokens’ dimensionality
down from 4096 to 1024 (i.e., corresponding approximately to their first 1024 principle components).

3. Like with the Minecraft experiments, we take the VLM’s last two layers’ embeddings and treat them
as our promptable representations. However, unlike with Minecraft, we stack each VLM token’s two
embeddings (forming new embeddings of size 2048), rather than concatenate all of them.

4. For generating text in response to our task-relevant prompt, we use sample-based decoding with
fixed random seed prior to the decoding with temperature 0.4 and 32 − 48 new tokens generated.

5. The learned Transformer layer of our policy is the same as the one used in the Minecraft experiments,
but with token embedding sizes of 1024.

All Habitat training was done on an A100 GPU server. Generation of data and evaluations were done on 16
A5000 GPUs for parallelization.

D Simplified Habitat Offline RL Experiments

While our primary Habitat experiments use behavior cloning to stay consistent with past works, we also run
offline RL experiments on a simplified version of ObjectNav to better explore how VLM representations aid
action learning. We discuss the details of said setting now.

D.1 Environment Details

We pick 32 reconstructed 3D home environments with at least one instance of each of the three target objects
(toilet, bed, and sofa) and an annotator quality score of at least 4 out of 5. We choose to remove plants and
televisions from the goal object set due to finding numerous unlabeled instances of them. Additionally, we
remove chairs, as they are significantly more common than other goal objects and thus usually can be found
in much shorter episodes. This simplified problem formulation enables us to remove many of the “tricks”
that aid ObjectNav, such as using omnidirectional views or policies with history; our agent makes action
decisions purely based on its current visual observation and pose, allowing us to do “vanilla” RL to better
isolate the effect of PR2L.

To generate data, we use Habitat’s built-in greedy shortest geodesic path follower. Imitating such demon-
strations allows policies to learn unintuitively emergent and performant navigation behaviors (Ehsani et al.,

24

Under review as submission to TMLR

2023) at scale. For each defined starting location in our considered households, we autonomously collect
data by using the path follower to navigate to each reachable instance of the corresponding goal object.
This yields high quality, near-optimal data. We then supplement our dataset by generating lower-quality
data. Specifically, for each computed near-optimal path from a starting location to a goal object instance,
we choose to inject action noise partway through the trajectory (uniformly at random from 0 − 90% of the
way through). At that point, all subsequent actions have a 0 − 50% probability (again chosen uniformly at
random) of being a random action other than the one specified by the path follower. To ensure that paths
are sufficiently long, we choose to make the probability of choosing the stop action 10% and the other two
movement actions 45%. In total, we collect 107518 observations over 2364 trajectories.

Reward functions. The ObjectNav challenge evaluates agents based on the average "success weighted by
path length" (SPL) metric (Yadav et al., 2023a): if an agent succeeds at taking the stop action while close
to an instance of the goal object, it gets SPL(p, l) = l

max(l,p) points, where l is the actual shortest path from
the starting point to an instance of the goal object and p is the length of the path that the agent actually
took during that particular episode. If the agent stops while not close to the target object, the SPL is 0.
Thus, taking the most efficient path to the nearest goal object and stopping yields a maximum SPL of 1.

We use this to design our reward function. Specifically, when the agent stops, it receives a reward of
+10SPL(p, l). Additionally, we add a shaping reward of the change in geodesic distance to the nearest goal
object instance each time the agent moves (where lowering that distance yields a positive reward).

D.2 Policy and Training Details

For our offline RL experiments in Habitat, we use Conservative Q-Learning (CQL) on top of the Stable-
Baslines3 Contrib codebase’s implementation of Quantile Regression DQN (QR-DQN) Kumar et al. (2020);
Dabney et al. (2017). We choose to multiply the QR-DQN component of the CQL loss by 0.2. Using the
notation proposed by Kumar et al. (2020), this is equivalent to α = 5, which said work also uses. Other
hyperparameters are τ = 1, γ = 0.99, fixed learning rate of 1e − 4, 100 epochs, and 50 quantiles (no
exploration hyperparameters are specified, since we do not generate any new online data).

The policy architecture used for Habitat experiments are the same as those used for PPO, though the final
network outputs quantile Q-values for each action (rather than just a distribution over actions). The action
with the highest mean quantile value is chosen at evaluation time.

During training, we shuffle the data and load full offline trajectories until the buffer has at least 32 × 1024 =
32768 transitions or all trajectories have been loaded once that epoch. We then uniformly sample and train
on batches of size 512 transitions from the buffer until each transition has been trained on once in expectation
(e.g., ∼ number of transitions in the buffer

512 batches). Each batch is used for 8 gradient steps before the next is
sampled. We choose this data loading scheme to fit the training infrastructure provided by Stable-Baselines3
while not using up too much memory at once.

D.3 Experiments and Results

Our primary comparison is once again between our promptable representations and general-purpose non-
promptable ones. We thus repeat the baseline described previously for Minecraft in Section 4.1, training a
single agent for all three ObjectNav tasks using both PR2L and the VLM image encoder representations.
We empirically note that longer visual embedding sequences tend to perform better in Habitat. To control
for this, we opt to use InstructBLIP’s Q-Former unprompted embeddings instead of the ViT embeddings
directly (which are much longer than PR2L’s embedding sequences). As InstructBLIP uses the former
representations to extract visual features to be projected into language embedding space, this serves to close
the gap in embedding sequence length between our two conditions while still providing us with general visual
features that the VLM processes via prompting. In this case, we use the same InstructBLIP model as the
Minecraft experiments and choose “What room is this?” as our task-relevant prompt.

We report evaluation success rates and average returns for the simplified Habitat ObjectNav setting in Figure
5. PR2L achieves nearly double the average success rate of the baseline (60.4% vs. 35.2%), supporting the
hypothesis that PR2L works especially well when exploration is not needed. Lastly, in Appendix H.2, we

25

Under review as submission to TMLR

Average Toilet Bed Sofa
Target Object

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rates Per Category

Average Toilet Bed Sofa
Target Object

0

2

4

6

8

10

Av
er

ag
e

Re
tu

rn
s

Average Returns Per Category

PR2L (ours) VLM Image Encoder Baseline

Figure 5: Offline RL performance of PR2L and baselines in Habitat ObjectNav. Plots show final evaluation success
rates and average returns per target object and overall. PR2L outperforms the baseline in all cases.

find that PR2L causes the VLM to produce highly structured representations that correlate with an expert
policy’s value function: high-value states are typically labeled by the VLM as being from a room where one
would expect to find the target object.

E Extended Discussion of Tasks and Results

E.1 Notes on Task-specific Systems

We designed experiments to specifically investigate the use of VLM embeddings as task-specific promptable
representations for downstream sensorimotor policy learning. As such, we compare with other works that
propose or evaluate either learning from scratch or from pre-trained representations, but not to systems in
Minecraft and Habitat that require domain-specific engineered systems beyond just policy learning (such as
Luo et al. (2022); Zhu et al. (2022)) or which target learning or producing higher-level plans or abstractions
(such as Wang et al. (2023b)).

Such comparisons are not made as these works either aim to investigate other problems in control or are aim-
ing to develop highly specialized and task-specific systems (whereas we present a general approach for policy
learning). For instance, Voyager shows how an LLM can reason about and compose high-level hand-crafted
control primitives (Wang et al., 2023a). Voyager’s ability to complete harder tasks comes from its access
to powerful hand-crafted high-level primitives that extensively leverage oracle information, which are com-
posed into skills by GPT-4 (which does not handle any low-level control). Said hand-coded control primitives
used in Voyager are very advanced and do much of the heavy-lifting. In particular, Voyager gives GPT-4
access to a dedicated killMob(<entity name>) control primitive function. This function calls a separate
bot.pvp.attack(<entity>) (hand-written) function, which calls a hard-coded oracle pathfinder, aiming
controller, and attack function to repeatedly approach and attack the specified entity until it is defeated.
Thus, for Voyager, the skill for hunting sheep simply fills in the powerful killMob() primitive function with
“sheep” as the target, abstracting away all low-level control via the oracle hand-written controllers.

Vitally, unlike PR2L, Voyager does not investigate how to use (V)LMs to learn these primitives. It thus
cannot be applied to settings that lack such primitives (e.g., because oracle path planners are not available,
like in Habitat). This makes PR2L complementary: we directly learn a policy to link observations to low-
level actions (turning, moving, attacking, etc) via RL with no oracle information, while Voyager aims to
compose pre-existing primitives into skills via LLMs.

26

Under review as submission to TMLR

Task PR2L (Ours) VLM Image Encoder Ablations
No Prompt No Generation Change Aux. Text Oracle Detector

Combat Spider 97.6 ± 14.9 51.2 ± 9.3 72.6 ± 14.2 66.6 ± 11.8 80.1 ± 12.6 58.0 ± 13.4
Milk Cow 223.4 ± 35.4 95.2 ± 18.7 116.6 ± 25.9 160.2 ± 23.6 80.5 ± 17.8 178.4 ± 42.5

Shear Sheep 37.0 ± 4.4 23.0 ± 3.6 23.8 ± 3.2 26.1 ± 4.5 27.8 ± 4.6 27.4 ± 9.3

Table 8: Minecraft ablations, VLM image encoder baseline, and our full approach. All achieve worse performance than PR2L.
Values are final IQM success counts and intervals are the standard error.

E.2 Notes on Dreamer v3

We note that PR2L just proposes to use VLMs as a source of task-specific representations for RL tasks;
it does not prescribe which learning algorithm to use. Therefore, in principle, one could use Dreamer in
conjunction with PR2L and gain benefits from both the VLM representation and the choice of a strong
model-based RL algorithm. However, while we leave this to future works, our Minecraft comparison (c)
measures how well the approach does on our Minecraft tasks (as the original paper focuses more on the
component subtasks involved in the find diamond task, all of which do not involve interacting with moving
entities).

We find that Dreamer v3 is unable to learn our six tasks given the same number of environment interactions
that PR2L+PPO was trained on. We hypothesize that this is due to its visual reconstruction-based world
model not being suited for tasks requiring interaction with partially-observable, non-stationary autonomous
entities (which all our tasks involve). We note that the last two rows of the figure visualizing model recon-
structions in the original Dreamer v3 paper shows that its world model fails to reconstruct an observed pig
(Hafner et al., 2023), supporting our hypothesis. This highlights the need for robust representations that are
conducive to world model learning, with PR2L’s capabilities to elicit task-relevant visual semantic features
via prompting being one possibility for doing so.

F Ablations

We run four ablations on combat spider, milk cow, and shear sheep to isolate and understand the importance
of various components of PR2L. First, we run PR2L with no prompt to see if prompting with task context
actually tailors the VLM’s generated representations favorably towards the target task, improving over an
unprompted VLM. Note that this is not the same as just using the image encoder (comparison (a)), as this
ablation still decodes through the VLM, just with an empty prompt. Second, we run PR2L with our chosen
prompt, but no generation of text – i.e., the policy only receives the embeddings associated with the image
and prompt (the left and middle red groupings of tokens in Figure 2, but not the right-most group). This
tests the hypothesis that representations of generated text might make certain task-relevant features more
salient: e.g., the embeddings for “Is there a cow in this image?”, might not encode the presence of a cow
as clearly as if the VLM generates “Yes” in response, impacting downstream performance. Third, to check
if our prompt evaluation strategy provides a good proxy for downstream task performance while tuning
prompts for P2RL, we run PR2L with alternative prompts that were not predicted to be the best, as per
our criterion in Appendix A. We thus remove the auxiliary text from the prompt for combat spider and add
it for milk cow and shear sheep. Lastly, to see if PR2L embeddings are just better due to them encoding
entity detection, we train a VLM image encoder policy with an additional ground truth oracle target entity
detector as a feature.

Results from these additional experiments are presented in Table 8. In general, all ablations perform worse
than PR2L. For milk cow, we note the most performant ablation is no generation, perhaps because the
generated text is often wrong; among the chosen prompts, it yields the lowest true positive and negative
rates for classifying the presence of its corresponding target entity (see Table 5 in Appendix A), though adding
auxiliary text makes it even worse, perhaps explaining why milk cow experienced the largest performance
decrease from adding it back in. Based on these overall trends, we conclude that (i) the promptable and
generative aspects of VLM representations are important for extracting good features for control tasks and
(ii) our simple evaluation scheme is an effective proxy measure of how good a prompt is for PR2L.

27

Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Success Rate

Combat
Spider

Milk
Cow

Shear
Sheep

Behavior Cloning Success Rate

PR2L (ours)
VLM Image Encoder Baseline

Figure 6: Success rates for BC on either PR2L or VLM image encoder baseline representations for all original
tasks. PR2L excels at combat spider, even after the policy is trained for a single epoch.

G Minecraft Behavior Cloning Experiments

We collected expert policy data by training a policy on MineCLIP embeddings to completion on all of our
original tasks and saving all transitions to create an offline dataset. We then embedded all transitions with
either PR2L or the VLM image encoder. Finally, we train policies with behavior cloning (BC) on successful
trajectories under a specified length (300 for combat spider, 250 for milk cow, and 500 for shear sheep) from
either set of embeddings for all three tasks, then evaluate their task success rates.

Results are presented in Figure 6. We first note that, since the expert data was collected from a policy
trained on MineCLIP embeddings, the shear sheep policy is not very effective (as we found in Table 2). Both
resulting shear sheep BC policies are likewise not very performant. We find that combat spider in particular
shows a very large gap in performance: the PR2L agent achieves approximately twice the success rate of
the VLM image encoder agent after training for just a single epoch. The comparatively small amount of
training and data necessary to achieve near-expert performance for this task supports our hypothesis that
promptable representations from general-purpose VLMs do not help with exploration (they work better in
offline cases, where exploration is not a problem), but instead are particularly conducive to being linked
to appropriate actions even though the VLM is not producing actions itself. Further investigation of this
hypothesis is presented in Appendix H.

H Representation Analysis

Why do our prompts yield higher performance than one asking for actions or instruction-following? Intu-
itively, despite appropriate responses to our task-relevant prompts not directly encoding actions, there should
be a strong correlation: e.g., when fighting a spider, if the spider is in view and the VLM detects this, then
a good policy should know to attack to get rewards. We therefore wish to investigate if our representations
are conducive to easily deciding when certain rewarding actions would be appropriate for a given task – if it
is, then such a policy may be more easily learned by RL, which would explain PR2L’s improved performance
over the baselines.

H.1 Minecraft Analysis

To investigate this, we use the embeddings of our offline data from the BC experiments (collected by training a
MineCLIP encoder policy to high performance on all of our original three tasks, as discussed in Appendix G).
We specifically look at the embeddings produced by a VLM when given our standard task-relevant prompts
and when given the instructions used for our RT-2-style baseline. We then perform principal component
analysis (PCA) on the tokenwise average of all embeddings for each observation, thereby projecting the
embeddings to a 2D space with maximum variance.

28

Under review as submission to TMLR

0 5 10 15 20

10

5

0

5

10

15

PC
2

Combat Spider PR2L Reps PCA
Movement
Attack

15 10 5 0 5 10 15

15

10

5

0

5

10

15
Milk Cow PR2L Reps PCA

Movement
Use

20 15 10 5 0 5 10

15

10

5

0

5

10

15
Shear Sheep PR2L Reps PCA
Movement
Use

15 10 5 0 5 10
PC1

15

10

5

0

5

10

PC
2

Combat Spider Instruction Reps PCA
Movement
Attack

15 10 5 0 5 10 15
PC1

10

5

0

5

10

15

Milk Cow Instruction Reps PCA
Movement
Use

15 10 5 0 5 10 15
PC1

10

5

0

5

10

15

Shear Sheep Instruction Reps PCA
Movement
Use

Figure 7: PCA of PR2L representations of observations from twenty episode rollouts of expert
policies in all three Minecraft tasks. Larger points correspond to transitions where the expert received
> 0.1 reward. We vary the prompt to be either our task-relevant prompt or the RT-2-style baseline instruction
prompt. Our prompt’s representations are bi-modal, with the clusters on the left corresponding to the VLM
outputting “yes” (the entity is in view). We find that most functional actions (orange points) that yielded
rewards are located in said clusters. Note that, since these expert policies are trained on top of MineCLIP
embeddings, the shear sheep policy is not very performant, as seen in Table 2.

We visualize these low-dimensional space in Figure 7 for the final 20 successful observations from each task,
with the point colors of orange and blue respectively indicating whether the observation results in a functional
action (attack or use item) or movement (translation or rotation) by the expert policy. Additionally, we
enlarge points corresponding to when the agent received rewards in order to recognize which actions aided
in or achieved the task objective.

We find that our considered prompts resulted in a bimodal distribution over representations, wherein the
left-side cluster corresponds to the VLM outputting “yes (the entity is in view)” and the right-side one
corresponds to “no.” Additionally, observations resulting in functional actions that received rewards (large
orange points in Figure 7) tend to be on the left-side (“yes”) cluster for representations elicited by our
prompt, but are more widely distributed in the instruction prompt case, in agreement with intuition. This
is especially clear in the milk cow plot, wherein nearly all rewarding functional actions (using the bucket on
the cow to successfully collect milk) are in the lower left corner.

This analysis supports that the representations yielded by InstructBLIP in response to our chosen style of
prompts are more structured than representations from instructions. Such structure is useful in identifying
and learning rewarding actions, even when said actions were taken from an expert policy trained on unrelated
embeddings. This suggests that such representations may similarly be more conducive to being mapped to
good actions via RL, which we observe empirically (as our prompt’s representations yield more performant
policies than the instructions for the RT-2-style baseline).

29

Under review as submission to TMLR

60 50 40 30 20 10 0 10
PC1

40

30

20

10

0

10

20

30
PC

2

Find Toilet PR2L Reps PCA

60 50 40 30 20 10 0 10 20
PC1

30

20

10

0

10

20

30

40

PC
2

Find Bed PR2L Reps PCA

20 10 0 10 20 30 40 50
PC1

40

30

20

10

0

10

20

30

40

PC
2

Find Sofa PR2L Reps PCA

2

0

2

4

6

8

0

2

4

6

8

2

0

2

4

6

8

bedroom bathroom living room hallway dining room kitchen foyer stair laundry

30 20 10 0 10 20 30 40
PC1

30

20

10

0

10

20

30

40

PC
2

Find Toilet Image Encoder Reps PCA

30 20 10 0 10 20 30 40
PC1

40

30

20

10

0

10

20

30

PC
2

Find Bed Image Encoder Reps PCA

30 20 10 0 10 20 30 40
PC1

30

20

10

0

10

20

30

40

PC
2

Find Sofa Image Encoder Reps PCA

0

2

4

6

8

2

0

2

4

6

8

0

2

4

6

8

Figure 8: PCA of PR2L (above) and image encoder (below) representations of observations
from thirty episode rollouts of expert policies in all Habitat tasks. The points’ colors correspond
to their value under Habitat’s built-in oracle shortest path follower (a near-optimal policy). More yellow is
better. Boxes correspond to points the VLM has labeled as a given household room, in response to the task
prompt of “What room is this?” This analysis aligns with intuition: for find toilet, high value observations
tend to be labeled as bathrooms (orange box), find bed’s tend to be labeled as bedrooms (blue), and find
sofa’s are labeled as living rooms (red).

H.2 Habitat Analysis

Likewise, we conduct a similar analysis on the Habitat data from our simplified setting. Specifically, we wish
to see if PR2L produces representations that are conducive to extracting the value function of a good policy.
Since the chosen Habitat ObjectNav prompt is “What room is this?” we expect the state representations to
be clustered based on room categories. Intuitively, states corresponding to the room one is likely to find the
target object should have the highest values.

As shown in Figure 8, we thus used PCA to project expert trajectories’ PR2L and general image encoder state
representations (generated with Habitat’s geodesic shortest path follower) to two dimensions, then colored
each one based on their value under said near-optimal policy. We also plotted the mean and standard
deviation of all points labeled as each room, visualizing them as axis-aligned bounding boxes. Note that
each upper subplot in Figure 8 has a cluster of points far from all boxes. These correspond to the VLM
generating nothing or garbage data with no room label.

This visualization qualitatively agrees with intuition. High value states tend to be grouped with the room the
corresponding target object is often found in: find toilet corresponds to bathrooms, find bed to bedrooms, and
find sofa to living rooms. Comparatively, the general image encoder features do not have such semantically
meaningful groupings; all observations are clustered together and, within that single grouping, high-value
observations are more spread out. This all supports the idea that prompting allows representations to take
on structures that correlate well to value functions of good policies.

30

Under review as submission to TMLR

I Code Snippets

We provide some code snippets showcasing instantiations of PR2L.
class Policy (torch .nn. Module):

def __init__ (self , num_actions , tf_embed_dim =4096) :
""" Policy that accepts promptable reps as input """
super (). __init__ ()
Project down VLM embed dimensions
self. embed_fc = torch .nn. Linear (tf_embed_dim , 1024)
Predict actions
self. action_fc = torch .nn. Linear (1024 , num_actions)
Transformer layer to condense promptable reps to 1 token
self. transformer = torch .nn. Transformer (

1024 ,
1,
num_encoder_layers =1,
num_decoder_layers =1,
dim_feedforward =1024 ,
batch_first =True ,

)
self.cls = torch .nn. Embedding (1, 1024) # cls tokens

def forward (self , x):
seq , mask = x
bs , traj_len , num_tokens , _ = seq. shape

[batch *traj_len , num tokens , token size]
seq = seq. reshape (bs * traj_len , num_tokens , -1)
[batch *traj_len , num tokens]
mask = mask. reshape (bs * traj_len , num_tokens)

Project down
[batch *traj_len , num tokens , tf dim]
seq = self. embed_fc (seq)

Get CLS embedding
cls = self.cls(torch . zeros ([bs * traj_len , 1],

device =seq.device , dtype =int))

Get summary embedding
[batch *traj_len , 1, tf dim]
cls_embed = self. transformer (

seq , # Encoder input
cls , # Decoder input
Apply mask
src_key_padding_mask =mask ,
memory_key_padding_mask =mask ,

)

[batch , traj_len , d_model]
cls_embed = cls_embed . reshape (bs , traj_len , -1)

Predict actions
[batch , traj_len , actions]
return self. action_fc (cls_embed)

Listing 1: Example policy for PR2L.

def process_obs (model , processor , image , prompt , device , last_n =2):
inputs = processor (images =image , text=prompt , return_tensors ="pt").to(device)

Generate text in response to prompt and extract embeddings
outputs = model . generate (

** inputs ,
output_hidden_states =True ,
return_dict_in_generate =True ,
Any other generation parameters (min/max tokens , temp , etc)

31

Under review as submission to TMLR

)
hs = outputs [" hidden_states "]

Get image and prompt token embeds
Any additional processing should happen here (eg pooling of visual tokens)
[last_n , num img + prompt tokens , tf_embed_dim]
image_and_prompt_embs = torch .cat(hs [0] , dim =0)[- last_n :]

Get decoded token embeds
[last_n , num decoded tokens , tf_embed_dim]
dec_embs = []
for dec_hs in hs [1:]:

[last_n , 1, tf_embed_dim]
dec_hs = torch .cat(dec_hs , dim =0)[- last_n :]
dec_embs . append (dec_hs)

[last_n , num decoded tokens , tf_embed_dim]
dec_embs = torch .cat(dec_embs , dim =1)

[last_n , num total tokens]
seq_embs = torch .cat ([image_and_prompt_embs , dec_embs], dim =1)
tf_embed_dim = seq_embs . shape [-1]

[bs=1, seq_len =1, last_n *num total tokens , tf_embed_dim]
seq_embs = seq_embs . reshape (1, 1, -1, tf_embed_dim)

mask = torch . zeros (seq_embs [: -1] , type=int)

return seq_embs , mask

Listing 2: Example code for extracting promptable representations from a VLM.

Create VLM and processor (InstructBLIP , for example)
model = InstructBlipForConditionalGeneration . from_pretrained (

" Salesforce / instructblip -vicuna -7b"
)
processor = InstructBlipProcessor . from_pretrained (" Salesforce / instructblip -vicuna -7b")

Set device , can also change dtype if desired
device = "cuda :0"
model = model .to(device)

Create env
env = ...

Create policy . This can be trained via RL or BC as needed .
policy = Policy (env. num_actions).to(device)

Define task - relevant prompt
prompt = " Would a toilet be found here? Why or why not?"

To predict an action , get an RGB obs from the env and process it with the VLM
obs = env. reset ()
seq , mask = process_obs (model , processor , obs , prompt , device)

Then , pass it through the policy to get action logits and step env
act_logits = policy . forward ((seq , mask)). reshape (env. num_actions)
action = torch . argmax (act_logits)
obs , _, _, _ = env.step(action)

Listing 3: Example usage of the above function and policy.

J Extended Literature Review

Learning in Minecraft. We now consider some current approaches for creating autonomous learning
systems for tasks in Minecraft. Such works highlight some of the difficulties prevalent in tasks in said
environment. For instance, since Minecraft tasks take place in a dynamic open world, it can be difficult

32

Under review as submission to TMLR

for an agent to determine what goal it is attempting to reach and how close it is to reaching that goal.
Cai et al. (2023) tackles these issues by introducing and integrating a training scheme for self-supervised
goal-conditioned representations and a horizon predictor. Zhou et al. (2023) learns a model from visual
observations to discriminate between expert state sequences and non-expert ones, which provides a source
of intrinsic rewards for downstream RL tasks (as it pushes the policy to learn to match the expert state
distribution, which tend to be “good” states for accomplishing tasks in Minecraft).

Foundation Models and Minecraft. Likewise, there has been much interest in applying foundation
models – especially (V)LMs – to Minecraft tasks. Baker et al. (2022) pretrains on large scale videos, which
enabled the first agent that could learn to acquire diamond tools (thereby completing a longstanding challenge
in the MineRL competition Kanervisto et al. (2022)). LMs have subsequently also been used to produce
graphs of proposed skills to learn or technology tree advancements to make in the form of structured language
(Nottingham et al., 2023; Zhu et al., 2023; Yuan et al., 2023; Wang et al., 2023b). Other works propose
to use the LLM to generate actions or code submodules given textual descriptions of observations or agent
states (Wang et al., 2023a). Finally, VLMs have been used largely for language-conditioned reward shaping
(Fan et al., 2022; Ding et al., 2023). In contrast, we use VLMs as a source of representations for learning
of atomic tasks (as defined by Lin et al. (2023a)) that have pre-defined reward functions; the latter works
can thus be used in conjunction with our proposed approach for tasks where these vision-language reward
functions are appropriate.

33

	Prompt Evaluation for RL in Minecraft
	MineDojo Details
	Environment Details
	Policy and Training Details

	Habitat ObjectNav Details
	Environment Details
	Policy and Training Details

	Simplified Habitat Offline RL Experiments
	Environment Details
	Policy and Training Details
	Experiments and Results

	Extended Discussion of Tasks and Results
	Notes on Task-specific Systems
	Notes on Dreamer v3

	Ablations
	Minecraft Behavior Cloning Experiments
	Representation Analysis
	Minecraft Analysis
	Habitat Analysis

	Code Snippets
	Extended Literature Review

