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A BASIC FACTS

This section collects some basic facts concerning the loss function. First, as we state in Section@ the
pseudo-Huber loss exhibits behavior similar to the Huber loss 1964), approximating
22/2 when 22 < 7% and resembling a straight line with slope 7 when 2% 2 72. To see this, some
algebra yields

<
2¢2 =
Ilfel <ty (z) < 7|z, if 22 > 72 -4(1 +¢€) /€.

{ SRR < (p) < & ifa? <77 A(L+ )/

Second, we give the first-order derivatives and the Hessian matrix for the empirical loss function. Let
T = v4/n/z throughout the appendix. Recall that our empirical loss function is

E3 = A e ()
=1 =1

S e

Ln(p,v)

)
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Algorithm 1 An alternating gradient descent algorithm.
Input: fiinit, Vinit, Vo, Vo, M1, M2, (Y15 -+ Yn)
for £k = 0,1, ... until convergence do
P+t =t — MV p L (1, vi) _ B
Vg1 = Uk — N2VrLn (kg 1, v&) and vp41 = min{max{vg11,vo}, Vo}
end for
Output: [i = pig41,0 = V41

The first-order and second-order derivatives of L,, (i, v) are

n

1 Yi — 1 Vo1 Yi — 1
VL, v) = —— S AU Y -
D D e w= ryn ry SRRRETD Dl ey

22 n n 1< T
i Z¢1+z2y—m /(nv2>_(22_“)_22'n2<ﬂ+<yi—w_l>+a

i=1

where a = 1/2. The Hessian matrix is

Z T2 n 1\ T(yi—p)

i=1 3/2 22 i=1 2 T )2)3/2
H(p,v) = (72wimm?) g ()
? 3/2 )2

n 1 __Tlyizp)  nP21 s _ imw)”

22 Lui=1 (724(y;—w)2)3/2 2% n Lui=1 (724 (y;—p)?)3/?

B AN ALTERNATING GRADIENT DESCENT ALGORITHM

This section presents an alternating gradient descent algorithm to optimize ( The algorithm
generates the solution sequence {(u,vg) : k > 0} with the initialization (g, vo) (Hinit, Vinit )-
At the working solution (py, vy) for any k > 0, the (k + 1)-th iteration involves the following two
steps:

L. pgyr = pg — 1 VL (g, vi),
2. :Uk+1 = Vg — ’I]QVTLTL(,U,;C+1, Uk) and V41 = min{max{ﬁkH, ’Uo}, Vo},

where 7); and 72 are the learning rates and

n

1 Yi — p
VuLn(p,v) = —— ;
uln(p,0) n ; o1+ 22(y; — )2/ (nv?)

2
z n
Vulali) = 53—t ~(5-0).

LV 2y - )P (w?) Nz
The above two steps are repeated untll convergence. The algorithm routine is summarized in
Algorithm[T] The learning rates 7); and 7, can be chosen adaptively in practice. In our experiments,
we utilize alternating gradient descent with the Barzilai and Borwein method and backtracking line
search.

C COMPARING WITH LEPSKI’S METHOD

We compare our method with Lepski’s method. Specifically, we employ Lepski’s method to tune the
robustification parameter v and, consequently T = vy/n/z, in the empirical pseudo-Huber loss:

L) = 23 (/AT ).
i=1

Lepski’s method proceeds as follows. Let vy« be an upper bound for o, and Tax = Vmax \/ﬁ /z
with z = 4/log(1/4). Let n be sufficiently large. Then with probability at least 1 — §, we have

log(4/6) _

n

‘ﬁ(vmax) - LL*‘ S 6vmax E(”ma}o 5)7
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where [i(vmax) = argmin, Ly (4, Umax). Let us by convention set €(vmax,0) = +oo. Clearly,
€(Umax, 0) is homogeneous in the sense that

€(Vmax, 0) = B(0)Umax, where B(d) =6 %.

For some parameters V' € R, p > 1, and s € N, we choose the following probability measure V for

Umax

V() = 1/(2s+1), ifvma =Vp* k€Z, |k <s,
maxs o0, otherwise.
Let us consider for any vy such that €(vmax, 0V (Umax)) < oo the confidence interval
I(Vmax) = F(Vmax) + €(Vmax, 0 V(Vmax)) X [—1,1],

where

log(4/6) +log(2s + 1)

E(rUmaxa ] V(Umax)) = GUmax\/

if Uynax = VpF forany k € Z and |k| < s. We set I(Vpax) = R when €(vmax, 6V (Vmax)) = +00.

Let us consider the non-decreasing family of closed intervals

J(vl) = ﬂ{l(vmax) D Umax = Ul}, (A R+.

In this definition, we can restrict the intersection to the support of V', since otherwise I (vyax) = R.
Lepski’s method picks the center point of the intersection

ﬂ{J(vl) tvr € Ry, J(vr) # 0}

to be the final estimator firepski. Then the following result is due to|Catoni| (2012).

Proposition C.1. Suppose |log(c/V')| < 2slog(p). Then with probability at least 1 — &

fitenai — 1| < 12p0\/log(4/5) + log(2s + 1)
epski > .

n

If we take the grid fine enough such that s = n, then the upper bound above reduces to

120 \/10g(4/5) +log(2n + 1)
n

)

which agrees with deviation bound for our proposed estimator, up to a constant multiplier. Therefore,
our proposed estimator is comparable to Lepski’s method in terms of the deviation upper ound.
Computationally, our estimator is self-tuned and thus computationally more efficient than Lepski’s
method; detailed numerical results can be found in Section [4}

D PROOFS FOR SECTION[2]

D.1 PROOFS FOR THEOREM[2.3]

Proof of Theorem We prove first the finite-sample result and then the asymptotic result. Recall
that 7. = v.\/n/z.

Proving the finite-sample result. On one side, if v, = 0 and by the definition of v,, v, satisfies

1_Lz2:1[§ﬂ_

=0
n \/nv2 + 222
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which is a contradiction. Thus v, > 0. Using the convexity of 1/+/1 + = for z > —1 and Jensen’s
inequality acquires
2 2

1_Lz2_E V. 220

= =E ! Z ! Z 1- 29
n /w2 + 222 V14 222/ (nv2) 1+ 2202 /(nv?) 2nvy

where the last inequality uses the inequality (1 + z)~%/2 > 1 — z/2, i.e., Lemma (i) with
r = —1/2. This implies

Q
[\v]

vfg .

[\
s}

On the other side, using the concavity of 1/z, we obtain, for any v € [0, 1), that

1—ﬁ:E V/nu, 1

1
<LWE| —m—m—
—\/ (1+z2e2/<nvz>)
22¢2 22e2 ~ 1 22¢2 ~y
E 1—(1— 1 < 1
¢{( 0-77) 1 (or = 75) * e (r > 755}

2252 2252 ~
<4 J1-(1-9)E 1 <
<y (G <))

1—(1—7) E{e*1 (52;27/232/(1 - )}

) (D.1)
where the second inequality uses Lemma|[D.T] that is,
(1+2)"'<1—(1—7)z, forany x € [0, 17] .
-

Taking square on both sides of inequality and using the fact that n > az? together with Lemma
[H.4]G) with 7 = 2, aka (1 + 2)? > 1 + 22 for x > —1, we obtain

) 2 2\ 2 E 21 2 <« 2 1—
1_ az < 1_% Sl—(l_’y) {5 (E —,YT*/( FY))}
n n nv2/z2

)

or equivalently

2
o
et2

2
Ve 2 2a

where ¢ = 7/(1 — 7). Combining the upper bound and the lower bound for v2 completes the proof
for the finite-sample result.

Proving the asymptotic result. The above derivation implies that v, < oo for any a > 0. By the
definition of v,, we obtain

¥ _ 1 g ! (D.2)

n V1+ 222/ (n?)’

We must have nv2 /22 — oo. Otherwise assume

limsup nv? /2% < M < oo.
n— oo
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Taking n — oo, the left hand side of the above equality goes to 0 while the right hand is lower
bounded as

1 1
_E\/1+52/M21_ E(1+62/M>
— \/1 E{e21(s2 < M)}

2M
1
>1—4/ =
2 \ffov

where the first two inequalities follow from the same arguments in deriving (D.I) but with v = 1/2,
and the third inequality uses the fact that

E{e%1(s?2 < M)} < M.

This is a contradiction. Thus nv?/z? — co. Multiplying both sides of the above equality by n, taking
n — oo, and using the dominated convergence theorem, we obtain

\/m_l
az’ = lim E (n + 2%/ (nvs) )

n—oo

14 2222/ (nv2)

1+ 222 7)1 .22
_ 1imIE<n~ 1 V14 222/ (nov2) 'z5>

neoo Tt 22e2/(no?)  2%e%/(@m?) 20
Ez2¢?

PETETE—
21limy, o v2

and thus lim,, . v2 = 0 /(2a). This proves the asymptotic result.

D.2 PROOF OF PROPOSITION[2.4]

Proof of Proposition[2.4] The convexity proof consists of two steps: (1) proving that L,,(u, v) is
jointly convex in u and v; (2) proving that L,,(u, v) is strictly convex, provided that there are at least
two distinct data points.

To show that L, (y,v) = n= ! >0 | P(y; — p,v) in 2.3) is jointly convex in y and v, it suffices
to show that each ¢P(y; — p,v) is jointly convex in p and v. Recall that 7 = v+/n/z. The Hessian
matrix of P (y; — p,v) is

Hi(,LL7U) = \/ﬁ . 1 2 (\/ﬁ/z) T(yi - :U‘) — O,

S Gl (7 u)z)?’/2 (Vn)z) Ty — ) (Vn/2)? (ys — p)2| =

and thus positive semi-definite. Therefore, L,, (1, v) is jointly convex in x and v.

We proceed to show (2). Because the Hessian matrix H (u,v) of L, (u,v) satisfies H(u,v) =
n~t YT | Hi(p,v) and each H;(p,v) is positive semi-definite, we only need to show that H (y, v)
is of full rank. Without generality, assume that y; # yo. Then

Vi 1 7 (vi/2) (i — 1)
(e 0) o Halps) = 552 3 o T (s ) (VR )
Some algebra yields

n27_2 (yl _ y2)2

A2 = D (52— 1))
forany 7 > 0 (v > 0), and i € R, provided that y; # yo. Therefore, Hy (11, v) + Ha(p, v) is of full
rank and thus is H (u, 7), provided v > 0, u € R, and y; # yo. O

det (Ha (s, v) + Ha(n,v)) = 73 70
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D.3 SUPPORTING LEMMAS

LemmaD.1. Let 0 <~y < 1. Forany 0 < 2 < /(1 — ~), we have
1+2)"'<1—(1—7)a.

Proof of Lemma To prove the lemma, it suffices to show, for any v € [0, 1), that
1<(1+z)—(1-9y)zl+z), VO<z< %
-7
which is equivalently to
x(x—,y) <0, VOSxSL.
1—7v 1—7v
The above inequality always holds, and this completes the proof.

E RESULTS AND PROOFS FOR THE FIXED v CASE

This section presents the theoretical results concerning the minimizer of the empirical penalized
pseudo-Huber loss in (2.5) with v fixed, aka Theorem [E.2] and Corollary and their proofs.
Corollary [E.4]is a rigorous version of the informal result, aka Theorem in Section

E.1 RESULTS FOR THE FIXED v CASE

With an abuse of notation, we use fi(v) to denote the minimizer of the empirical penalized pseudo-
Huber loss in (2.5) with v fixed. Recall that we have used [i(7) to denote the minimizer of the
empirical pseudo-Huber loss in (2.2), and ji(v) is equivalent to i(7) with 7 = vy/n/z. We begin
by examining the theoretical properties of ji(v). We require the following locally strong convexity
assumption, which will be verified later in this subsection.

Assumption E.1 (Locally strong convexity in p). The empirical Hessian matrix is locally strongly
convex with respect to  such that, for any € B, (p*) := {p: |p — p*| < r},

inf (VuLy(psv) = VuLy (0", 0), 1 — p)
HEB (1) I — 2
where r > 0 is a local radius parameter.
Theorem E.2. Forany 0 < § < 1, let v > 0 be fixed and 2> = log(1/5). Assume Assumption

holds with any r > ro(k¢) == k; ' (0/(v/2v) + 1)2 \/log(2/5) /n. Then, with probability at least

1 — 4, we have
_ 1/ o > flog(2/86) C [log(2/0)
< = (= +1 =Ll A Ay
A(w) — w<\/§v )\/ 20 _ el

where C' = (o/(v/2v) + 1)? only depends on v and o.

> ke>0

The above theorem states that under the assumption of locally strong convexity, /i(v) achieves a
sub-Gaussian deviation bound when the data have only bounded variances. In particular, if we choose
v = o in the theorem, we obtain

|ﬁ(0)*u*|§%€<g+l>2 \/@gé\/@_

Assumption [E.T|essentially requires the loss function to exhibit curvature in a small neighborhood
B, (1*), while the penalized loss (2.4) transitions from a quadratic function to a linear function
roughly at |z| = 7 o y/n. Quadratic functions always have curvature, so intuitively, Assumption

holds as long as
1
Vn 2 r > ro(ke) o \/7
n
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The condition above is automatically guaranteed when n is sufficiently large. Choosing r to be the
smallest 7(r¢) results in Assumption being at its weakest. In other words, in this scenario,
the empirical loss function only needs to exhibit curvature in a diminishing neighborhood of u*,
approximately with a radius of /1/n. The following lemma rigorously proves this claim.

Lemma E.3. Suppose v > vg. Forany 0 < § < 1, letn > C'max {z?(c% 4 r?) /vZ, log(1/6)} for
some absolute constant C. Then, with probability at least 1 — §, Assumption[E.1|with x, = 1/(2v)
and any local radius r > ro(r¢) = 79(1/(2v)) holds uniformly over v > vy > 0.

The first sample complexity condition, n > Cz2(0? + r?)/v3, arises from the requirement that
2 2

72 :=wvgn/z* > C(o? + r?). Because the robustification parameter 72 = v3n/z* determines the
size of the quadratic region, this requirement is minimal in the sense that Assumption can hold
only when 72 is larger than 2 plus the noise variance o2. As argued before, Assumpti holds
with any 7 such that \/n 2 r 2 +/1/n. For example, we can take r o to be a constant, and this
will not worsen the sample complexity condition. Finally, by combining Lemma and Theorem
we obtain the following result.

Corollary E4. Suppose v > vg. Forany 0 < 6§ < 1,letn > Cmax {(r? + 02) /v, 1} log(1/4)
for some universal constant C, where r > 2r¢(1/(2v)). Take 2% = log(1/6). Then, for any v > v,
with probability at least 1 — §, we have

) — | < 2 (\[v+1)2\/1og(:/5)sv\/1+1o§(1/5)_

This section collects proofs for Theorem|E.2, Lemma []z, and Corollary E Recall that 7 = v/n/ 2,
and the gradients with respect to 1 and v are

1 ¢ yi — NEES Yi —
V.L V) = —— = .= _—
t n(ﬂ U) n;y\/l—&-zQ yi_M)Q/(nUQ) z n;

22 n no1g T
el Z¢Hﬂ )NWY{*_Q_*WZX ﬂHMﬂm_Q+w

E.2 PROOF OF THEOREMI[E.Z

Proof of Theorem|E.2] Because fi(v) is the stationary point of Ln(u, v), we have

o 1 yi — i) i)
7Ln V),V) = —— = -
o Ln (i), v) Tl;v\/].‘FZQ(yi*ﬁ(v))Q/(nUQ) Z \/72 (yi — 1i(v))? 0

Let A = [i(v) — p. We first assume that [A| := [f(v) — p*| < rg < r. Using Assumption [E.]|
obtains

0 0
-~ _*2<7 -~ _ * -~ ok
www;u_<wmwmw S Lalu )0 i)

TQH [i(v) = pl,

or equivalently

&
Iﬂ?g < .

Applying Lemma E. 5 w1th the fact that ‘E (Ts [(12 + €2 )/ 2) | < 02 /(27), we obtain with probabil-
ity at least 1 — 24 t

Kelfi(v) — p*| < vn <o 210(1/9)  7log(1/9) 02)

<
LR n 3n 2T
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or equivalently

. . 2log(1/6)  log(1/8)  /no?
el (v) = p] < 22712 /52 + 32/ 22712

Since 7 = vy/n/z, we have

relfiv) — 1| < (ﬂ" + Vl‘)gf/(”) \/logg/‘” TNy =

Taking z = +/log(1/0) then yields
~ . V2o log(1/6) \ [log(1/) 1 o*  [log(1/d)
’W|M(U)_M|§< v +3 10g(1/5)>\/ n +§ﬁ T n
V2o 1 1 o2 log(1/6)
( v T3ty 2) T
2
- (1+U) log(1/6)

2v n

<

for any ¢ € (0,1/2). Moving x; to the right hand side and using a change of variable 20 — 4, we
obtain

n

N L1 o\ [log(2/6)
|u<v>u<w-<1+m)

=7rg < T
This completes the proof, provided that |A| < 7.

Lasty, we show that |A| < ro must hold. If not, we shall construct an intermediate solution between
w* and fi(v), denoted by p,, = u* + n(f(v) — p*), such that |u,, — p*| = ro. Specifically, we can
choose some 7 € (0, 1) such that |p,, — p*| = ro. We then repeat the above calculation and obtain

_ 1
— < = i
) == = ( s T3t e

which is a contradiction. Therefore, it must hold that |A] < 7. O

n

Vo 1.1 02> log(2/9)

E.3 PROOF oF LEMMA[E3

Proof of Lemma[E.3] We first prove that, with probability at least 1 — §, Assumption [E.1| with
ke = 1/(2v) and radius r holds for any fixed v > vg. Recall that 7 = v+/n/z. For notational
simplicity, let A = p — p* and 7,, = vo+/n/z. It follows that

<V‘LL"(H’U> - VHLTL(H“*vU)a A> - <

1 — €i 1 — Yi — [
— —_— , A
\/ﬁ;Z\/Tz—f—S? \/ﬁ; 2/ T2+ (yi — p)? >
n 2

AQ

1 T
= Vn & S R

where 1 is some convex combination of p* and p, thatis, g = (1
2

A)p* + A for some A € [0, 1].
Obviously, we have |z — p*| = A|A| < |A] < r. Since (y; — 1)* < 2

€7 +2X2A% < 267 +2A? <

?
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2e? + 2 the above displayed equality implies that, with probability at least 1 — 6,
<vuLn(Ha 'U) - VuLn(ﬂ*a U)a H— N*>
) I — pr?
1o 2

.
z n ; (72 4+ 2r2 4+ 2¢2)3/2

Y

- (E (72, + 2" 1og<1/6>>

' (12 4 2r2)3/2 '

f

(
Vn

2
vn 72 1 i (72 4 2r2)3/2

z (12420232 L (724 202 4 267)3/2
Vn

z (12 4 2r2 4 2¢2)3/2 2n
Vn

2

72 log(1/6)
W (I— 2n> ) (E.1)

where the last inequality uses Lemma

It remains to lower bound I. Using the convexity of 1/(1 + x)?/? and Jensen’s inequality, we obtain

1 Z TUO + 2r2)3/2 _ (7'30 + 2r2)3/2
(72, 4+ 2r2 +2e2)3/2 (72 4 2r2 4 2¢2)3/2
(1+2e2/(12, + 2r2))3/2
1

>

T (14 202/(72, 4+ 2r2))3/2
(7‘30 + 2r2)3/2

B (72 +2r2 4 202)3/2°

Plugging the above lower bound into (E.I)) and using the facts
73 TS -3

> —— <
(72 1 2r2)372 > (2§ 222 for 7,, > 7 and CEETTIT 1,

we obtain with probability at least 1 — §
(VuLn(p) = VyuLn(p*), pp — pi*)

inf 5
HEB (1*) I — p*|
v @ flog(1/9)
Tz (124 2r2)32 \ (72 +2r2 +202)3/2 2n
- Vn . 73 . (12, + 2r2)3/2 _[log(1/6)
Tozm (1242r2)3/2 \ (12 +2r2 +202)3/2 2n
YA G2z S floge
o2 \ (72 4 2r2)3/2 (12, +2r2 +202)3/2 (724 2r2)3/2 2n
S Vn 1 _ [log(1/4)
T oz \ (14 (2r2 4 202)/72)3/2 2n
1 1 /log 1/5
o (14 (22 +202)/72)3/2
1
>
— 2

2

provided 77 > 4r* 4+ 40? and n > C'log(1/4) for some large enough absolute constant C.
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Lastly, the above result holds uniformly over v > vy with probability at least 1 — ¢ since the
probability event does not depend on v.

O

E.4 PROOF OF COROLLARY[EZ

Proof of Corollary[E4, Recall z = y/log(1/§) and

(1)

If n > Cmax {(r* 4+ 02)/v3,1} log(1/§), which is guaranteed by the conditions of the corollary,
then Lemma E.3 implies that, with probability at least 1 — §, Assumption @holds with kp = 1/(20)

and radius 7 uniformly over v > vy. Denote this probability event by £. If Assumption [E.T]holds,
then by Theorem[E.2] we have

PQM) W< (2 ) ¢“““5}>>1
Thus
P(mw—uﬂ>%<£¥+92 b%?®>
ZPQmw—uﬂ>%<£ﬁ+02 b%??s)
Pomw—w*>2v(;;+w) bg”5,€>

_PQM> wl > (2 )\P%Q”\ >+

< 24.

Then with probability at least 1 — 29, we have

2
~ \ o log(2/9)
v) — <20 —+1 —_— .
i) -l <20 (For1) 2
Using a change of variable 2§ — ¢ finishes the proof. O

E.5 SUPPORTING LEMMAS

This subsection collects two supporting lemmas that are used earlier in this section.

Lemma E.5. Let ¢; be i.i.d. random variables such that E¢; = 0 and Eef =1.Forany0 < 6 < 1,
with probability at least 1 — 29, we have

n

lz TE; _E TE;

2log(1/9) i log(1/4)
n 3n

g

20



Proof of LemmalE-3] The random variables Z; := 7, (e;) = 7¢; /(1% + €2)1/? with pu, = EZ; and

02 = var(Z;) are bounded i.i.d. random variables such that

|Z:| = ‘TEi/(TQ +€§)1/2‘ <lei AT <
0_2
| = [BZi = [B (7eu/ (7 +€)'/?)| < .
T
2.2
EZ?E( T & )302,
T2 42

o2 ==var(Z;) = E(re; /(7> + e2yl/2 ,uz)z

2.2
T €ES
=E L —u? <o
(72+s§) He =

For third and higher order absolute moments, we have

k
TE;

T2 + &2

k!
E|Z|* =E <o?rh2 < 502(7/3)’“*2, for all integers k > 3.

Using Lemmawith v =no? and ¢ = 7/3, we have for any t > 0

(E st
Taking ¢t = log(1/6) acquires that for any 0 < 6 < 1
1 " TE; 1 Ei

1 I e L A

This completes the proof.

> V2no?t + > < 2exp(—t).

n

3n

2log(1/5) N Tlog(l/5)> >1- 2.

Lemma E.6. For any 0 < § < 1, with probability at least 1 — 4,

li 3 E T3 ~[log(1/6)
n 1(T2+6)3/2 (12 +e2)3/2 = on

1=

Moreover, with probability at least 1 — &, it holds uniformly over 7 > 7,,, > 0 that

1y R T =i1.3)
n 7'2+5 3/2 = (m2, +£2)3/2 2n

1=

Proof of LemmalE-6] The random variables Z; = Z;(7) := 73/(7% + £2)3/2 with yu, = EZ; and
02 = var(Z;) are bounded i.i.d. random variables such that

0< Z;=1%)(2 +<€?)3/2 <1.
Therefore, using Lemma[H.T|with v = n acquires that for any ¢ > 0

3 r Y T3 nt
(S 55 () < %) <eoto

(2

Taking t = log(1/6) acquires that for any 0 < 6 < 1

1 & 73 log(1/4)
(S - () ) s
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The second result follows from the fact that Z;(7) is an increasing function of 7. Specifically, we
have with probability at least 1 — ¢

3

n = (T2 +¢e2)3/2 = n — (2 + £2)3/2

>E( TSO )+ 1i 7'30 E( 7'30 )
@ ) T m@ e G

i i=1 i

2n

This finishes the proof.

F PROOFS FOR THE SELF-TUNED CASE

This section collects the proofs for Theorems [3.1]and [3.2]

F.1 PROOF OF THEOREM OF[3.1]

Proof of Theorem of[3.1] Recall that 7 = v+/n/z. For simplicity, let 7 = U/n/z. Define the profile
loss LP*(v) as

LP(v) := Ly (f(v),v) = Hﬁn L, (p,v).

Then it is convex and its first-order gradient is

0 0 0 0
pro(,\ — m — (). — = - m
VLI () = VLy(A().v) = Joi) - oo La(uo)| o S La(uo)| = S LaGi(w).v),
(E.1)

where we use the fact that 0/0p Ly, (i1, v)|,=7(») = 0, implied by the stationarity of fi(v).

Assuming that the constraint is inactive. We first assume that the constraint is not active for any
stationary point 7, that is, any stationary point ¥ is an interior point of [vg, V;], aka ¥ € (vg, Vp). By
the joint convexity of L., (4, v) and the convexity of LP™(v), (fi(v),?) and ¥ are stationary points of
L, (,v) and L, (f1(v), v), respectively. Thus we have

AN

0 n 1« yi — (v
R 0) IR L) g i 1) EE
o (1:0)=(A(0).0) 2 n= 72+ (v — 1(0))

o n 1 T n
%Ln(uw)}w):(mm =2 E; Pt W R0 <?2 - a) =0

0
= 7L7l 5 v =
(k:0) (1,0)=(1(),0)

VL) o

= VL,((8).8)] = 5 La(ii(v),v)

where the first two equalities are on partial derivatives of L, (u, v) and the last one is on the derivative
of the profile loss LP*°(v) = L, (ji(v), v).

Recall that 7 = \/nv/ 2. Let f(1) = 22V LE™(v) /n, that is,

f(T):izZ: \/T2+<y:—ﬁ<v>>2 . <1_azz)

In other words, 7 = y/nt/ z satisfies f(7) = 0. Assuming that the conststraint is inactive, we split
the proof into two steps.
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Step 1: Proving v < Cyo for some universal constant Cy. We will employ the method of proof
by contradiction. Assume there exists some v such that

> (14€)vr2+02 and VLE™(v) =0;

or equivalently, there exists some 7 such that

> (1+e)vVr2+o2yn/z=:7 and f(7) =0, (F2)

where € and 7 are to be determined later. Let 7,,, = vo+/n/z. Then, provided n is large enough,
Lemma [E.3] implies that Assumption [E.1] with £, = 1/(2v) and local radius r > ro(k¢) holds
uniformly over v > vg conditional on the following event

n n

& = l Z (TE() + 2r2)3/2 _ l ZE (T2 + 27“2)3/2 o M
1 - n i—1 (’7—30 + 27’2 + 25%)3/2 n P (7—2 + 2,,,2 + 25 )3/2 el 2n .

Conditional on the intersection of event £ and the following event

<C-

Vo 1og(n/5)}

&y = sup
v€[vo, Vo] Vo n

where z < y/log(n/d) and C is some constant, and following the proof of Theorem [E.2} for any
fixed v and thus fixed T = vy/n/z, we have

Kelfa(v) —

m

Thus, for any v such that vy V Tg := vo V (1 + €)Vr? 4+ 02 < v < V}, we have on &, that

sup kg(v) |fi(v) =t < sup ke(v) [(v) — p
Vo VUg<v<Vp 1)6[1}0 Vo]

sup

’UE[’UO Vo f Z T2 + E
Vo log(n/d)
vo  zv/n

<C-

which, by Lemma|[E.3] yields

2 log(n/d
sup i) — ' < 20 0 10e/0) (E3)

’UE[’U(),VU] Vo Z\/ﬁ

The above r can be further refined by using the finer lower bound v of v instead of vy, but we use vg
for simplicity. Let A = p* — ji(v), and we have |A| < r. Let the event &3 be

£, i— { Z 724+ 2(r )—T _E ( 7"2:&- 2(r2 +¢7) —7') < \/10g(1/(5)n27g“2 +0?) N logéi/é) }

T2+ 2(r +e§) T2 +2(r? 4+ €7)
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Thus on the event £; N & N &5 and using the fact that 1 — 1/4/1 + z is an increasing function, we

have

az? VT2+(A+e)2—71 T2+27”2+€
T)=— —
Jr) Z m Z e o

2 2 —
>£—72 T (r <7

m
2 W =2 2 = =2 2 2\ _ =
az? o (VT +2(r2 +€2) Z 724 2(r2 +¢7) T g(VT +2(r24¢7) -7
72 4+ 2(r2 + &2 \/m 72+ 2(r2 + €2)
az® <r2+a . wogu/a)-z(r +02) +1og<1/6>>

v

v

T 7_'2 TL’]_'2 3n
_Z o log(1/8)\ (r*+o>  2° N r2 + 02 2221og(1/6)
on 322 2402 (14+¢€)%n r24+ 02 (1+¢€)?n?
(Definition of 7)
(a—1/3)22 r?+o02 22 r2+o2 224 9
= - > log(1/d
- n 2+ 0?2 (1+¢€)n E e (1+¢€)?n? (2% > log(1/0))

v

(a—1/3)2%2 22 1 2
o ((1+e)2 + (1+e)2)

_22 1 1 2
T\ 3 T ar?r \dre2

>0,

provided that

LI 13 -1
14+e ™ V2 ’

or equivalently

\/4a+2 +2/34+v2-2a (@)
=:€(a).
2(a—1/3)
In other words, conditional on the event & N & N &3 and taking € > €(a), f(7) > 0for 7 > 7 :=

(1+ €)vrZ + 02y/n/z. This contradicts with (F2), and thus
7< (14 0)Vr2+o2/n/z
If @ = 1/2 and conditional on the same event, the above holds with
e=92>¢(1/2).
;f n is large enough such that 126 > 101/72 + o2, then conditional on the event £ N & N &3, we
ave

UoSiJ\SCOO'

)

where Cy = 12.
7.2 . .
Step 2: Proving v > ¢ ( U”OT A 1) Or2 —1 for some universal constant c¢;. We will again
3 /2

employ the method of proof by Contradlcnon. Let

1 2=

" 2
1= (1% ) (%)
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Assume there exists some v such that

v<c and %Ln(ﬂ(v),v) = 0;

or equivalently, assume there exists some 7 such that
T <cyn/z=:7 and g(r) =0. (F.4)

It is impossible that ¢ < vy because any stationary point v is in (vg, Vo). Thus ¢ > wvg. Let
A = ji(v) — p*. Then on the event & N &, using the facts that 1/ is a concave function and

1/4/1 + y/x is an increasing function of z, we have

1 72
ﬁ;\/r?Jr(A—Jrei)? Z\/l—i— A+€)/72

< —
- Z\/l—i— A+s)/z2
1 < 1
< —
- n;l+(A+Ei)2/I2
< /iy !
- —1+72(A+e)? 1((A+e)? <17)
< 1—l~ii(A+ N2-1((A+€)2 < 12)
< = €i €i)° < 17).
- =1

By the proof from step 1, we have on the event £ N &, that

sup [fi(v) —pt| <7
vE[vo, Vo]

where r is defined in (F.3). Then

n
i=1
<2az _l.ii(A+E)2 1((A+e)? < 1?) (as long as az?/n > 0)
n n 272 P ! Yoo
2az

IN

2a22 1 1 4 5 T2 9 P 2 T2 2
<= ‘w(@ fil(fifg‘r Cp (s s
=1 i=1

2a72 1
= ——I-=2r-1I
n 212( r-1)

Define the probability event £4 as

Ey 1= E41 N &y,
where
1 & , T2 72 /T2log (1/0) 2log (1/6)
= — < = — > < - _
En {nz (l_ 5 > E€1<€ 5 r> % and
1 72 72 202, ), log(1/9) 7log(1/0)
. 1(e2 <L < 1(e2 <L _,2 T2/ T
642 ng 8l| ( ’L — 2 ) IE:|€71| ( Z 2 r ) + n + 3\/§n
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If n is sufficiently large such that

2 < logn + log(1/9) 2<1 and

> €0 o Z\/’E =
r 202, ,,108(1/6)  71og(1/6) _ 1 log(1/6)
P 0'12/2 + n + 3\/§n >~ ﬁin 3

then conditional on £4, we have

2 2 2
[>Ee?l (&2 < 2 o2/ z*log(1/9) -z log(1/9) and
’ ' 2 T n 6n

’) 20%/3108(1/9) _ 710g(1/9)
i + '
5 n 3v2n

1 < Elg|1 (53 <

Thus conditional on £, we have

207>
——I-=2r-1I
o(r) < == — (= 2r)
2a2> 1 2 2]og(1 2log(1
< az” Ee21 efgz——rz P 7% log( /5)_1 og(1/9)
n 272 2 - n 6n

- 2) 202, ,,108(1/8)  7log(1/5)
—r7 ) +
n 3v2n

< 20" - 052/2760 or2/2y/108(1/0) | log(1/9) T2 + 20;2/2 log(1/6) + 7log(1/90)
- 21" 21v/n 12n 72 | T2 n
< s 2a + log(1/0) 1) _ 22/9-co L 0z log(1/9)
" @6 27> 27y/n
2 log(1/6) 1 022, . . oa(178
— 40 og(1/0) 1 972 o | 912 og(1/6) (r = ey/ii)2)
2n 2 3 c? c z
22 1 022/2— g 2/2
Sml\ttsT e T 2> log(1/6
_2n(a+3 2 + c (22 > log(1/8))
<0

for any c such that

. < 0‘12/2 14 4(4a + 1/3)U§2/2—€0
= 2(4a +1/3) 022

—1 ,

In other words, conditional on the event & N E; N £4 and taking any c satisfying the above inequality,
we have
g(t) <Oforany 7 < 7= c\/n/z.

This is a contradiction. Thus, T > 7 = ¢y/n/z, or equivalently ¥ > ¢ > vy. Using the inequality

\/1+x—121(x23)+§1(0§x<3)2%/\1 V>0,
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we obtain

072/2 14 4(40’ =+ 1/3)0’52/2—60 1
2(4a +1/3) 052/2
30'7-2 /2 280 2/2
= o 1 | =1/2
14 T, (@=1/2)

30729 14
1 /or2/0-
51 (/21 A 1) or sy
5 0r2/2 -
1 (072 /2-1
Z = “07/ A1l 02 /2—1-
5 52 2 50

Therefore we can take ¢ = 57! (0730 /2_1/0730 /2 N\ 1)0730 /2—1- Thus on the event & M & N &y, we

have
_ 72 j2-1
v>ci=c | ——— Al oz o,
Or2 /2 0

where ¢g = 1/5 is a universal constant. This finishes the proof of step 2.

Proving that the constraint is inactive. If 0 & (vg, Vp), then ¥ € {vg, V}. Suppose ¥ = vy, then
U = vy < c. Recall that 7,, = voy/n/z. Then we must have f(7,,) > 0, and thus g(7,,) > 0.
However, conditional on the probability event & N & N &4, repeating the above analysis in step
2 obtains g(7,,) < 0. This is a contradiction. Therefore ¥ # wg. Similarly, conditional on
probability event £1 N E; N &3, we can obtain ¥ # V{y. Therefore, conditional on the probability event
E1 N &N E3N &y, the constraint must be inactive, aka v € (vg, Vo).

Using the first result of Lemma with 72 and €7 replaced by 730 + 2r? and 2¢? respectively,

Lemma F.1} Lemma|F.2| with 72 and w? replaced by 72 and 2(r? + £2) respectively, and Lemma|F.3|
we obtain

and thus
P(E1 N ENENEL) > 1— 56,

Putting the above results together, and using Lemmas [F.T and[F.3, we obtain with probability at least
1 — 54 that

co(0r2 j2-1/072 2 AN1)oz2 j2_1 <0 < Coo.

Using a change of variable 56 — ¢ completes the proof. O

F.2 PROOF OF THEOREM[3.2]

Proof of Theorem[3.2] On the probability event £ N E; N E3 N €y where £ ’s are defined the same
as in the proof of Theorem 3.1} we have
co(0r2 j2-1/02 2 A1)z a1 <0 < Coo.

Following the proof of Theorem [E.2] for any fixed v and thus 7, we have

relp(v) — pt| <

PN
vn = 212+ €7
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For any v such that cgaTgo s2-1 < v < Coo where ¢ = 00(0'7.30 /2_1/0730 s2 A1) and any z > 0,
using Lemma |F.1|but with vy and V) replaced by 060730 /2—1 and Cpo respectively, we obtain with
probability at least 1 — ¢

sup re(v) [(v) = p'| < sup re(v) [i(v) = p7|

06[0607—30 s2—15 Coo] UG[CBUT,Z s2—15 Coo]

IN

fz \/W
o 2log(n/d) n 1log(n/d)

T 02, j2-1 n z \/n
o? z 3(Coo — 060730/2—1) 1

tog————+
/2 2 ’
200 072 /2—1 \/’ﬁ 0730/2_1 Z\/E
vo

'UG[COU 20/2-1 Coo]

which yields

. . log(n/86) V22V 1
sup fi(v) — p*| < Co (n/ ;
Ue[060750/2—17 Coo] Z\/ﬁ

where C' is some constant only depending on o/ 072 /215 ¢p, and Cj. Putting the above pieces
together and if log(1/9) < 22 < log(n/§), we obtain with probability at least 1 — 64 that

N . N . log(n/é) Vi 1
— < — < .
(@) — p*| < sup fi(v) —p*[ < C v

/
1;6[(:007?}0/271, Coo]

Using a change of variable 66 — ¢ and then setting z = log(n/J) gives

i X ~ N log(n/d
A — @< s [A0) -l < C oy 2800
UE[C()‘Tﬂ—gopfla Cool n

with a lightly different constant C, provided that log(n/§) > 1, akan > ed. This completes the
proof. O

F.3 SUPPORTING LEMMAS

We collect supporting lemmas, aka Lemmas [F.T}[F2, and[F-3; in this subsection.

Lemma F.1. Let 0 < § < 1. Suppose 0 < Vp and z < 4/log(n/d). Then, with probability at least
1 — 4, we have

n

1 E;
ﬁ; VT2 +e?

Vo log(n/s)
Vo n

<C-

sup
vE[vo, Vo]

where C' is some constant.

Proof of Lemma[F1. To prove the uniform bound over [v, Vo], we adopt a covering argument. For
any 0 < € < 1, there exists an e-cover / of [vg, Vp] such that [N'| < 3(Vy — vg) /€. Let 7, = wy/n/ 2.
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Then for every v € [vg, V], there exists a w € N C [vg, Vp] such that [w — 7| < € and

1 - ar 1 - or
el 2t <= s
\/ﬁ;z\/ﬂ—i—a? - \/ﬁ;z T2 +¢2
1 & € 1 & €
+ _ 7 o 3
\/ﬁ;z T2 +¢e2 n;z T2 + &7
g e gfig s
N 2\/T2 +ef N 2\/T2 +ef
-~ ;
+ E|—= o
N 212 +EF
1 ~ = 1 2 E;
_l’_ —_ _ -
\/ﬁL:le T2 +e2 71;2\/7'2+622
=1+ 11+ III.
For II, we have
2 2
pe¥Yn o _z0°
Tz 212 T 203n

For III, using the inequality

x
\/7'3) +22 124 a?

< ;
2[7u| A 7]

we obtain
Vn € v e

m<¥?.__ ¢ <
z  2(wAwv) z

We then bound 1. For any fixed 7, applying Lemma@with the fact that |E (r,e;/(72 + €2)'/?)| <

LV (G\/m+ T 10g(1/6)>

02/(27,), we obtain with probability at least 1 — 2§

1 " E; 1 - Ei
n;z T2 + &7 \/ﬁ;z T2 + &7
1log(1/6)
< 2log(1/6 -
< 7 2log(1/p) + LA

Vo

where 7, = vg\/n/z. Therefore, putting above pieces together and using the union bound, we obtain

with probability at least 1 — 6e~*(Vy — vg)d
1 " &; 1 - E; 1 . E;
sup |— ————| < sup |—= ——-E|—= —_——
vElvo, Vo) \/ﬁ;z«/ﬁ—kef weN n;z T2 +e? \/ﬁ;z T2 +e2
N zo? A
203/n -z 2
o [2log(1/é 1log(1/6 o? 2z n €
_ o [ToRD) | los(1fs) | o? = i
Vo n z \/n 205 /n oz 2

Taking € = 6(Vp — vo)/n, we obtain with probability at least 1 — nd
o [2log(1/6) = 1log(1/9)

<24/ - — R0 -

=~ wg n 2 NG +21}8\/ﬁ+ vo z/n
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Thus with probability at least 1 — §, we have

2log(n/8) 1log(n/s) o% =z 3(Vo —w) 1
su += oyt
’UE UOI,)VO f Z z 7-2 + 5 UQ n z \/ﬁ 2’[}8 \/ﬁ Vo Z\/’ﬁ
Vo log(n/9)
<(C.=.=x7177
=0 o N

provided z < +/log(n/§), where C is a constant only depending on o2 /(v V). When v and Vj
are taken symmetrically around 1, vy V} is close to 1. Multiplying both sides by z/+/n finishes the
proof. O

Lemma F.2. Let w; be i.i.d. copies of w. For any 0 < ¢ < 1, with probability at least 1 — ¢

1i«/7’2+w —TﬁE VT2t w? -7 - log(l/é)]Ew?Jrlog(l/&)
n VT2 w? NGER: - nr2 3n

Proof of Lemma[F2, The random variables
Zi = Z(7) V24w -7 14 w?/r? -1
VT2 +w? V1+w?/7?

with y, = EZ; and 02 = var(Z;) are bounded i.i.d. random variables such that
2

-
Moreover we have

Ew? Ew?
< 52 O = var(Z;) < 5.2

EZ?

For third and higher order absolute moments, we have

Ew? k' Bw? (1)"? .
E|Z;|F < -7 < 5 e (3) , for all integers k& > 3.

Therefore, using Lemmawith v =nEw?/(27?) and ¢ = 1/3 acquires that for any ¢ > 0
n n
1+ w? /)2 -1 1+ w?/r3)Y2 -1 tnEw? ¢
Ty R S N (e e I 73

=1

Taking ¢ = log(1/6) acquires that for any 0 < 6 < 1
1 2/.2\1/2 _ 1 2/ 2\1/2 _ 1 2
P(Z(1+MZ/T) —E<(1+wZ/T) 1>>_ log(1/6) Ew; _log(1/6)>>1_6.
n

— (14 w?/72)1/2 (14 w?/72)1/2 nr2 3n

This finishes the proof.
O

Lemma F.3. For any 0 < § < 1, we have with probability at least 1 — § that

IR 2 LQ ,_ T 2 r2log(1/6)  7*log(1/9)
- E . R § <= — — - .
0 . g1 (52 5 ) Ee?1 ( €; > 0722 o

For any 0 < § < 1, we have with probablhty at least 1 — 0 that

) . L 202, 105(1/3) _ rlog(1/0)
2N e — —r?) < =) Elglt 52<—r2>+ = T = :
Z|< 2 )n;H(Z? " 3van

Consequently, we have, with probability at least 1 —2J, the above two inequalities hold simultaneously.

Proof of LemmalF.3. We prove the first two results and the last result directly follows from first two.
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First result. Let Z; ( 2< 72— ) . The random variables Z; with pu, = EZ; and

02 = var(Z;) are bounded 1.1.d. random variables such that

|Zi| = |s?1 (512 <7?/2 - r2)| <1?/2,
lpz| = [EZ;| = |IE (5121 (53 < 12/2 - 7’2))| < (7%2/27
EZ} =E (e;1 (e} <1°/2 —1?)) < 1202 5/2,

o2 :=var(Z;) = E(Zi — uz)2 < 12022/2/2.

For third and higher order absolute moments, we have

262 2\ k2 7202 g\ k=2
E|Z;|* :E|6?1 (612 §12/271°2)|k < 212/2 <7—2) < 5 212/2 <T6> , for all integers k > 3.

Using Lemmawith v = n12072_2/2/2 and ¢ = 72/6, we have for any ¢ > 0

P (ée?l (5? < % — ) ZE& 1 ( < % > < —,/n120i2/2t— T;t> <exp (—t).
Taking t = log(1/4) acquires the desired result.
Second result. With an abuse of notation, let Z; = [¢;]1 (¢? < 7%/2 — r?) . The random variables
Z; with p, = EZ; and 02 = var(Z;) are bounded i.i.d. random variables such that
|Z;| = |eil (e2<7?/2— 7”2)] <7/V2,
| = [EZi| = [E (Jes|1 (€7 < 2/2 = 7)) | < \/5052/2/1,
EZ} =E (71 (ef < 1°/2—1r?)) < 072/2,
o2 =var(Z;) =E(Z; — uz) < 012/2.
For third and higher order absolute moments, we have
T k!

k—2 k-2
E\Zi|k —E ||51-\1 (522 < I2/2 - r2)|k < 052/2 <\@> < 50’%2/2 (3\%) , for all integers k > 3.

Using Lemmawith v = nafz/2 and c = z/(S\/i), we have for any ¢ > 0

- t
P (e < z_ Ele; |1 <Z ) > St i+ I <exp ().
(Zle (#<5-7)- Z it (2 < 5 %) > foncZpr 4 Zo ) <o (-

i=1

Taking ¢t = log(1/d) acquires the desired result. O

G PROOFS FOR SECTION[3.2]
This section collects proofs for results in Section [3.2]

G.1 PROOF OF THEOREM [3.3]

Proof of Theorem[3.3] First, the MoM estimator iM°M = M (21, ..., z;) is equivalent to

k
argminz lz; — p .
j=1
For any 2 € R, let {(x) = |z| and define L(z) = E¢'(z + Z) where Z ~ N (0, 1) and
1, ifz >0,
!(r)=140, ifz=0,
—1, otherwise.
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If the assumptions of Theorem 4 of Minsker (2019) are satisfied, we obtain, after some algebra, that

n ~MoM __  * o E(ﬁ’(Z))Q
Vi (Et =) = N (0’ (0 )

Some algebra derives that

E('(2))? 7o?

()3 2

It remains to check the assumptions there. Assumptions (1), (4), and (5) trivially hold. Assumption
(2) can be verified by using the following Berry-Esseen bound.

FactG.1. Lety,. ..,y beii.d. random copies of y with mean y, variance o2 and E|y—pu|*** < oo
for some ¢ € (0, 1]. Then there exists an absolute constant C' such that

‘2+L
sup

teR O-2+LmL/2 :

P(My;“<t>—q>(t)‘<c]Ey_”

It remains to check Assumption (3). Because g(m) < m~*/2, Vkg(m) < Vkm=/% — 0 if
k = o(n/1+9) as n — oo. Thus Assumption (3) holds if & = o(n*/(1*9)) and k — oco. This
completes the proof. O

G.2 PROOF OF THEOREM[3.3]

In this subsection, we state and prove a stronger result of Theorem [3.3] aka Theorem|[G.2] Theorem
can then be proved following the same proof under the assumption that E|e; |*** < oo for any
prefixed 0 < ¢ < 1.

Theorem G.2. Assume the same assumptions as in Theorem Take 22 > 2 log(n). If Es? < 00,
then

~ * 2 3
- p B o o Ee? /2
\/ﬁ |:i]\ ’U*:| WN(O,Z), where > = O']EE?/2 (J2E€? _ 0.6)/4 .

Proof of Theorem|[G.2] Now we are ready to analyze the self-tuned mean estimator /i = 7i(v). For
any 0 € (0, 1), following the proof of Theorem 3.1} we obtain with probability at least 1 — ¢ that

R N VZ log(n/é)
@) = p*| < sup fi(v) — pt| <20 0 o
ve[vo, Vol v zVn

Taking 2> > log(n/d) with § = 1/n in the above inequality, we obtain /i — u* in probability.

Theoremimplies that ¥ — o in probability. Thus we have ||§ — 6*||]2 — 0 in probability, where
0= (7,9)", and 0" = (u*,0)".

Using the Taylor’s theorem for vector-valued functions, we obtain

~

VL, (0) =0=VL,(0") + H,(6")(0 — 0*) + 322(0) (6-067)%?,

where ® indicates the tensor product. Let 7, = ov/n/z. We say that X,, and Y,, are asymptotically
equivalent, denoted as X,, ~ Y,,, if both X,, and Y,, converge in distribution to some same random
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variable/vector Z. Rearranging, we obtain
Vi (0= 0%) =~ [H, (%) (—v/n VL, (6%))
n T2 n n TeEi
@ . %Zi:l (7_3_’_;2)3/2 22 . %21:1 (.,-34_%)3/2

R o N M- ST N U w S > SR
n Zi:l (Tg+5§)3/2 23 n Zi:1 (Tg+5?)3/2

NN‘B n

15 ;
\/ﬁ' EZi:1UT7 /:;Ts;z
2 2_
Vi BL YL YIS ia
e
or/T2+e2

1 Vited/m2-1
\/ﬁ'ﬂgzzll m —vn-a

2
| — |
o9
QC,OO
_

_lo O
— 10 o3
where the second ~ uses the fact that
1
H,(0%) 2% {a ?} .
0

We proceed to derive the asymptotic property of (I, II)*. For I, we have

=

To€i

2 2
o\ T5 + €5

1 — ToEi TeEi
I:\/ﬁ L ofi _E i
(nEJ\/Tg+€% o\/T2 +¢e2

To€i
+ lim vn E | ———
) n—oo [a\/Tg—i—a?

. To€q
~ N[0, lim var | —2—2—
( n—o0 o\/T2 + €2

It remains to calculate
. \/HTUEi . TE;
lim E | —— and lim var | ——
n—00 < /T2 + 53) n—00 /T2 + 512

For the former term, if there exists some 0 < ¢ < 1 such that E|5i|2“ < 00, using the fact that
Ee; = 0, we have

E \/ﬁTge’:‘i
T2 + &7

—ei/T Jr T 1e; (\/1 +e2/12 — 1)
K v g = NTg * E
V1+e?/r2 V1+e?/r2

< N~ E e3/r3 < Vnr, [Elg;?T
T2 ViteZ/2| - 2 gt
E 124
< % 0, (G.1)

where the first inequality uses LemmalH_A[ (i) with r = 1/2, thatis, v1 4+ 2« <14 z/2forz > —1.
For the second term, we have

li To€i
1m var | —F—————
n— 00 / 7—3 + 512
by the dominated convergence theorem. Thus

I~ N(0,1).

2.2

. TSE

= lim E | 555 =02,
n—oo Ta+5i

For II, recall ¢ = 1/2 and using the facts that
..on Vi+e2/r2-1 . n 1 V1+eZ/r2—1 1
im — E| Y—~°% | =I1lim —— - E . =,
V1+el/72 n—oo 27227 V1+er/r2 1/(273) 2
o Y VAR i e B B
Vitei/m

n—oo z2

2
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we have
" /14¢e2/r2 -1 1
+€Z—/To_\/ﬁ.,
i=1 \/1‘1’512/7'3 2
1 (n Ji+tei/rZ-1 n 1+el/r2-1
SIVZEES DY SR a1z by of (PN E S 7 ke
i=1

V1+e2/r2 2\ [Ttelr2

V1+e2/m2 -1
~ N |0, lim var %Jrel—/% .
o\ T

n 1
= Lz
" 22 n

If Ee} < oo, then

22 V1+e?/r2
and thus I ~ NV (0, (Ee} /o* — 1)/4). For the cross covariance, we have
ToEi n 1+e?/r2—-1
o242 22 14 e2/r2
_ lim E( ToEi n \/1+€?/T3—1>
o

T 40t 4

n—oo

va! 2/r2 -1 Ee?
lim var(n VIEETT £/ > i

lim cov
n—oo

_ Ee?
203"
Thus
Vi (0 —6°) ~ N(0,5),
where

e RO T 5 B W

Therefore, for ji only, we have

Vi (= 1)~ N(0,02).

G.3 CONSISTENCY OF U

This subsection proves that © is a consistent estimator of o. Recall that

n

n 1 T

i=1 T2+ (yz -

where a = 1/2. We emphasize that the following proof only needs the second moment assumption
0? = Ee? < oc.

Theorem G.3 (Consistency of 7). Assume the same assumptions as in Theorem [3.1| Take 2% >
log(n). Then

U —> o in probability.

Proof of Theorem By the proof of Theorem [3.1] we obtain with probability at least 1 — ¢ that
the following two results hold simultaneously:

~ Vg log(n/d)
sup |p(v) —pf| <20 — =L~ =1, (G.2)
o [fi(v) | v avn
vy < 000'750,1 < v < Coo < Vo, (G.3)

34



provided that 22 > log(5/9) and n is large enough. Therefore, the constraint in the optimization
problem (3.1)) is not active, and thus
VoL (ft,v) = 0.
Using Lemma|G.4|together with the equality above, we obtain with probability at least 1 — ¢ that
€0 |~ 2 Co |~ 2 ~ 2
V—(?|’U—o| < a3\/03|U*U| < pefv — o
< <VUL7L(,ZI7 6) - v'uLn (ZZ’ O'), v — G>
< |V Ln(f,0)| [0 — o

n 1< Ty

> [v—o0].
i=1 Ta+(yi_ﬂ

Plugging (G.2) into the above inequality and canceling | — o| on both sides, we obtain with
probability at least 1 — 24 that

co n 1< Ty
—lv—0c — = —— 1| +a
VO3| | < 22 n;( 721 (y; — h)2 )
n 1w T,
< sup —2~72 —_— 1] +a
REB,(u*) | # nizl Tg+(yi_ﬂ)2
n 2
A — lz S S B
2T peB,(pr) | i=1 7—3 + (yl - N)Q n
1 n
N £ 3 T, ) (R
2% pueB,(ur) | o T2+ (yi — 1)? T2+ (yi — p)?

n
+ - sup
z HEB,(u*)

I+ 1L

It remains to bound terms I and II. We start with term II. Let 72 = (y; — u)?. We have
n
I=—- sup

el Te az?
2% ueB, (u*) T2+ (yi — p)? n

V1+7r2/r2 -1 1
= max sup %-E_‘_Tz—/%—a ,  sup a—%—i—Ei
REB.(n*) \ ? V1471272 HEB, (1) z V1+r /72

=: Hl vV HQ

In order to bound II, we bound II; and II5 respectively. For term II;, using Lemma @] (ii), aka
(I+2z)"<1l+rzforx>—1landr € (0,1),and a = 1/2, we have

(n E\/l—l—r?/rg—l —a)

VA s

2
< sup {Z.(IJFIETZQl)a}
WEB,. (1) z 27'0.

2 4 2rle; 2
n.EEZ—&— rleil +r7

1
22 272 2

T r
(1 L)
0'( +20

2r
<

I, = sup
HEB, (1*)

IN

(a=1/2)

IN

T o
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if n is large enough such that » < 20. To bound I, we need Lemma [D.I} Specifically, for any
0 <~ <1, we have

(142 <1—(1 -7, foranyogxg%.
-7

Using this result, we obtain

1 1

S | R
i s iy
A=\, (v 1 77
< Jrd(1-2 "V (L < (s T
_\/ {( T2 T2 71— Jr1—&—7‘1-2/7'3 7'3>1—fy

v
> (Lemma|D.1)

E (concavity of /)

Sl—l_’y]E 5%—2r|5i|+r21 2(5?4—7‘2)S ~ 7

T2 T2 1—7
where the first inequality uses the concavity of 1/, the third inequality uses Lemma|D.1} and the
last inequality uses the inequality that (1 + x)~* < 1 — x/2 for z € [0, 1], aka Lemma [H.4|(iii) with
r = —1, provided that

|- )E 5?—2r|5i|—r21 2(5?+r2)< ol < 1_702—2r0—r2§1.
gl LF

2 2 - _
o T 1 o

Thus term II; can be bounded as

I n n n E 1
= sup a——+ — E——
P e\ 2 2\ 14127

n o n L—n (2 =2rle;| +7% [2(e2 +7r?) v
<a- Dl E (& 1 (2 <
A { 2 ( 2 2 T 1l-vy

_ 1—
<a-— U].Estr 2027-27«-E(|gz|)
<tz =9
2 o
7, r(l=17)
SRANTRAC vy =1/2
2+ o (a /2)

Combining the upper bound for II; and II; and using the fact that, we obtain
2
11 < max{Il;, Iy} < g +2 50,
o

ify=~(n) — 0.
We proceed to bound I. Recall that

17L a a
L ¥ S S Y P S
ni 72+ (yi — p)? T2+ (yi — p)?
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For any 0 < € < 2, there exists an e-cover ' C B,.(1*) of B,.(1*) such that |[N'| < 6r/e. Then for
any u € B,.(u*) there exists a w € N such that |w — p| < v, and

—” —FE T
; ( s+ (i — u)2> (1 72+ (yi —u)2>‘
\513447571151+meWﬁ71

= L+ (yi — p)?/73 1+ (y; —
E:ﬁiiﬁ?7?—11@ﬁ?@fﬁﬁé—l
DN e TR
TG -1 1 T o -1
e R

3\'—‘

LVt o/ — L VI (W)
L+ (yi — p)?/72 L+ (y; —w)?/72
=1 +1 + 1.

For I, using Lemma|F.2 acquires with probability at least 1 — 24 that

L < \/E(yi —w)? log(1/6) N log(1/6)

2
nTg 3n

\/ 2(0 + r*)log(1/6)  log(1/9)

2
nr; 3n

log(1/3) |, log(1/9)
n 3n

provided r? < o2. Let

Y
n = (x +¢;)?
Using the mean value theorem and the inequality that |[2/(1 + x2)3/2| < 1/2, we obtain

n

|1 (T+ei)/715 x—y \a:—y\
o) =00 = L T e |
where T is some convex combination of x and y. Then we have
AESS Bt/ Ay=Bul_ €
n i—1 1+ A-l—ff /T3)3/2 To 2TU

where A is some convex combination of Ay =p*—wand A, = p* — . For I3, a similar argument

for bounding II, yields
o B+, A - A
A+ @E+e/2p?) 7

SE\&#—EH'%

<€ 2(r?2 4 o02)
s—— =

I =

)

where the last inequality uses Jensen’s inequality, i.e. E|A + ;| < \/E(A +£2) < \/2(r2 + o2).
Putting the above pieces together and using the union bound, we obtain with probability at least
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1—12¢ 176

T+ (g — 21 ST+ —w)/r2—1
I<— sup Z + (yi —w) /7' _E + (yi —w)?/73
weN | i L+ (yi —w)?/72 1+ (ys — w)?/72
€ 24/2(r? 4+ 02)
T E R )
22 27, Ty

log(1/0) | log(1/0) | evn

z 322 oz’

provided that

2y/2(r2 +02) < 71,.

Putting above results together, we obtain with probability at least 1 — (121 /¢ + 2)0 that
[0—0o| ST+
log(1/6 log(1/6
g(1/9)  log(1/d)  evn v 2r
z 322 oz 2 o

Let C" = 24C'V;# Jvg. Therefore, taking € = 1/y/n, § = 1/logn, and 22 > log(n), we obtain with
probability at least

C’(v/logn + loglogn/\/logn) + 2

logn

~ log 1 log 1 1
[v—0] < ce08h | 0808 +v+r—0.
logn logn logn

Therefore ¥ — o in probability. This finishes the proof.

that

G.4 LOCAL STRONG CONVEXITY IN v

In this section, we first present the local strong convexity of the empirical loss function with respect
to v uniformly over a neighborhood of p*.

Lemma G.4 (Local strong convexity in v). Let B, (u*) = {p : |p — p*| < r}. Assume r =
r(n) = o(1). Let 0 < § < 1 and n is sufficiently large. Take w such that max{wry/n,w} —
0 and @+/n — oo. Then, with probability at least 1 — §, we have

(VoL (11,0) = VoLl 0.),0 = o) Temin/(4z2) 5 __Co

inf >pr= e ,
B, =P 2(v3Vvod) T 3Vl

peEB, (1) v —o|?

where ¢ and c( are some constants.

Proof of Lemma|G.4} Recall 7 = v\/n/z. For notational simplicity, write 7, = ov/n/z, T,, =
vo/N/2, Tw = wy/n/z, and A = p* — p. It follows that

<VUL7L(ILL7 U) - V’ULTL(NH 0)7 i O-> =

:n3/2_li (ZUi‘M)Q v — ol?

2B (TR (y — p)?)P2
>n3/2_l§n: (yi_ﬂ)z |’U—O’|2
T2 n (TVT)E+ (- )PP



where 7 is some convex combination of 7 and 7,, thatis 7 = (1 — A\)7, + A7 for some A € [0, 1].
Because 7322 /(72 4 22)3/2 is an increasing function of 7, if 7, § 7V 7, we have
<van(,u7 U) — Van(,uv U)) v = U*> > n3/2 - Z T \ TO Yi /’4)2
lv— o2 ~ 2(rV1,)? (T2V 72+ (y; —u) )3/2

n3/2 )2

Z BV '72 (72 + (i —u) )32

Thus
inf <V“L”(:u7 U) - V'uLn(Ua 0’)7 v — U*>
HEB,(u*) v —ol?
3/2 n 3

n

. T (yz - /~L>2
> inf — w -
= SV el n & GE G

3/2 30, 2
BTV 1e)? \ e (w) \ (12 + (y; — p)2)3/2
~ sup |1 ~ Ty —p)? g TeWi—n?
peB, () |1 = (T2 + (yi — p)?)?/2 (72 + (yi — p)?)3/2
n3/2
= a-.
23(17V 75)3 ( )

It remains to lower bound I and upper bound II. We start with I. Let f(z) = /(1 4 )3/ which

satisfies
ex T < ce
x) > -
f(@) = {O T > Ce,

and Z = (y — p)?/72 in which y ~ 5;. Suppose 72 < ¢.72 /4, then we have

3 L 2 2 VA
inf (E =i m) 2) = mf E[T=0
neB )\ (T2 + (i — 2% )  nemury \ (14 2)Y
>eo inf E[(y—p)’1((y —p)® < cerl)]
HEB (™)

>e- inf E [(y — ,u)21(52 < CGT;/Q - 7‘2)]
HEB, (™)

2 A 2
>e- inf E (A2 + 52)1 2 < €Tz || _ BAC
HEB, (™) 4 CeTZ

2 8ro?
>e (El21(e2< =) - .
R G =

We then proceed with II. For any 0 < v < 2r, there exists an y-cover N of B,.(u*) such that
V| < 67/~. Then for any 1 € B,.(u*) there exists an w € A such that |w — u| <+, and thus by
LemmalG.3] we have

I~ 72y —p)? g Tolyi—p)’
n = (12 + (yi — p)?)%/? (T2 + (yi — p)?)3/2
n 3. N2 30, N2
< lz o (Yi —w) E To(yi — w)
e ) R RN e

=10, + I, + 1I;.
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For II;, Lemma|G.5|implies with probability at least 1 — 2§

\/QTéE(yi —w)?log(1/8) 72 log(1/6) \/27';(02 +712)log(1/8) 72 1og(1/6)
I, < + < + .
3n 3v3n 3n 3v3n

Let

1 (2 + &)
g(x) = n ; (72 + (z +£)2)3/2

Using the mean value theorem and the inequality that |72z /(72 4 22)3/2| < 1/4/3, we obtain

1 =737+ &) (72 — (§+€i)2) T
_ — = _ < gz —ul.
l9(2) = 9| = |~ ; FEiGiaEE @Y S Fleol
Then we have
L &S B e (2 - (B+e)?) oy
I = |~ = (A —Ay)| < —=
n = (72 + (A +¢;)2)5/2 V3

where A is some convex combination of A, = p* —wand A, = p* — p. ForIl3, we have

(A +e) (72— (B+e)?) _ 2
II; = |[E = (Ay —Ap)| SAEIA 46 < E(A—i—gi) ,
(72 + (A +¢:)?)5/2

where the last inequality uses Jensen’s inequality. Putting the above pieces together and using the
union bound, we obtain with probability at least 1 — 12y~ 176§

Ly T (9 = w)* T (yi —w)? T
o< — w —E w + =0 5 T 3
N 5161/1\)/ n ; (12 + (y; — w)?)3/2 (T2 + (y; — w)?)3/2 /3 VW
2 (12 2 2
< \/QTw(T +02)log(1/6) 72 1og(1/6) B e
3n 3\/§n \/3
2002 log(l/é) w? log(l/é) ZU’}/\/ﬁ
= Vot (T |+ L En
\/7 ( 3.2 Y 37322 /3

Combining the bounds for I and II yields with probability at least 1 — §
inf (VoLn(p,v) = VoLn(p,0),v —0)
pEB, (u*) v —ol?

st )] 5E)
. m( 2% 10g(1/9) H) _ w?log(1/8) wv\/ﬁ}
)

322 3v/322 V3
1
> _E|&1(e?< =2
~2(vVo) [E (6 - 4
where €, @, v, n are picked such that e = 3/4, v = 12r, and

) (E [621 <€2 . cev{iﬂ - 8r0222> - m( 2w log(1/5) +7>  @’log(1/8)  wy/n

4 cew?n 322 3v/322 V3
1 T2 1
> 51[*3 [521 <52 < C;-w)] > ZU'

For example, we can pick w such that
max{wry/n,w} — 0 and wy/n — oo
as n — oo. This completes the proof.
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G.5 SUPPORTING LEMMAS

This subsection proves a supporting lemma that is used prove Lemma
Lemma G.5. Let w; be i.i.d. copies of w. For any 0 < ¢ < 1, we have

m3w? 272Ew? log(1/8)  7%log(1/8) .
fZ 7.2 3/2_E(72+w)3/2 _—\/ o RV , with prob. 1 — 6,
1< T3w? 3w? \/272sz log(1/8) =~ 12log(1/4)
n —E < : ith prob. 1 — 20.
n ; (72 4+ w?)3/2 (12 +w?)3/2| — 3n + 3v3n with pro

Proof of Lemma|G.5] We only prove the first result and the second result follows similarly. The
random variables Z; = Z;(1) := 3w? /(12 +w?)?/? with y, = EZ; and 02 = var(Z;) are bounded
i.i.d. random variables such that

N
O<Z—Tw2 T—i-w 3/2<w/\ /\T iy
- / 2 V33
Moreover we have
6,4 22 2R2
EZ?=E( % =) < T 62 = var(Zy) < T2
(124 €2) 3 3

For third and higher order absolute moments, we have
3,2

ToW; k<72]Ewi2 2 k_2<k! 2 Ew? 2 \"? for all int L3
( +5)3/2 = 3 ’ ﬁ 75' 3 : ﬁ , for all integers k > 3.

Therefore, using Lemmawith v =n7?Ew?/3 and ¢ = 72/(3V/3) acquires that for any ¢ > 0

- 3w? " T3w? [2nT2Ew?t T2t
P R S— E({ —2—— | > — L < —t).
(; (7.2 + €32 )3/2 ; ((T2+E )3/2) = 3 3\/:;) < exp( )

Taking ¢t = log(1/d) acquires that forany 0 < ¢ < 1

1< T3w? 1< T3w? \/272Ew2 log(1/6)  12log(1/4)
P(-S "% SN T ) i - 1-6.
(n;(72+w)3/2 n; ((72+5)3/2> ~ 3n 3v/3n ~

This finishes the proof. O

E|Z;|* =E

H PRELIMINARY LEMMAS

This section collects preliminary lemmas that are frequently used in the proofs for the main results and
supporting lemmas. We first collect the Hoeffding’s inequality and then present a form of Bernstein’s
inequality. We omit their proofs and refer interested readers to|Boucheron et al. (2013).

Lemma H.1 (Hoeffding’s inequality). Let Z1, ..., Z, be independent real-valued random variables
such that @ < Z; < b almost surely. Let S,, = Y7, (Z; — EZ;) and v = n(b — a)?. Then for all
t>0,

P (Sn > \/qT/2) <et, P (Sn < —M) <et, P (|Sn| > \/M> <2t

Lemma H.2 (Bernstein’s inequality). Let 71, ..., Z,, be independent real-valued random variables
such that

ZEZ2<’U ZE|Z F < Zwvc 2 forall k > 3.

IfS, =31 ,(Z —EZ;), thenforall t > 0,
P (Sn > V20t + ct> <e ' P (Sn < —(V2ut + ct)) <e ' P (|Sn| > V2ut + ct) <27t
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Proof of LemmalH.2] This lemma involves a two-sided extension of Theorem 2.10 by Boucheron
et al. (2013). The proof follows from a similar argument used in the proof of Theorem 2.10, and thus
is omitted. O

Our third lemma concerns the localized Bregman divergence for convex functions. It was first
established in |[Fan et al. (2018). For any loss function L, define the Bregman divergence and the
symmetric Bregman divergence as

Dr(B1,B2) = L(B1) — L(B2) — (VL(B2), B1 — B2),
D3 (B1,B2) = Dp(B1, B2) + Dr(B2, B1).

Lemma H.3. Forany 3, = 8* +n(8 — 8*) with n € (0, 1] and any convex loss function L, we have
DBy, 8%) < nDL(B,8%).

Our forth lemma in this section concerns three basic inequalities that are frequently used in the proofs.

Lemma H.4. The following inequalities hold:
) I+z)">1+rzforz>—1landr € R\ (0,1);
() 1+=z)" <1l+rzxforz>—landr € (0,1);
(i) (14+2)" <1+ (2" -1z forz €[0,1]andr € R\ (0,1).

42



	 
	Introduction
	A loss function with concomitant scaling
	Theoretical properties
	The self-tuning property and the improved finite-sample performance
	Asymptotic efficiency
	Comparing with MoM

	Numerical studies
	Conclusions and Limitations
	Appendix

	 Appendix
	Basic facts
	An alternating gradient descent algorithm
	Comparing with Lepski's method
	Proofs for Section 2
	Proofs for Theorem 2.3
	Proof of Proposition 2.4
	Supporting lemmas

	Results and proofs for the fixed v case
	Results for the fixed v case
	Proof of Theorem E.2
	Proof of Lemma E.3
	Proof of Corollary E.4
	Supporting lemmas

	Proofs for the self-tuned case
	Proof of Theorem of 3.1
	Proof of Theorem 3.2
	Supporting lemmas

	Proofs for Section 3.2
	Proof of Theorem 3.5
	Proof of Theorem 3.3
	Consistency of v"0362v
	Local strong convexity in v
	Supporting lemmas

	Preliminary lemmas


