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A APPENDIX

A.1 DECISION-MAKING DETAILS OF VISION-LANGUAGE MODELS

The process of inputting data into the VLM is as follows: First, the agent acquires an RGB obser-
vation based on its current pose and the Where2Imagine module predicts a relative pose based on
the current observation. The RGB observation and the relative pose predicted by Where2Imagine
are jointly input into the NVS to generate a new view image. This process is repeated at intervals
of 60°, ultimately producing six novel view images, which are stitched together to serve as input
to the VLM. In the ablation experiments, the VLM inputs for different variants differ in whether or
not Where2Imagine is used for relative pose prediction and novel view generation, but at the start of
each cycle, the initial input to the model is the RGB observation from the agent’s current position at
60° intervals. Figure 7 shows the complete prompts and responses of the VLM.

Visual Prompt for Vision-Language Model

You are a wheeled mobile robot working in an indoor environment. And you are completing the object navigation task in a 
new house. Your task is to decide a most promising exploration direction for searching the target object as soon as 
possible.
To decide the direction, you will be provided with the following elements:
(1) <Navigation Goal>: The object navigation target.
(2) <Candidate Images>: This stitched image displays six directions, each depicting a scene moving forward about 2 meters. 
Each image has a corresponding number.
Please carefully evaluate these six images based on the elements and choose the most suitable direction for exploration. 
Your choice should first be based on discovering navigation targets, followed by the potential of unexplored areas. Output 
your answer as a dict, for example, Answer={'Reason':<Your reason>, ‘Choice’: <The number>}. Please condense your 
language.

Vision-Language Model Prediction

--Option1: Shows a plain wall with minimal elements. No visible features indicate a TV. Low exploration potential.
--Option2: Features what appears to be a dark room. No visible electronics or TV indicators. 
--Option3: Displays a partially open area with shelving and architectural interest. High potential for leading to new 
spaces but no immediate evidence of a TV.
--Option4: Shows a living room-like setting, featuring what looks like a TV or a black screen prominently visible. Strong 
indication of the target object.
--Option5: Dimly lit corner with no visible objects resembling a TV. Low exploration value.
--Option6: Dining or kitchen setting with chairs and cabinets. Unlikely to house a TV. 

Answer= {‘Reason’: ‘This image leads to a hallway that may connect to other rooms, increasing the chance of finding a 
monitor/TV.’, ‘Choice’: 4}

Option 5Option 2 Option 3 Option 4 Option 6Option 1

Figure 7: Complete prompt input and decision output of vision-language model.

A.2 COMPARISON BETWEEN THE WHERE2IMAGINE MODULE AND UNIFORM SAMPLING

As shown in Figure 8, the prediction points of the Where2Imagine module are more concentrated
in walkable areas, and the predicted views are richer in information, covering more structural and
semantic details such as furniture, doors, and windows within the room. In contrast, the r=2.0m
sampling points are uniformly distributed based on a fixed radius, without considering obstacles
or scene information. Where2Imagine’s prediction tendency not only aligns better with realistic
navigable paths but also effectively guides the agent toward areas with higher information density,
improving its environmental perception efficiency.
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Figure 8: The visualization of the relative pose predicted by the Where2Imagine module and poses
sampled at 60° intervals with 2.0m radius. The upper part shows the agent’s current position (star
marker) in different environments, as well as the distribution of the relative poses predicted by the
Where2Imagine module (red dots) and the poses sampled at 60° intervals with a 2.0m radius (blue
dots). The lower part shows the first-person views from different poses. Compared to uniform
sampling at r=2.0m, the Where2Imagine module tends to predict more towards walkable areas and
directions with higher information density.

A.3 TRAINING DATASET FOR WHERE2IMAGINE

By replicating human demonstration trajectories, we collect first-person perspective images It from
the trajectory and, after T frames, use the relative camera pose Pt+T = (�x,�y, ✓) as image labels
to generate training data for the Where2Imagine module, as shown in Figure 9. After training, the
module is able to predict the next waypoint based on current observations, aligning with human
navigation preferences.

Figure 9: Visualization of human demonstration trajectories with different sampling intervals on the
MP3D dataset in the Habitat-Web project. The left shows longer intervals, while the right shows
relatively shorter intervals.
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A.4 SELF-CENTERED VISUALIZATION OF WHERE2IMAGINE

Figure 10 presents the prediction results of the Where2Imagine model on two different datasets,
HM3D and HSSD. Each subfigure consists of four parts: the input image, the predicted waypoint
(red dot), the observation image and the corresponding NVS image. These visualizations demon-
strate the model’s adaptability across different datasets and its ability to guide the agent towards
more exploratory positions while avoiding obstacles.
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Figure 10: Self-centered visualization of the Where2Imagine model’s prediction results. The top
shows predictions on the HM3D dataset, while the bottom displays predictions on the HSSD dataset.
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