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1 Experimental Settings1

Our PyTorch source code will be released. We briefly present the details of training and testing as2

follows.3

Training. We train two LOGO-CAP networks with the ImageNet pretrained HRNet-W32 and4

HRNet-W48 [9] as the feature backbone respectively on the COCO-train-2017 dataset [6]. Common5

training specifications are used for simplicity in experiments. The Adam optimizer [4] is used with6

default coefficients β1 = 0.9 and β2 = 0.999. For both the backbones, the total number of epochs7

is set to 140 and the batch size is set to 12 images per GPU card. The same learning rate schedule is8

used for both models. The learning rate is initially set to 0.001 and then decayed to 10−4 and 10−59

at the 90-th and 120-th epoch respectively. We use 4 and 8 V100 GPUs to accelerate the training10

for the two LOGO-CAP models with HRNet-W32 and HRNet-W48 respectively. The resolution11

of training images is 512 × 512 and 640 × 640 for the two models respectively. Following the12

widely adopted experimental settings in [10], the data augmentations in training include (1) random13

rotation with the rotation degree from −30◦ to 30◦, (2) random scaling with the factor in the range14

of [0.75, 1.5], (3) random translation in the range [−40pix, 40pix] along both x and y directions, and15

(4) random horizontal flipping with the probability of 0.5.16

Similarly, for different hyperparamters such as the trade-off parameter λ in the total loss (Section17

3.2.2 in the submission), we did not run computationally expensive hyperparameter optimization for18

simplicity.19

Testing. We focus on the single-scale testing protocol in the COCO keypoint benchmark for the20

sake of efficient human pose estimation. In the testing phase, the short side of input images is resized21

to a specific length (e.g., 384, 512, or 640 pixels) and keep unchanged the aspect ratio between the22

height and the width. As commonly adopted in many bottom-up pose estimation approaches (e.g.,23

AE [7], HrHRNet [1], DEKR [2]), the flip testing is used as our default setting for the fair com-24

parison. In the implementation, we feed the stacked tensor with an input image and a horizontally-25

flipped one together to get the global heatmaps and the offset fields. The flipped outputs are then26

averaged (according to the flip index) to get the final global heatmaps and the offset fields. For the27

computation of local heatmaps and the local-global adaptation, only the non-flipped outputs are used28

for the final predictions.29

2 The Computation of the Empirical Upper Bound30

We elaborate on the details of computing the empirical upper bound of performance for a vanilla31

center-offset pose estimation method (Table.1 in the submission).32
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Network Architecture. The vanilla center-offset regression baseline uses the ImageNet pretrained33

HRNet-W32 [9] as the backbone, and the same modules as in our LOGO-CAP+HRNet-W32 for the34

center heatmap regression and the offset vector regression. See Fig.3 and Section 3 in the submission35

for detailed specifications. We present the details of computing keypoint expansion maps (KEMs)36

that are used in calculating the empirical uppper bound as follows.37

Computation of Keypoint Expansion Maps. Denoted by PN×17×2 the initial pose parameters38

(i.e., the 2-D locations for the 17 keypoints of the N pose instances) estimated by the vanilla center-39

offset method, we expand each of the estimated keypoints with a local 11× 11 mesh grid, that is to40

lift a keypoint to a 2-D mesh to counter the estimation uncertainty. As shown in the Alg. 1, we use41

the COCO benchmark provided keypoint sigmas to scale the unit length of the meshgrid for differ-42

ent types (e.g., nose, eyes, hips) of keypoints. After getting the expanded keypoint meshes M of43

the initial poses, we compute their keypoint similarities SN×11×11×K×17 between the groundtruth44

keypoints GK×17×3 and the keypoint expansion maps. After applying the sum reduction on the simi-45

larity tensor SN×11×11×K×17 along the 2-nd, 3-rd and the last axes, we have known the optimal cor-46

respondence (including the low-quality matches) for each center anchor, denoted by SN×11×11×17.47

Then, the pose with the maximal similarity in the 11 × 11 local window for each center anchor are48

used as the best one to compute the empirical upper bound on the fully-annotated COCO-val-201749

dataset.50

Algorithm 1: Computation of Keypoint Expansion Maps in a PyTorch-like style
1 coco sigmas = torch.tensor([0.026, 0.025,0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,

0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]) #Keypoint sigmas for the
COCO dataset.

2 def KptsExpansionCoco(P,ksize=11)
#Initial poses P: Nx17x2

3 radius = ksize // 2
4 dy, dx = torch.meshgrid(torch.arange(-radius,radius),torch.arange(-radius,radius))

#dx, dy: ksize×ksize
5 dy, dx = dy.reshape(1, 1, ksize, ksize), dx.reshape(1, 1, ksize, ksize)
6 scale = coco sigmas.reshape(1, 17, 1, 1)/coco sigmas.min() #using different

expansion rate for the different keypoint categories.
7 dy = dy ∗ scale #dy: 1x17x11x11

8 dx = dx ∗ scale #dx: 1x17x11x11

9 dxy = torch.stack((dx,dy),dim=-1) #dxy: 1x17x11x11x2

10 M = P .reshape(N, 17, 1, 1, 2) + dxy #M: Nx17x11x11x2
11 returnM

3 The Speed-Accuracy Comparisons51

We elaborate on the speed-accuracy comparisons in Fig. 2 in the submission, which is reproduced52

in Fig. 1.53

We compare our LOGO-CAP with state-of-the-art bottom-up pose estimation approaches in terms54

of the speed-accuracy trade-off using different input resolutions of testing images.55

• Both the proposed LOGO-CAP method and the DEKR [2] method have two versions of56

models trained with the HRNet-W32 backbone at the resolution of 512 × 512, and the57

HRNet-W48 backbone at the resolution of 640 × 640, respectively. The two versions of58

models are denoted by W32 and W48 respectively in Fig. 1. In comparing the speed-59

accuracy trade-offs, we evaluate each of the two versions of models with two different60

resolutions: For W32, we test the models, LOGO-CAP and DEKR, under the resolutions61

of 384 and 512 for short side of the testing images, which are denoted by W32− 384 and62

W32 − 512 in Fig. 1 respectively. Similarly, it is done for the W48 models. The longer63

side of the testing images are computed according to their original aspect ratios.64
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• For the CenterNet method [11], we report the result obtained using the large Hourglass65

backbone [8] due to its better AP score. The testing resolution is 512 in the short side of66

the images.67

• For the PifPaf method [5], we report their results using three different backbones of ResNet-68

50, ResNet-101 and ResNet-152 [3]. We follow the image resolution setting presented in69

the original paper [5] that resizes the long side of the testing images to be 641 and keep the70

original aspect ratio.71

• For the associative embedding approach [7], the result using the Higher-HRNet-W32 [1] as72

the backbone is reported for the concern of inference speed. The testing resolution is also73

512 in the short side of the testing image.74
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Figure 1: Speed-accuracy comparisons between our LOGO-CAP and prior arts on the COCO val-
2017 dataset. Wx-Y (e.g. W32-384) means that a model uses the backbone HRNet-Wx (HRNet-
W32) and is tested with the image resolution Y in the short side.

As shown in Fig. 1, our approach obtains the best speed-accuracy trade-off with different backbones75

and image resolutions. When using HRNet-W32 as the backbone, our LOGO-CAP uses the low-76

resolution images (with 384 pixels in the short side) obtains the AP of 65.9while approaching77

real-time performance with the FPS of 24.0, which surpasses DEKR [2] by 2.2 AP and78

7.3 FPS. Benefitting from our design rationales of simplicity and fully end-to-end learning, our79

approach also obtains the best performance in both aspects of speed and accuracy when increasing80

the image resolution to 512 and 640.81

4 More Qualitative Results82

Results on the COCO-val-2017 and the OCHuman Datasets. Fig. 2 shows examples of pose83

estimation in the two datasets by the proposed LOGO-CAP with the HRNet-W32 backbone. Our84

proposed LOCO-CAP is able to handle large structural and appearance variations in human pose85

estimation.86

Fast pose estimation for video frames. To justify the potential of our proposed approach in prac-87

tical applications, we run our LOGO-CAP (W32 model) on two videos that have the resolution of88

1280×720 from YouTube. We follow our testing protocol to resize the short side of the video frames89

to 512 pixels and keep their original aspect ratios for inference. Without using any pose tracking90

techniques, our LOGO-CAP achieves fast and accurate human pose estimation. Please click the91

following anonymous google drive links for the demo videos:92

- https://bit.ly/3z2t8fA (video credit: https://youtu.be/2DiQUX11YaY)93

- https://bit.ly/3cghWT4 (video credit: https://youtu.be/kTvzU1sGSyA)94

In these two demo videos, the instantaneous FPS for each video frame is marked in the left corner95

of the video.96
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Figure 2: Qualitative results of our LOGO-CAP (HRNet-W32). All images were picked themati-
cally without considering our algorithms performance. The first three rows display our approach on
the COCO-val-2017 dataset and the last three ones show our results on the OCHuman test dataset.
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