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Abstract
Accelerating the inference of large language mod-
els (LLMs) is a critical challenge in generative AI.
Speculative decoding (SD) methods offer substan-
tial efficiency gains by generating multiple tokens
using a single target forward pass. However, exist-
ing SD approaches require the drafter and target
models to share the same vocabulary, thus limiting
the pool of possible drafters, often necessitating
the training of a drafter from scratch. We present
three new SD methods that remove this shared-
vocabulary constraint. All three methods preserve
the target distribution (i.e., they are lossless) and
work with off-the-shelf models without requir-
ing additional training or modifications. Empiri-
cally, on summarization, programming, and long-
context tasks, our algorithms demonstrate signif-
icant speedups of up to 2.8× over standard au-
toregressive decoding. By enabling any off-the-
shelf model to serve as a drafter and requiring no
retraining, this work substantially broadens the
applicability of the SD framework in practice.

1 Introduction
Speculative decoding (SD; Leviathan et al., 2023; Chen
et al., 2023) is an effective method for reducing the latency
of LLM inference and increasing its throughput. A neces-
sary condition for SD to be effective is that the drafter is
sufficiently fast and accurate in approximating the target dis-
tribution (Timor et al., 2025; Chen et al., 2024). State-of-the-
art verification methods for SD employ rejection sampling
algorithms that are designed to work with a single vocab-
ulary, where the draft tokens are sampled from the same
vocabulary as the target tokens (Leviathan et al., 2023; Chen
et al., 2023; Miao et al., 2024; Sun et al., 2024). However,
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often in practice, such drafters are not available—either
because the target model is not part of a model family (ex-
amples of families include the StarCoder, Li et al., 2023;
Llama, Dubey et al., 2024 and DeepSeek, DeepSeek-AI
et al., 2025) or the smallest model in the same family re-
mains too large and slow. An alternative approach—training
a drafter from scratch (Zafrir et al., 2024)–is a challenging
task that requires computational resources, data, time, and
expertise. Even if you successfully train such a drafter, an-
other problem is that you cannot reuse it for other models
with different vocabularies.

Our Contributions. We relax a key constraint of the spec-
ulative decoding (SD) framework—the requirement that the
drafter must use the same vocabulary as the target model.
By allowing heterogeneous vocabularies, we eliminate the
requirement to train a drafter from scratch and enable any
model to operate as drafter, thereby significantly broaden
the applicability of SD methods. By unlocking any off-the-
shelf model to serve as drafter, we were able to find drafters
that are more effective even than drafters from the same
model family. Our main contributions are:

• Algorithm 2 (String-Level Exact Match, SLEM): An
algorithm that uses plain text as a shared intermediate
representation between the draft and target vocabularies,
enabling exact matching of tokens. It solves the problem
of non-injective tokenizers (Section 3.2) to support any
off-the-shelf model pair. We evaluate the algorithm on
summarization, programming, and long-context tasks,
demonstrating robust speedups of up to 2.8× over au-
toregressive decoding.

• Algorithm 4 (Token-Level Intersection, TLI): A
purely token-based approach that adjusts the drafter’s
distribution to sample only from the intersection be-
tween the two vocabularies and employs the standard
SD verification method. We prove theoretically that
this approach outperforms a simple “union” strategy by
increasing the probability of accepting tokens (Theo-
rem 4.1). Empirically, Algorithm 4 demonstrates signif-
icant speedups of up to 1.7× over autoregressive decod-
ing.

• Algorithm 3 (String-Level Rejection Sampling,
SLRS): A novel verification mechanism that imple-
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ments rejection sampling at the string level instead of the
token level. We prove that it is lossless (Theorem 3.2)
and guarantees higher expected acceptance rates than
string-level exact matching, under the same target dis-
tribution (Theorem 3.1). Our theoretical and empiri-
cal analysis shows rapid growth in computational cost
for vocabularies with longer tokens, thus making this
method most suitable for drafters with shorter tokens
(Section 3.4).

We merged our open-source implementation of Algorithm 2
and Algorithm 4 into Hugging Face Transformers (Wolf
et al., 2020), the most popular LLM library, with more than
378,000 repositories and 6,000 open-source packages that
depend on it. Independently of our benchmarks, Hugging
Face’s core maintainers have thoroughly evaluated the effec-
tiveness of SLEM and TLI (Algorithms 2 and 4) and found
our methods to be the most effective among all the specula-
tive decoding algorithms they have previously supported—
over various use cases and hardware setups. As a result,
they made SLEM and TLI the default for heterogeneous SD
in Hugging Face Transformers.

All our algorithms are lossless, namely, outputs preserve
the target distribution, and we provide acceptance rate
expectations (Table 3) and other bounds. Our experi-
ments—covering summarization, programming, and long-
context tasks—demonstrate speedups versus autoregres-
sive decoding. By open-sourcing these methods via Hug-
ging Face Transformers, we have already enabled imme-
diate, practical acceleration of LLMs under heterogeneous
vocabularies—a scenario that is increasingly common in
real-world deployments.

2 Motivating Examples
Existing SD methods are designed to work with a single
vocabulary, where the drafter samples from the same vocab-
ulary as the target model. As an example, see Algorithm 5,
which is the standard SD algorithm proposed by Leviathan
et al. (2023); Chen et al. (2023).

Algorithm 1 offers a simple way to extend these methods to
operate in cases where the drafter’s vocabulary differs from
the target’s by virtually extending the vocabularies such that
both vocabularies are their union. For example, consider the
case of disjoint vocabularies where the target vocabulary is
T = {‘a’} and the draft vocabulary D = {‘b’}. Although
all the draft tokens ‘b’ are rejected, the target distribution is
preserved because we use the standard verification method
of SD, which is lossless as proved in Leviathan et al. (2023);
Chen et al. (2023). Even if one vocabulary is a proper subset
of the other, for example, if T = {‘a’, ‘b’} and D = {‘b’},
or if T = {‘a’} and D = {‘a’, ‘b’}, the target distribution
is still preserved thanks to the guarantee of the standard
verification method.

Algorithm 1 An iteration of speculative decoding for het-
erogeneous vocabularies with a simple “union” strategy

1: Input: Probability distributions p and q over vocabular-
ies T and D, respectively. Drafting lookahead i ∈ N.
An input prompt c.

2: Output: A sequence of tokens from T , containing
between 1 and i+ 1 tokens.

3: Procedure:
4: Define probability distributions p′ and q′ over the vo-

cabulary T ∪ D as follows. p′(x) = p(x) if x ∈ T
and p′(x) = 0 otherwise. q′(x) = q(x) if x ∈ D and
q(x) = 0 otherwise.

5: Run Algorithm 5 with p′, q′, i, c.

As long as p(t) ≤ q(t) for all t ∈ T , where p is the target
and q is the drafter, this simple approach of Algorithm 1 is
optimal in terms of maximizing the probability of accept-
ing a draft token. However, this condition is not satisfied
if ∃ d ∈ D such that q(d) > 0 and d ̸∈ T because we
then have

∑
t∈T q(t) < 1. Although the simple approach

of Algorithm 1 to extend Algorithm 5 preserves the target
distribution because the verification method remains un-
changed, it might not yield the maximum probability of
accepting a target token (see Theorem 4.1). Below, we
present Algorithm 4, which improves Algorithm 1 by adjust-
ing the distribution of the drafter such that the probability
of sampling tokens that are not in the target vocabulary is
zero. This adjustment is done by normalizing the distri-
bution of the drafter such that the sum of the probabilities
of the tokens that are in the target vocabulary is one. For
example, if T = {‘a’, ‘b’} and D = {‘a’, ‘b’, ‘c’} where
q(‘a’) = q(‘b’) = q(‘c’) = 1

3 , we adjust the distribution
of the drafter to be q′(‘a’) = q′(‘b’) = 1

2 and q′(‘c’) = 0.
This approach increases the probability of accepting a draft
token while still preserving the target distribution, as The-
orem 4.1 proves. However, the expected acceptance rate
of both Algorithm 1 and Algorithm 4 might be suboptimal
in some other cases. For example, consider the case where
T = {‘a’} and D = {‘a’, ‘aa’} and there is a nonzero prob-
ability that the drafter samples the token ‘aa’. Algorithm 1
and Algorithm 4 are suboptimal because they always reject
the token ‘aa’. In this example it is easy to see that both
models can only generate concatenations of the token ‘a’,
hence we should have accepted the token ‘aa’, unless it is
the last token to generate. Below, we also present Algo-
rithm 2, which solves this problem by allowing the drafter
to sample tokens that are not in the target vocabulary. Algo-
rithm 2 preserves the target distribution because it replaces
the standard verification method that guarantees that the out-
put tokens distribute according to the target distribution with
exact matching, which guarantees that the output tokens are
exactly the target tokens.
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3 Speculative Decoding for Heterogeneous
Vocabularies with String-Level Verification

Notation. Vocabularies are finite sets of strings, also called
tokens. We say that a string a is expressible in a vocabulary
B if there exist strings b1, b2, . . . , bn ∈ B such that a =
b1 ⊕ b2 ⊕ . . . ⊕ bn, where⊕ denotes string concatenation.
We say that a vocabulary A is expressible in a vocabulary
B if all strings in A are expressible in B, and denote this
relationship by A ↠ B∗, where B∗ is the Kleene closure
of B under string concatenation. Tokenizing a string s with
respect to a vocabulary A is the process of partitioning s
into a sequence of tokens a1, a2, . . . , an, where a1 is the
longest prefix of s that is a token in A, a2 is the longest
prefix of s that is in A after removing a1, and so on. The
tokenization of s with respect to A is a finite sequence of
tokens, denoted by A(s). The i-th token of A(s) is denoted
as A(s)i ∈ A.

3.1 String-Level Exact Match (SLEM)

Algorithm 2 is one solution to the problem of heterogeneous
vocabularies. It implements a variant of SD with the ver-
ification method of exact matching. The key mechanism
involves translating tokens bidirectionally between the draft
and target vocabularies. Tokens generated by the drafter
are first decoded into text and subsequently re-tokenized
using the target model’s vocabulary. After the target model
verifies the generated tokens, the sequence is converted back
into the drafter’s tokenization format for the next iteration.
This process ensures that the target model’s distribution is
preserved while allowing the drafter to operate within its
own vocabulary constraints.

Vocabulary Constraints. Algorithm 2 assumes that the
target vocabulary T is expressible in the draft vocabulary D,
i.e., T ↠ D∗. Additionally, it assumes D∗ ↠ T ∗, namely,
every concatenation of draft tokens, d1 ⊕ . . .⊕ di for some
i, must be expressible by concatenations of target tokens
t1⊕t2⊕. . .⊕tm ∈ T ∗ for somem, i.e., T (d1⊕. . .⊕di) ̸= ∅
in line 7. If these conditions do not hold, converting strings
from one vocabulary to another becomes undefined, leading
to a decreased acceptance rate and rendering the algorithm
ineffective. In practice, assuming T ↠ D∗ and D∗ ↠ T ∗

is reasonable due to the way vocabularies are typically con-
structed. The process of constructing a vocabulary often
begins by determining its size, i.e., the number of tokens it
contains. Informally, vocabularies are designed to maximize
the frequency of token appearances in a given corpus, avoid
splitting frequently co-occurring tokens, or both. Known
tokenization methods such as BPE (Sennrich et al., 2016),
WordPiece (Schuster & Nakajima, 2012), Unigram (Kudo,
2018), and SentencePiece (Kudo & Richardson, 2018) are
heuristic and greedy approaches that generate vocabularies
containing all the characters of the alphabet in the given

Algorithm 2 (SLEM), an iteration of speculative decoding
for heterogeneous vocabularies with string-level exact match
verification

1: Input: Target model p and drafter model q over vo-
cabularies T and D, respectively, where T ↠ D∗ and
D∗ ↠ T ∗. Drafting lookahead value i ∈ N. A prompt
c ∈ T ∗.

2: Output: A non-empty sequence of accepted tokens
from T .

3: Procedure:
4: Tokenize the prompt to the draft vocabulary, D(c).
5: For j ← 1, . . . , i:
6: Sample a draft token from the drafter condi-

tioned on the prompt and previous draft tokens,
dj ∼ qD(c)⊕d1⊕...⊕dj−1

(where d0 := c).
7: Tokenize the concatenation of the draft tokens,

(t1, t2, . . . , tm)← T (d1 ⊕ . . .⊕ di).
8: With data parallelism (batching), compute via one target

forward pass the m+ 1 logits of the target model con-
ditioned on the prompt and all the draft continuations,
pT (c), pT (c)⊕t1 , · · · , pT (c)⊕t1⊕···⊕tm .

9: Sample a token from each logit, t′1 ∼ pT (c), t
′
2 ∼

pT (c)⊕t1 , · · · , t′m+1 ∼ pT (c)⊕t1⊕...⊕tm .
10: Find the first index where the draft differs from the

target, j := argminj∈{1,...,m+1} t
′
j ̸= tj .

11: Accept t1, t2, . . . , tj−1, t
′
j .

corpus when the vocabulary size is greater than the alpha-
bet cardinality, which is often the case (see Table 8 for
examples). Typically, the corpus used for constructing a
vocabulary comprises extensive texts, such as books or col-
lections of documents. Unless the target and draft tokenizers
are constructed using a narrow corpus, it is reasonable to
assume T ↠ D∗ and D∗ ↠ T ∗ because both vocabular-
ies usually include all the characters of the alphabet, hence
satisfying even stronger relations of the form T ↠ D∗ and
D ↠ T ∗.

3.2 Non-Injective Tokenizers

A common issue with tokenizers is that they do not always
implement an injective function, meaning that for any given
string s, it is possible for s ̸= decode(encode(s)). This
can occur due to so-called “normalization steps” or “pre-
tokenization rules” that discard certain details of the input
text. In practice, common examples include tokenizers that
treat multiple spaces as a single space, lowercase all char-
acters, or replace accented characters with their standard
counterparts, such as ‘é’ being replaced by ‘e’. In standard
autoregressive decoding or speculative decoding, where the
target and draft vocabularies are the same, we tokenize the
input prompt c into tokens only once at the beginning of
the decoding process. Conditioned on the encoded prompt,
we sample N tokens t1, t2, . . . , tN directly from the target
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(autoregressive decoding) or using a rejection sampling pro-
cedure with draft tokens (speculative decoding). Then, we
return the string c⊕ t1⊕ t2⊕ . . .⊕ tN . Since language mod-
els output token IDs, returning this string requires decoding
each of the output tokens t1, t2, . . . , tN from its ID back
into text, then, concatenating them with the prompt yields
c⊕t1⊕t2⊕. . .⊕tN . Pre-tokenization rules are only applied
to the input prompt c once, before applying the model, and
therefore they limit the ability of the model to distinguish
between different input strings c ̸= c′ that are equivalent
under pre-tokenization rules, namely, T (c) = T (c′) given a
non-injective tokenizer T . This behavior is not necessarily
problematic, and has been used in practice for a long time.
It is important to note that the pre-tokenization rules are not
directly applied on the output tokens c, t1, t2, . . . , tN that
are concatenated to form the final output string. That is, pre-
tokenization rules do not alter the tokens t1, t2, . . . , tN after
these tokens are sampled. The final returned string starts
with the given prompt c without any modifications and ends
with a concatenation of the sampled tokens t1⊕t2⊕. . .⊕tN .
Unlike decoding over homogeneous vocabularies—where
the target vocabulary T and the draft vocabulary D are the
same—in decoding over heterogeneous vocabularies, we
may have T ̸= D, which limits the ability of the target
and drafter models to communicate token IDs. Algorithm 2
employs plain text as an intermediate representation that is
shared between the two different vocabularies. This means
that the output tokens t1, t2, . . . , tN are decoded back into
text and then re-tokenized using the draft vocabulary in
line 4. This process may apply pre-tokenization rules to the
output tokens, which can lead to a discrepancy between the
output tokens and the target tokens. To evaluate whether
various tokenizers exhibit injectivity on a specific dataset,
we conduct a simple experiment that heuristically tests the
consistency of the decoding and encoding, as detailed in
Appendix F. Our findings indicate that some commonly
used tokenizers do not maintain injectivity even when tested
heuristically on a specific dataset. When we developed
and tested Algorithm 2, we found that the non-injective be-
havior of tokenizers significantly impacted the algorithm’s
acceptance rate. To address this issue and broaden the appli-
cability of Algorithm 2 to a wider range of tokenizers, we
propose the following simple solution.

Algorithm 2 Supports Non-Injective Tokenizers. Given
a prompt c ∈ T ∗, Algorithm 2 starts by tokenizing it into
the draft vocabulary, D(c), in line 4. The prompt is also
tokenized into the target vocabulary, T (c), to allow the target
model to compute the logits in line 8. Line 7 tokenizes
into the target vocabulary the concatenation of the i draft
tokens that are previously sampled from the drafter, namely,
computes T (d1⊕ . . .⊕di). Since the output of Algorithm 2
is in the target vocabulary, following runs of Algorithm 2 can
use the output as-is without decoding it back into text. Only

in the last run, we need to decode the output of Algorithm 2
back into text before returning the final string. Because
each tokenizer might apply different normalization rules,
there can be a mismatch between what the target model
sees and what the drafter model intended to produce. To
handle these mismatches, we look for the longest stretch of
matched tokens between the tokens we already accepted in
the target tokenizer’s space, and the newly proposed tokens
re-encoded in the target tokenizer’s space. Conceptually,
this search procedure is a way of finding the largest overlap
(or suffix/prefix match) between the old and new sequences.
We then only take the suffix of the new tokens that falls
beyond that overlap. This effectively aligns the newly added
tokens to the correct place in the target-token space. The
algorithm can “look behind” a small number of tokens to
try to realign sequences. By doing so, we mitigate the effect
of the mismatch and preserve as much of the previously
decoded text as possible. We provided the implementation
in the Supplementary Material.

KV Caching. Storing the KV cache of models is a common
practice that has been shown to be crucial for efficient infer-
ence (Pope et al., 2023; Kwon et al., 2023). In particular,
without KV caching, the additional number of operations
(e.g., floating-point operations) required for the decoding
might grow quadratically with respect to the number of
tokens in the context for self-attention transformers. Algo-
rithm 2 implements only a single iteration of SD. SD over
heterogeneous vocabularies that is based on Algorithm 2
therefore may include multiple runs of Algorithm 2. These
runs are sequential and autoregressive, namely, the output of
each run of Algorithm 2 is used as the input for the next run
of Algorithm 2. Therefore, implementations of Algorithm 2
should store the KV cache from one run of Algorithm 2 to
the next run. With KV caching, the prompt c needs to be
encoded into the target and draft vocabularies only once,
during the first run of Algorithm 2 (that is, the first itera-
tion, also referred to as “pre-filling”), to facilitate line 8 and
line 4, respectively.

3.3 Verification via Rejection Sampling

The standard verification method of SD guarantees that the
output tokens are distributed according to the target distri-
bution, but it does not guarantee that the output tokens are
exactly the target tokens, as in exact matching. For example,
if the drafter is another instance of the target model p, the
standard verification method of SD will accept all the draft
tokens because, in general, the expected acceptance rate
satisfies

∑
t∈T min {p(t), q(t)} for any drafter q and vocab-

ulary T , according to Leviathan et al. (2023). Hence, the
expected acceptance rate of a drafter that is an instance of
the target model is

∑
t∈T p(t) = 1. For any drafter different

from the target model, q ̸= p, the expected acceptance rate
is strictly lower than one. Theorem 3.1 proves that, in gen-
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eral, for any non-trivial target distribution p, the expected
acceptance rate of exact matching is strictly less than the ex-
pected acceptance rate of SD for homogeneous vocabularies
under the same target distribution.

Theorem 3.1. Let p be a non-trivial target probability dis-
tribution over a vocabulary T , where there exist t1, t2 ∈ T
such that p(t1) ̸= p(t2). Let q be the drafter probability
distribution over the same vocabulary T . If q = p, namely,
the drafter is another instance of the target model, then the
expected acceptance rate of the exact matching method αEM

is strictly less than the expected acceptance rate of the stan-
dard speculative decoding method αSD. Namely, it holds
that αEM < αSD.
Proof. See Appendix G.

Since Algorithm 2 implements exact matching verification,
its expected acceptance rate is relatively low compared to
the standard verification method of SD, which implements
a rejection sampling procedure. To increase the acceptance
rate of Algorithm 2, we propose Algorithm 3, introducing
a novel verification method that employs lossless rejection
sampling at the string level. Algorithm 3 samples draft
tokens autoregressively from the drafter until a lookahead
condition is satisfied, then tokenizes the concatenation of
the draft tokens into the target vocabulary. It is lossless, as
Theorem 3.2 proves, because it uses the same structure as
the standard verification method of SD, which is lossless, as
proved in Leviathan et al. (2023); Chen et al. (2023). The
primary difference is that the probabilities are for generating
a certain string rather than a single token.

Algorithm 3 (SLRS), string-level rejection sampling verifi-
cation for speculative decoding with heterogeneous vocabu-
laries

1: Input: Probability distributions p and q over vocab-
ularies T and D, respectively, where T ↠ D∗ and
D∗ ↠ T ∗. Lookahead indicator function S1 from the
current state to a boolean value.

2: Output: A token from T .
3: Procedure:
4: Sample d1, . . . , di ∼ q until i satisfies S1(i).
5: Tokenize (t1, t2, . . . , tm)← T (d1 ⊕ . . .⊕ di).
6: If p(t1) ≥ ψ(t1), accept t1.
7: With probability p(t1)

ψ(t1)
, accept t1.

8: Reject t1. Sample t ∼ p(t)−min{p(t),ψ(t)}
1−

∑
t′ min{p(t′),ψ(t′)} , return t.

Theorem 3.2. For any token in the target vocabulary t ∈ T ,
Algorithm 3 outputs the token t with probability p(t) if we
define ψ(t) :=

∑
d1,d2,...,di : t=T (d1⊕...⊕di)1

∏
j∈{1,...,i}

q(dj).

Namely, Algorithm 3 is lossless.
Proof. See Appendix G.

Lookahead. The lookahead controls a tradeoff between the
probability of accepting a token and the number of drafter
forwards, since every sampling of a draft token requires
computing a forward pass of the drafter. The lookahead
indicator function S1 determines whether the algorithm
should stop sampling draft tokens. Naively, we can set
S1(i) := 1[i > n] for some threshold n ∈ N, and stop
sampling draft tokens after n draft tokens have been sam-
pled in line 4 of Algorithm 3. On one hand, increasing
the threshold n necessarily increases the number of drafter
forwards that Algorithm 3 requires. On the other hand,
selecting a larger value of n may increase the probability
that Algorithm 3 accepts a token because it may increase
the number of feasible values of t1 in line 5. Small values
of n may lead to scenarios where some target tokens are
never accepted. For example, if the target vocabulary T
includes a token t with ten characters, and the longest token
in the draft vocabulary D is four characters, selecting n < 3
will never accept t. However, since increasing n also in-
creases the number of drafter forward passes, it is important
to select a value of n that optimizes our objective func-
tion, which is, most commonly, maximizing the throughput
of the inference or minimizing its latency. Target tokens
t ∈ T may correspond to more than one sequence of draft to-
kens d1, . . . , di ∈ D for which the tokenized concatenation
T (d1⊕. . .⊕di) starts with t, namely, T (d1⊕. . .⊕di)1 = t.
These cases are common in practice, especially for a tar-
get vocabulary T that is larger and includes longer tokens
than the draft vocabulary D. For example, consider a draft
vocabulary D = {‘hello ’, ‘world’, ‘wo’, ‘rld’} and a tar-
get vocabulary T = D ∪ {‘hello world’}. The target token
‘hello world’ is the first token in the tokenized concatenation
of two different sequences of draft tokens: ‘hello world’ =
T (‘hello ’ ⊕ ‘world’)1 = T (‘hello ’ ⊕ ‘wo’ ⊕ ‘rld’)1. In
fact, there are infinitely many sequences of draft tokens that
start with ‘hello world’. Since Algorithm 3 uses only the
first target token T (d1⊕ . . .⊕di)1, it is redundant to sample
more than three draft tokens in this example. However, if
the first two draft tokens are ‘hello ’ and ‘world’, there is no
need to sample the third token since the first target token has
already been determined. To capture this behavior and avoid
unnecessary drafter forwards during inference time, we can
calculate the maximum lookahead nmax at preprocessing
time, by calculating the maximum number of draft tokens
that need to be sampled to determine the first target token
(nmax = 3 in the example above). Defining the lookahead
indicator function to be S1(i) = 1[i > nmax] is a simple
heuristic ensuring that the algorithm stops sampling draft
tokens after the first target token has been determined. How-
ever, this heuristic might still sample more draft tokens than
necessary, as we saw in the example, where the first target
token is determined after the two draft tokens, ‘hello ’ and
‘world’ , have been sampled. To avoid computing unneces-
sary drafter forward passes, we can define the lookahead

5



Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies

indicator function S1 to combine a maximum threshold
n ≤ nmax and a stopping condition of whether the first target
token has been determined. Namely, S1(i) is true if i > n

or Pr
[
T (d1 ⊕ . . .⊕ di)1 ̸=
T (d1 ⊕ . . .⊕ di ⊕ di+1 ⊕ . . .⊕ dn)1

]
= 0, and

false otherwise. Algorithm 3 and Theorem 3.2 both hold
for this more general lookahead indicator function. In cases
where the additional drafter forward passes are expensive
or longer tokens are less likely to be accepted, setting the
threshold n to a value that is strictly less than nmax can be
beneficial. More sophisticated lookahead indicator func-
tions control the lookahead based on additional information
about the current state, as has seen in other recent works.
For example, Mamou et al. (2024) trained a small neural
network to estimate the likelihood of the next draft token
being accepted and used this information to decide whether
to sample the next draft token or stop drafting. Their experi-
ments showed that even a simple controller that attends to
the drafter’s logits is highly effective, and the controller gen-
eralizes well across different datasets and tasks. Following
their success in both increasing the throughput and reducing
the latency of the inference, Hugging Face’s Transformers,
the commonly used open-source library for training and de-
ploying LLMs, has recently incorporated such a controller
into their default inference pipeline. While implementing
the lookahead indicator function S1 as such a controller
seems promising, it might be computationally expensive to
calculate ψ(t) for longer lookahead values, as Section 3.4
shows.

Block Verification is Non-Trivial. In Algorithm 3, the
vocabularies T and D are related only by T ↠ D∗ and
D∗ ↠ T ∗ rather than by stricter relationships like bijection
or D ⊆ T . After Algorithm 3 removes the prefix t1 from
the concatenation d1⊕ . . .⊕ di, the remaining string is t2⊕
. . .⊕ tm, and its tokenization back into the draft vocabulary
D might differ from (dj>1, . . . , di). For example, consider
a simple case where D ̸⊆ T , such that T = {‘a’, ‘b’} and
D = {‘a’, ‘b’, ‘aa’}. Let d1 = ‘aa’ and assume that i = 1,
meaning that only one draft token is sampled in line 4. We
then have T (d1) = (t1, t2) = (‘a’, ‘a’). Therefore, the
remainder of the drafted string ‘aa’ after removing t1 =
‘a’ is the token t2 = ‘a’, which was not sampled. Such
scenarios can arise only when shifting from settings where
D = T to settings where D ̸= T . Applying Algorithm 3 to
the string that remains after removing the candidate token
t1 is, therefore, more challenging. This issue makes it non-
trivial to generalize the block verification mechanism of
Sun et al. (2024) to the case of heterogeneous vocabularies,
despite its proven advantage in homogeneous setups.

3.4 Efficient Calculation of ψ(t)

Calculating ψ(t) in line 6 of Algorithm 3 requires summing
over all the probabilities of sampling sequences of draft

tokens d1, . . . , di such that their concatenation d1⊕ . . .⊕di
starts with the target token t, namely, T (d1⊕ . . .⊕di)1 = t.
For general vocabularies, the number of such sequences
d1, . . . , di grows rapidly with the length of t. For ex-
ample, consider a complete vocabulary Dn that contains
all possible strings of length n over a fixed alphabet Σ.
A simple case is the alphabet Σ = {‘a’, ‘b’}, where
D1 = {‘a’, ‘b’}, D2 = D1 ∪ {‘aa’, ‘ab’, ‘ba’, ‘bb’}, D3 =
D2 ∪ {‘aaa’, ‘aab’, ‘aba’, ‘baa’, ‘abb’, ‘bab’, ‘bba’, ‘bbb’}.
For such a vocabulary Dn, the number of terms in the sum
of ψ(t) from Theorem 3.2 for a target token t of length
m ≤ n is 2m−1, as Lemma 3.1 proves. Here, the length
of token t is defined to be the maximum number of tokens
whose concatenation equals to t. In the example above, ‘aaa’
has length three because it is the concatenation of three ‘a’
tokens, while ‘aa’ is of length two because it is the concate-
nation of two ‘a’ tokens.

Lemma 3.1. For a target token t of length m ≤ n in a
complete vocabulary Dn that contains all possible strings
of length up to n over a fixed alphabet Σ, the number of
distinct sequences of draft tokens d1, . . . , di such that their
concatenation d1 ⊕ . . .⊕ di starts with t, namely, T (d1 ⊕
. . .⊕ di)1 = t, is 2m−1.
Proof. See Appendix G.

Appendix C provides details of an experiment con-
ducted to examine the complexity of calculating ψ(t)
given the vocabulary of a real-world, off-the-shelf drafter
(Qwen2-7B-Instruct from Yang et al., 2024). The re-
sults indicate that the number of terms in the sum of ψ(t)
grows exponentially with the length of the target token t, as
predicted by Lemma 3.1. Although Algorithm 3 is lossless
(Theorem 3.2) and its acceptance rates are likely to be higher
than those of Algorithm 2 (Theorem 3.1), calculating ψ(t)
during runtime might be too computationally expensive for
practical use cases—especially if the drafter’s vocabulary
includes long tokens, as shown in the proof of Lemma 3.1
and supported by the experiment in Appendix C. Beyond
its theoretical guarantees, Algorithm 3 might be suitable in
practice only for specific drafters with small vocabularies,
where the number of terms in the sum of ψ(t) is manageable.
For example, modern models like the recent MambaByte
(Wang et al., 2024) could potentially be suitable drafters for
Algorithm 3. However, the applicability of Algorithm 3 to a
wider range of drafters with larger vocabularies is an open
question that requires further research, and we propose it as
future work.

4 Speculative Decoding for Heterogeneous
Vocabularies with Token-Level Verification

This section introduces additional algorithms that extend
the standard SD framework to operate over heterogeneous
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vocabularies, namely, where the drafter’s vocabulary dif-
fers from the target’s. Unlike Section 3, the algorithms in
this section do not use strings as an intermediate, shared
representation. Instead, they operate at the token level, as
in standard SD algorithms (for example, see Algorithm 5).
The primary idea is to project the drafter’s probability distri-
bution over its vocabulary onto the intersection between the
vocabularies of the draft and the target models. In doing so,
Algorithm 4 adjusts the drafter to sample only tokens that
are in the intersection between the two vocabularies while
keeping the target model unchanged.

Algorithm 4 (Token-Level Intersection, TLI), an iteration
of speculative decoding for heterogeneous vocabularies with
token-level rejection sampling verification

1: Input: Probability distributions p and q over vocabular-
ies T and D, respectively. Drafting lookahead i ∈ N.

2: Output: A sequence of tokens from T , containing
between 1 and i+ 1 tokens.

3: Procedure:
4: Define a probability distribution q′ over the vocabu-

lary T ∩D such that q′(x) = q(x)∑
t∈T q(t)

if x ∈ T and
q′(x) = 0 otherwise.

5: Run Algorithm 5 with p, q′, i, c.

Theorem 4.1 proves that the acceptance rate of Algorithm 4
is greater than or equal to the acceptance rate of the simple
solution that Algorithm 1 implements.

Theorem 4.1. Let p and q be target and drafter probabil-
ity distributions over vocabularies T and D, respectively.
Define p′, q1, q2 to be probability distributions over T ∪D
as follows. p′(x) = p(x) if x ∈ T and p′(x) = 0 other-
wise. q1(x) = q(x) if x ∈ D and q1(x) = 0 otherwise.
q2(x) = q(x)∑

t∈T q(t)
if x ∈ T and q2(x) = 0 otherwise.

Given the target p′, we define α1 and α2 to be the probabil-
ity of accepting a token x ∼ q1 and x ∼ q2, respectively,
by the rejection sampling algorithm of speculative decod-
ing from Leviathan et al. (2023); Chen et al. (2023). Then,
α1 ≤ α2, and the output tokens distribute according to p.
Proof. See Appendix G.

Although the acceptance rate of Algorithm 4 is at least as
high as the acceptance rate of Algorithm 1 (Theorem 4.1), it
still depends on the intersection between the two vocabular-
ies. For example, if the intersection is empty, the acceptance
rate of both algorithms is zero. This dependency on ac-
ceptance rate is not new or unique. Instead, it is a known
limitation of SD algorithms. Timor et al. (2025) analyzed
the expected speedups of SD for any drafter size and ac-
ceptance rate and studied the slowdowns that standard SD
algorithms cause given sufficiently low acceptance rates.
In practice, the intersection between the draft and target

vocabularies is often non-empty because of how tokenizers
are constructed. The intuition is based on commonly used
tokenization methods, as mentioned in Section 3.1. Our ex-
periments with real-world off-the-shelf models support the
assumption that the intersection between the vocabularies
is non-empty. Tokens in the intersection have a non-zero
probability of being sampled by both models and, therefore,
the intersection supports a non-zero expected acceptance
rate, as shown by Leviathan et al. (2023).

5 Empirical Results
Our empirical results have had an impact on the open-source
ecosystem, with Algorithm 2 and Algorithm 4 successfully
integrated into Hugging Face Transformers (Wolf et al.,
2020)—the most widely adopted library in the AI field,
boasting over 145,000 GitHub stars, more than 378,000
repositories, and 6,000 open-source packages that depend
on it. Thanks to their versatility and broad applicability,
Algorithm 2 and Algorithm 4 had become the default infer-
ence pipeline behavior (in October 2024 and February 2025,
respectively), enabling efficient speculative decoding (SD)
for heterogeneous vocabularies across diverse applications.
The open-source community has quickly embraced our ap-
proach to heterogeneous SD, unlocking any model to serve
as a drafter, driving widespread adoption and enabling po-
tential further enhancements by engineers and researchers.
Its seamless integration into existing workflows has empow-
ered practitioners to achieve substantial improvements in
inference efficiency with minimal effort. This broad adop-
tion underscores the practical utility and robustness of our
approach in real-world scenarios. The rapid uptake of our
algorithms demonstrates their effectiveness across a diverse
range of model pairs, tasks, and hardware setups. The fol-
lowing section presents only a selection of examples.

We evaluate Algorithm 2 (SLEM) and Algorithm 4 (TLI)
over widely used models, tasks, and hardware setups, in-
cluding DeepSeek (DeepSeek-AI et al., 2025), Phi (Abdin
et al., 2024b;a), Mixtral (Jiang et al., 2024), Qwen2.5 (Qwen
et al., 2025), Vicuna (Chiang et al., 2023), Llama (Dubey
et al., 2024), CodeLlama (Rozière et al., 2024), Starcoder
(Li et al., 2023), and Gemma2 (Team et al., 2024). Ta-
ble 1 benchmarks SLEM and autoregressive decoding (AR)
where both employ a temperature of zero. Table 2 bench-
marks TLI and AR where both employ a temperature of one.
The results demonstrate throughput accelerations over AR
of up to 2.8× with SLEM and 1.7× with TLI. Note that the
target models in Tables 1 and 2 do not have homogeneous
drafters that are available off-the-shelf and therefore we
cannot accelerate them using standard SD. Tables 6 and 7
in Appendix D add results for additional models, including
those with homogeneous drafters (e.g., Gemma2). For exact
implementation details, we refer the reader to Appendix D.
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Table 1: Benchmark comparing Algorithm 2 (SLEM) and autoregressive decoding (AR) for widely used models, tasks,
and hardware setups. The results demonstrate that SLEM increases throughput by up to 2.8× over AR. Note that the
target models below do not have homogeneous drafters that are available off-the-shelf. For some target models, their
in-family drafters are heterogeneous, as their vocabularies differ. Examples include the target model phi-4 with the drafter
Phi-3.5-mini-instruct, and the DeepSeek-R1-Distill-Qwen model family.

TTFT (ms) TPOT (ms) Tok/s Speedup
Target Dataset Hardware Method Drafter

Mixtral-8x22B-Instruct-v0.1 cnn dailymail 4 * H100 NVL AR No Drafter (Autoregressive) 266.8 127.9 7.8 1.0
SLEM Qwen2.5-0.5B-Instruct 321.2 68.3 13.3 1.71

vicuna-68m 302.4 57.3 16.4 2.1
scrolls 4 * H100 NVL AR No Drafter (Autoregressive) 1331.9 163.0 6.0 1.0

SLEM Qwen2.5-0.5B-Instruct 1414.2 81.0 10.3 1.71
vicuna-68m 1344.5 132.5 7.4 1.24

openai humaneval 4 * H100 NVL AR No Drafter (Autoregressive) 217.5 127.9 7.8 1.0
SLEM Qwen2.5-0.5B-Instruct 484.4 70.2 12.0 1.53

vicuna-68m 231.5 73.3 12.6 1.61
DeepSeek-R1-Distill-Qwen-14B scrolls 1 * RTX 6000 AR No Drafter (Autoregressive) 1481.0 87.5 10.9 1.0

SLEM DeepSeek-R1-Distill-Qwen-1.5B 1665.4 59.1 16.0 1.48
vicuna-68m 1566.8 56.0 17.3 1.59

cnn dailymail 1 * RTX 6000 AR No Drafter (Autoregressive) 176.8 51.7 19.2 1.0
SLEM DeepSeek-R1-Distill-Qwen-1.5B 287.5 69.9 14.1 0.73

vicuna-68m 243.0 36.2 27.4 1.43
openai humaneval 1 * RTX 6000 AR No Drafter (Autoregressive) 91.3 50.3 19.8 1.0

SLEM tiny starcoder py 113.4 43.8 22.4 1.14
CodeLlama-7b-Instruct-hf 256.6 77.5 12.4 0.63
DeepSeek-R1-Distill-Qwen-1.5B 292.5 70.9 13.6 0.69

DeepSeek-R1-Distill-Qwen-32B cnn dailymail 1 * H100 NVL AR No Drafter (Autoregressive) 121.2 48.0 20.8 1.0
SLEM DeepSeek-R1-Distill-Qwen-1.5B 167.1 51.3 18.9 0.91

vicuna-68m 148.1 32.5 30.6 1.47
openai humaneval 1 * H100 NVL AR No Drafter (Autoregressive) 72.0 48.3 20.7 1.0

SLEM tiny starcoder py 80.1 34.2 28.5 1.38
CodeLlama-7b-Instruct-hf 182.7 64.4 14.9 0.72
DeepSeek-R1-Distill-Qwen-1.5B 196.4 50.3 19.5 0.94

scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 933.1 77.7 12.5 1.0
SLEM DeepSeek-R1-Distill-Qwen-1.5B 988.1 57.6 17.1 1.37

vicuna-68m 979.9 59.3 16.5 1.32
phi-4 scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 483.9 47 21.3 1.0

SLEM Qwen2.5-0.5B-Instruct 457.7 29.5 33.9 1.59
Phi-3.5-mini-instruct 646.9 39.6 25.3 1.19

CodeLlama-13b-Instruct-hf humaneval 1 * A6000 AR No Drafter (Autoregressive) 70.7 46.8 21.4 1.0
SLEM tiny starcoder py 109.7 16.7 59.7 2.79

CodeLlama-7b-Instruct-hf 146.5 21.8 45.8 2.14

Table 2: Benchmark comparing Algorithm 4 (TLI) and autoregressive decoding (AR) for widely used models, tasks,
and hardware setups. The results demonstrate that TLI increases throughput by up to 1.7× over AR. Note that the
target models below do not have homogeneous drafters that are available off-the-shelf. For some target models, their
in-family drafters are heterogeneous, as their vocabularies differ. Examples include the target model phi-4 with the drafter
Phi-3.5-mini-instruct, and the DeepSeek-R1-Distill-Qwen model family.

TTFT (ms) TPOT (ms) Tok/s Speedup
Target Dataset Hardware Method Drafter

Mixtral-8x22B-Instruct-v0.1 scrolls 4 * H100 NVL AR No Drafter (Autoregressive) 1334.7 168.7 5.9 1.0
TLI Qwen2.5-0.5B-Instruct 1372.6 97.8 9.9 1.69

vicuna-68m 1329.7 138.2 7.2 1.22
openai humaneval 4 * H100 NVL AR No Drafter (Autoregressive) 217.5 128.1 7.8 1.0

TLI Qwen2.5-0.5B-Instruct 266.9 90.6 10.9 1.4
vicuna-68m 228.5 74.8 13.0 1.67

cnn dailymail 4 * H100 NVL AR No Drafter (Autoregressive) 266.8 128.1 7.8 1.0
TLI Qwen2.5-0.5B-Instruct 294.5 88.9 11.2 1.43

vicuna-68m 297.3 81.0 11.9 1.53
phi-4 scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 487.4 47.2 21.2 1.0

TLI Qwen2.5-0.5B-Instruct 454.7 32.5 30.8 1.45
Phi-3.5-mini-instruct 610.4 46.0 21.7 1.03

CodeLlama-13b-Instruct-hf humaneval 1 * A6000 AR No Drafter (Autoregressive) 70.5 45.3 22.1 1.0
TLI tiny starcoder py 65.1 25.9 38.5 1.74

CodeLlama-7b-Instruct-hf 141.3 25.6 39.1 1.77
DeepSeek-R1-Distill-Qwen-14B scrolls 1 * RTX 6000 AR No Drafter (Autoregressive) 1479.5 88.3 10.8 1.0

TLI DeepSeek-R1-Distill-Qwen-1.5B 1640.7 61.6 16.1 1.5
vicuna-68m 1502.2 57.2 17.1 1.59

cnn dailymail 1 * RTX 6000 AR No Drafter (Autoregressive) 176.1 54.4 18.4 1.0
TLI DeepSeek-R1-Distill-Qwen-1.5B 240.5 44.7 21.4 1.16

vicuna-68m 202.4 40.6 24.1 1.31
openai humaneval 1 * RTX 6000 AR No Drafter (Autoregressive) 90.4 50.9 19.6 1.0

TLI tiny starcoder py 93.9 38.6 25.4 1.3
CodeLlama-7b-Instruct-hf 150.2 66.0 14.6 0.75
DeepSeek-R1-Distill-Qwen-1.5B 172.6 45.6 21.2 1.08
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Tables 8, 9, and 10 in Appendix E examine the vocabular-
ies of widely used off-the-shelf target and drafter models.
Table 8 shows the vocabulary size of each model. Table 9
shows the size of the intersection between the draft and
target vocabularies and the ratio of the intersection size to
the target vocabulary size for various model pairs. We can
see a wide range of overlap sizes and ratios, however, none
of them are empty. This observation is consistent with our
aforementioned assumption that the intersection between
the draft and target vocabularies is non-empty in practice.
Table 10 extends Table 9 by showing the overlap sizes and
ratios over various tasks.

To facilitate additional standardized benchmarks, we have
open-sourced our benchmarking repository, which pro-
vides full reproducibility. The code is available at
github.com/keyboardAnt/hf-bench. See Ap-
pendix D for implementation details.

6 Discussion
To speed up the inference of a given target model, we need
to select a drafter and a decoding algorithm. Table 3 summa-
rizes the expected probability of accepting the next token for
all the speculation algorithms when the drafter has a differ-
ent vocabulary than the target. Note that the effectiveness of
each algorithm depends on the properties of the drafter. Ta-
ble 4 outlines the necessary constraints that the drafter must
satisfy for each algorithm to be effective in practice. If these
constraints are not met, selecting an alternative algorithm is
recommended. Future work is discussed in Appendix A.

Table 3: Expected acceptance rates given heterogeneous
vocabularies for all speculation methods. The expected
acceptance rate of Algorithm 1 is always less than or equal to
the expected acceptance rate of Algorithm 4, as Theorem 4.1
proves.

Method Expected Acceptance Rate

Alg 5 (SD) Undefined

Alg 1
∑

t∈T∩D min {p(t), q(t)}

Alg 2 (SLEM)
∑

t∈T [p(t) · ψ(t)]

Alg 3 (SLRS)
∑

t∈T min {p(t), ψ(t)}

Alg 4 (TLI)
∑

t∈T∩D min
{
p(t), q(t)∑

x∈T∩D q(x)

}
Practical Implications. Practitioners can leverage specu-
lative decoding (SD) to significantly accelerate the infer-
ence of off-the-shelf LLMs, even when no drafter with the
same vocabulary as the target model is available. This ad-
vancement eliminates the need for extensive computational
resources, as it bypasses the costly and time-consuming

Table 4: Informal constraints on the drafter for different
algorithms to ensure effectiveness. If the constraints are
not met, an alternative algorithm should be selected. Since
the acceptance rate of Algorithm 4 is always greater than
or equal to that of Algorithm 1, selecting Algorithm 4 over
Algorithm 1 is always beneficial, assuming the implementa-
tion overhead is negligible. A necessary condition for the
effectiveness of Algorithms 2, 3, and 4 is that the drafter
must approximate the target distribution sufficiently well.
The effectiveness of Algorithm 3 is further enhanced when
the drafter’s vocabulary consists of short tokens. The effec-
tiveness of Algorithm 4 improves as the number of tokens
in the intersection between the vocabularies increases.

Algorithm Drafter Constraints

Alg 1 Not Applicable (instead, select Alg 4)

Alg 2 (SLEM) Accurate

Alg 3 (SLRS) Accurate, short tokens

Alg 4 (TLI) Accurate, large overlap of vocabs

process of training a dedicated drafter. Furthermore, our
approach allows practitioners to integrate SD seamlessly
into existing inference pipelines without requiring any mod-
ifications to the target model’s architecture or retraining pro-
cedures. The proposed algorithms expand the applicability
of SD to a broader range of use cases, including models with
different tokenization schemes. This is particularly relevant
for practitioners and researchers who rely on pre-trained
models (e.g., from the Hugging Face Hub), each with dis-
tinct vocabularies. Our methods provide practical solutions
to unify heterogeneous models under a single SD frame-
work, enhancing efficiency across diverse applications.

Limitations. A fundamental limitation of SD algorithms is
their dependence on the acceptance rate of the drafter and
the latency of its forward pass, as extensively analyzed in
Timor et al. (2025). When the drafter approximates the tar-
get distribution inaccurately, the acceptance rate decreases,
leading to diminished performance improvements. Our pro-
posed methods are no exception to this constraint. Unlike
standard SD that limits the drafter to in-family models, our
algorithms open the door to using off-the-shelf target-drafter
pairs that differ in their architecture and the way they were
trained, although both can critically affect the acceptance
rate. For drafters with a heterogeneous vocabulary, the
inherit mismatches in token granularity might further re-
duce the likelihood of draft tokens being accepted. Despite
these challenges, our algorithms empirically demonstrate
significant accelerations not only for heterogeneous drafters
(Section 5) but also homogeneous ones (Appendix D) while
employing drafters that are faster than the fastest in-family
model. However, for cases with insufficiently fast or accu-
rate drafters, our methods might fail, as Appendix D shows.

9

https://github.com/keyboardAnt/hf-bench


Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies

Acknowledgments
We are grateful to Roy Schwartz from The Hebrew Univer-
sity of Jerusalem for his valuable feedback in improving
this work. We thank João Gante and the Hugging Face team
for reviewing the code and providing valuable feedback
that contributed to its implementation in the Transformers
library.

This work was partially funded by the Israel Science Founda-
tion (ISF grant 3698/21). Additional support was provided
by a research grant to David Harel from Louis J. Lavigne
and Nancy Rothman, the Carter Chapman Shreve Family
Foundation, Dr. and Mrs. Donald Rivin, and the Estate of
Smigel Trust.

Impact Statement
This work lowers the cost and latency of LLM inference—
making the serving of these models cheaper, faster, and
more accessible to a wider range of users.

References
Abdin, M., Aneja, J., Awadalla, H., Awadallah, A., Awan,

A. A., Bach, N., Bahree, A., Bakhtiari, A., Bao, J., Behl,
H., Benhaim, A., Bilenko, M., Bjorck, J., Bubeck, S., Cai,
M., Cai, Q., Chaudhary, V., Chen, D., Chen, D., Chen, W.,
Chen, Y.-C., Chen, Y.-L., Cheng, H., Chopra, P., Dai, X.,
Dixon, M., Eldan, R., Fragoso, V., Gao, J., Gao, M., Gao,
M., Garg, A., Giorno, A. D., Goswami, A., Gunasekar, S.,
Haider, E., Hao, J., Hewett, R. J., Hu, W., Huynh, J., Iter,
D., Jacobs, S. A., Javaheripi, M., Jin, X., Karampatziakis,
N., Kauffmann, P., Khademi, M., Kim, D., Kim, Y. J.,
Kurilenko, L., Lee, J. R., Lee, Y. T., Li, Y., Li, Y., Liang,
C., Liden, L., Lin, X., Lin, Z., Liu, C., Liu, L., Liu, M.,
Liu, W., Liu, X., Luo, C., Madan, P., Mahmoudzadeh,
A., Majercak, D., Mazzola, M., Mendes, C. C. T., Mitra,
A., Modi, H., Nguyen, A., Norick, B., Patra, B., Perez-
Becker, D., Portet, T., Pryzant, R., Qin, H., Radmilac, M.,
Ren, L., de Rosa, G., Rosset, C., Roy, S., Ruwase, O.,
Saarikivi, O., Saied, A., Salim, A., Santacroce, M., Shah,
S., Shang, N., Sharma, H., Shen, Y., Shukla, S., Song, X.,
Tanaka, M., Tupini, A., Vaddamanu, P., Wang, C., Wang,
G., Wang, L., Wang, S., Wang, X., Wang, Y., Ward, R.,
Wen, W., Witte, P., Wu, H., Wu, X., Wyatt, M., Xiao,
B., Xu, C., Xu, J., Xu, W., Xue, J., Yadav, S., Yang, F.,
Yang, J., Yang, Y., Yang, Z., Yu, D., Yuan, L., Zhang, C.,
Zhang, C., Zhang, J., Zhang, L. L., Zhang, Y., Zhang, Y.,
Zhang, Y., and Zhou, X. Phi-3 technical report: A highly
capable language model locally on your phone, 2024a.
URL https://arxiv.org/abs/2404.14219.

Abdin, M., Aneja, J., Behl, H., Bubeck, S., Eldan, R., Gu-
nasekar, S., Harrison, M., Hewett, R. J., Javaheripi, M.,

Kauffmann, P., Lee, J. R., Lee, Y. T., Li, Y., Liu, W.,
Mendes, C. C. T., Nguyen, A., Price, E., de Rosa, G.,
Saarikivi, O., Salim, A., Shah, S., Wang, X., Ward, R.,
Wu, Y., Yu, D., Zhang, C., and Zhang, Y. Phi-4 techni-
cal report, 2024b. URL https://arxiv.org/abs/
2412.08905.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Chen, J., Tiwari, V., Sadhukhan, R., Chen, Z., Shi, J., Yen,
I. E.-H., and Chen, B. Magicdec: Breaking the latency-
throughput tradeoff for long context generation with spec-
ulative decoding. arXiv preprint arXiv:2408.11049, 2024.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W. Evaluating large language models trained
on code, 2021. URL https://arxiv.org/abs/
2107.03374. arXiv:2107.03374.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez,
J. E., Stoica, I., and Xing, E. P. Vicuna: An open-
source chatbot impressing GPT-4 with 90%* ChatGPT
quality, 2023. URL https://lmsys.org/blog/
2023-03-30-vicuna/.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L.,
Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia,
L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang, M.,
Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen,
Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen,

10

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies

R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S., Ye,
S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou,
S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang, T.,
Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W.,
Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen,
X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang,
X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen, X.,
Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang,
X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang,
Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y.,
Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y.,
Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong,
Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y.,
Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,
Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z.,
Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao,
Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li,
Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang,
Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024. URL https://arxiv.
org/abs/2401.04088.

Joao Gante. Assisted generation: a new direc-
tion toward low-latency text generation, 2023.
URL https://huggingface.co/blog/
assisted-generation.

Kudo, T. Subword regularization: Improving neural network
translation models with multiple subword candidates. In
Gurevych, I. and Miyao, Y. (eds.), Proceedings of the
56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 66–75,
Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P18-1007. URL
https://aclanthology.org/P18-1007.

Kudo, T. and Richardson, J. SentencePiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. In Blanco, E.
and Lu, W. (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 66–71, Brussels,

Belgium, November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, R., allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., LI, J., Chim, J., Liu,
Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene,
O., Lamy-Poirier, J., Monteiro, J., Gontier, N., Yee, M.-
H., Umapathi, L. K., Zhu, J., Lipkin, B., Oblokulov,
M., Wang, Z., Murthy, R., Stillerman, J. T., Patel, S. S.,
Abulkhanov, D., Zocca, M., Dey, M., Zhang, Z., Bhat-
tacharyya, U., Yu, W., Luccioni, S., Villegas, P., Zh-
danov, F., Lee, T., Timor, N., Ding, J., Schlesinger, C. S.,
Schoelkopf, H., Ebert, J., Dao, T., Mishra, M., Gu, A.,
Anderson, C. J., Dolan-Gavitt, B., Contractor, D., Reddy,
S., Fried, D., Bahdanau, D., Jernite, Y., Ferrandis, C. M.,
Hughes, S., Wolf, T., Guha, A., Werra, L. V., and de Vries,
H. Starcoder: may the source be with you! Transac-
tions on Machine Learning Research, 2023. ISSN 2835-
8856. URL https://openreview.net/forum?
id=KoFOg41haE. Reproducibility Certification.

Mamou, J., Pereg, O., Korat, D., Berchansky, M.,
Timor, N., Wasserblat, M., and Schwartz, R. Dy-
namic speculation lookahead accelerates speculative
decoding of large language models. In Proceedings
of The 4th NeurIPS Efficient Natural Language and
Speech Processing Workshop, volume 262 of Proceed-
ings of Machine Learning Research, pp. 456–467. PMLR,
2024. URL https://proceedings.mlr.press/
v262/mamou24a.html.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L., Shi,
X., Shi, C., Chen, Z., Arfeen, D., Abhyankar, R., and
Jia, Z. Specinfer: Accelerating large language model
serving with tree-based speculative inference and verifi-
cation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. ACM,
2024. doi: 10.1145/3620666.3651335. URL http:
//dx.doi.org/10.1145/3620666.3651335.

Nallapati, R., Zhou, B., dos Santos, C., Gulçehre, Ç., and Xi-
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Xiang, B. Abstractive text summarization using sequence-
to-sequence RNNs and beyond. In Riezler, S. and Gold-
berg, Y. (eds.), Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning, pp.
280–290, Berlin, Germany, 2016b. Association for Com-
putational Linguistics. doi: 10.18653/v1/K16-1028. URL
https://aclanthology.org/K16-1028/.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5:606–624, 2023.

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng,
B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, H.,
Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J.,
Lin, J., Dang, K., Lu, K., Bao, K., Yang, K., Yu, L.,
Li, M., Xue, M., Zhang, P., Zhu, Q., Men, R., Lin, R.,
Li, T., Tang, T., Xia, T., Ren, X., Ren, X., Fan, Y., Su,
Y., Zhang, Y., Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and
Qiu, Z. Qwen2.5 technical report, 2025. URL https:
//arxiv.org/abs/2412.15115.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T.,
Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt,
M., Ferrer, C. C., Grattafiori, A., Xiong, W., Défossez,
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A Future Work
Future work includes assessing the effectiveness and applicability of Algorithm 3 in real-world scenarios, particularly with
drafters of small vocabularies such as Wang et al., 2024, and exploring drafter adjustment strategies for Algorithm 4 to
increase acceptance rates.

B Standard Speculative Decoding
Generating the next token via autoregressive decoding requires computing a target forward pass. Standard SD methods,
like Algorithm 5, tend to utilize this target forward pass to verify multiple candidate tokens at once via a data parallelism
technique known as batching, which is supported by modern hardware such as GPUs and TPUs. Running Algorithm 5 to
generate the next target token requires only one target forward pass (line 6 of Algorithm 5) although the algorithm could
generate between one and i+1 new tokens. Since computing the target forward pass is often the slowest and most expensive
operation in the inference pipeline, the ability of SD methods like Algorithm 5 to reduce the number of required target
forward passes is the key to their efficiency, as was previously shown in Leviathan et al. (2023); Chen et al. (2023); Timor
et al. (2025).

Algorithm 5 samples draft tokens from the drafter and then decides whether to accept or reject each draft token based on
the target model’s logits. The algorithm is widely used in practice and has been shown to be effective in accelerating the
inference of large language models. The algorithm is lossless, meaning that it outputs tokens that distribute as the output
tokens of standard autoregressive decoding.

Algorithm 5 Standard Speculative Decoding (Adapted from Leviathan et al., 2023; Chen et al., 2023)

1: Input: Probability distributions p and q over a vocabulary T . Drafting lookahead i ∈ N. An input prompt c.
2: Output: A sequence of tokens from T , containing between 1 and i+ 1 tokens.
3: Procedure:
4: For j ← 1, . . . , i:
5: Sample a draft token from the drafter conditioned on the prompt and previous drafts, dj ∼ qc⊕d1⊕...⊕dj−1

(where
d0 := c).

6: With data parallelism (batching), compute via one target forward pass the i+ 1 logits of the target model conditioned
on the prompt and all the draft continuations, pc, pc⊕d1 , · · · , pc⊕d1⊕···⊕di .

7: For j ← 1, . . . , i:
8: Let x← c⊕ d1 ⊕ · · · ⊕ dj−1 (where d0 := c).
9: If px(dj) ≤ qx(dj), with probability 1− px(dj)

qx(dj)
, reject dj and go to line 11 (namely, break this for-loop).

10: Accept the draft token dj .
11: Let j ∈ {0, 1, . . . , i} be the number of accepted drafts. Set x← c⊕ d1 ⊕ . . .⊕ dj .
12: Sample t ∼ rx for rx(t) := px(t)−min{px(t),qx(t)}

1−
∑

t′∈T min{px(t′),qx(t′)} if line 9 ever rejected a token. Otherwise, sample t ∼ px.
13: Return d1, . . . , dj , t.

C Empirical Analysis of ψ(t) Computation in Algorithm 3: Challenges and Insights
This section presents our empirical analysis of the computational complexity involved in calculating ψ(t) using a real-world
vocabulary. Specifically, we examine the Qwen2-7B-Instruct model’s vocabulary to evaluate how the number of terms
in ψ(t) scales with the length of the target token t. Our findings support the theoretical prediction in Lemma 3.1, which
states that the number of terms grows exponentially with the token length. We select 150,000 of the shortest tokens from
a total of 151,646 tokens in the Qwen2-7B-Instruct vocabulary to keep the computation tractable. We then count
how many ways a target token t can be reconstructed by concatenating these shorter tokens. For instance, in the case
of t = ‘hello’, we found 14 valid combinations out of the 16 that would appear in a complete vocabulary (as defined in
Section 3.4), indicating that the vocabulary of this model may be nearly complete for five-character tokens. Figure 1 lists all
14 valid combinations for the string ‘hello’ and visualizes them in a tree structure, where each leaf node represents a valid
combination. In general, the number of forward passes of the drafter model that are required to calculate ψ(t) is equal to
the number of non-leaf nodes in the tree plus one. In this example, calculating ψ(‘hello’) requires 16 forward passes of
the drafter model, which makes Algorithm 3 with this vocabulary impractical for many target models that are considered
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state-of-the-art, including the open access models StarCoder (Li et al., 2023), Llama (Dubey et al., 2024), and DeepSeek
(DeepSeek-AI et al., 2025). In a similar way to the above example for the token ‘hello’, we decompose each of the 150,000
selected tokens into the set of all its corresponding combinations. Table 5 summarizes the statistical properties of the token

1. [‘H’, ‘e’, ‘l’, ‘l’, ‘o’]
2. [‘H’, ‘e’, ‘l’, ‘lo’]
3. [‘H’, ‘e’, ‘ll’, ‘o’]
4. [‘H’, ‘el’, ‘l’, ‘o’]
5. [‘H’, ‘el’, ‘lo’]
6. [‘H’, ‘ell’, ‘o’]
7. [‘H’, ‘ello’]
8. [‘He’, ‘l’, ‘l’, ‘o’]
9. [‘He’, ‘l’, ‘lo’]

10. [‘He’, ‘ll’, ‘o’]
11. [‘Hel’, ‘l’, ‘o’]
12. [‘Hel’, ‘lo’]
13. [‘Hell’, ‘o’]
14. [‘Hello’]
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Figure 1: Left: All the 14 valid combinations of tokens from the Qwen2-7B-Instruct vocabulary that can be concate-
nated to form the string ‘hello’. Right: Tree visualization of all these combinations. Each of the 14 checkmarks indicate
a valid combination, which is a leaf in the visualized tree. In this example, calculating ψ(t) from Algorithm 3 requires
16 forward passes of the drafter model, which is the number of non-leaf nodes in the tree plus one. This large number of
forward passes is due to the exponential growth in the number of valid combinations as the token length increases, as shown
in Figure 2.

lengths and the number of combinations for the selected tokens. The mean token length is 6.21 characters, with a standard
deviation of 2.87. The mean number of combinations is 144.31, with a standard deviation of 880.98. The maximum number
of combinations is 65,536. The median number of combinations is 15, and the 75th percentile is 56. Figure 2 shows the
number of combinations for different token lengths. The number of combinations grows exponentially with the token length,
as expected. Figure 3 shows the histogram and kernel density estimate of the number of combinations for the 150,000
selected tokens. The distribution is right-skewed, with a long tail of tokens having a large number of combinations. This
exponential blow-up renders the calculation of ψ(t) computationally infeasible for longer tokens, especially those among the
1,646 longest in the vocabulary. In practice, we could not even count all combinations for those tokens even after hours of
computing time on a server, although only counting the combinations is an easier task than listing them. These results align
with our theoretical expectations. While shorter tokens have a manageable number of decompositions, longer tokens exhibit
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Table 5: Statistical summary of token length and number of combinations for a set of 150,000 shortest tokens (out of a total
of 151,646 tokens) in the Qwen2-7B-Instruct vocabulary.

Token Length (Number of Characters) Number of Combinations
Mean 6.21 144.31
Standard Deviation 2.87 880.98
Minimum 1.00 1.00
25% Percentile 4.00 7.00
50% (Median) 6.00 15.00
75% Percentile 8.00 56.00
Maximum 17.00 65536.00

a combinatorial explosion, underscoring the importance of using drafter models with smaller, more concise vocabularies to
reduce computational overhead. Although Algorithm 3 guarantees lossless speculative decoding, the latency incurred by the
computation of ψ(t) may be prohibitive when the vocabulary includes very long tokens. Consequently, its applicability
might be limited to models with compact or pruned vocabularies—such as MambaByte (Wang et al., 2024)—that can
balance accuracy with computational feasibility. Further research should explore heuristic or approximate methods to
calculate ψ(t) without exhaustive enumeration. Additionally, continued work on vocabulary construction and pruning
techniques that reduce redundant token entries could help mitigate these computational challenges.

D Speedups
We evaluate our methods on various combinations of models, tasks, and hardware setups. Tables 6 and 7 provide full
benchmarks for SLEM (Algorithm 2) where the temperature is zero, and TLI (Algorithm 4) where the temperature is
one, respectively. The benchmark includes widely used models: DeepSeek (DeepSeek-AI et al., 2025), Phi (Abdin et al.,
2024b;a), Gemma2 (Team et al., 2024), Mixtral (Jiang et al., 2024), Qwen2.5 (Qwen et al., 2025), Vicuna (Chiang et al.,
2023), Llama (Dubey et al., 2024), CodeLlama (Rozière et al., 2024), and Starcoder (Li et al., 2023). Note that for
some targets, all the drafters are heterogeneous despite both target and drafter belonging to the same model family. For
example, for the target phi-4, the drafter Phi-3.5-mini-instruct is heterogeneous. This is also the case for
the DeepSeek-R1-Distill-Qwen model family, where some in-family models are heterogeneous, and therefore
we cannot accelerate them using standard speculative decoding. The datasets span three tasks: code generation using
HumanEval (Chen et al., 2021), text summarization using CNN-DailyMail (Nallapati et al., 2016a), and long-context
task using SCROLLS (Shaham et al., 2022). For each dataset, the results are averaged over 30 prompts such that we
generate between 128 and 512 new tokens for each prompt. AR denotes autoregressive decoding, SD denotes the official
implementation in Hugging Face Transformers of standard speculative decoding like Algorithm 5 (Joao Gante, 2023).
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Figure 2: The number of combinations for different token lengths for the 150,000 selected tokens from the
Qwen2-7B-Instruct vocabulary. We can see that the number of combinations grows exponentially with the to-
ken length.
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Figure 3: Histogram and Kernel Density Estimate of number of combinations for the 150,000 selected tokens from the
Qwen2-7B-Instruct vocabulary. We can see that the number of combinations is right-skewed, with a long tail of
tokens with a large number of combinations. For exact values, see Table 5.

Table 6: Full benchmark for SLEM (Algorithm 2).

TTFT (ms) TPOT (ms) Tok/s Speedup
Target Dataset Hardware Method Drafter

Mixtral-8x22B-Instruct-v0.1 cnn dailymail 4 * H100 NVL AR No Drafter (Autoregressive) 266.8 127.9 7.8 1.0
SLEM Qwen2.5-0.5B-Instruct 321.2 68.3 13.3 1.71

vicuna-68m 302.4 57.3 16.4 2.1
scrolls 4 * H100 NVL AR No Drafter (Autoregressive) 1331.9 163.0 6.0 1.0

SLEM Qwen2.5-0.5B-Instruct 1414.2 81.0 10.3 1.71
vicuna-68m 1344.5 132.5 7.4 1.24

openai humaneval 4 * H100 NVL AR No Drafter (Autoregressive) 217.5 127.9 7.8 1.0
SLEM Qwen2.5-0.5B-Instruct 484.4 70.2 12.0 1.53

vicuna-68m 231.5 73.3 12.6 1.61
DeepSeek-R1-Distill-Qwen-14B scrolls 1 * RTX 6000 AR No Drafter (Autoregressive) 1481.0 87.5 10.9 1.0

SLEM DeepSeek-R1-Distill-Qwen-1.5B 1665.4 59.1 16.0 1.48
vicuna-68m 1566.8 56.0 17.3 1.59

cnn dailymail 1 * RTX 6000 AR No Drafter (Autoregressive) 176.8 51.7 19.2 1.0
SLEM DeepSeek-R1-Distill-Qwen-1.5B 287.5 69.9 14.1 0.73

vicuna-68m 243.0 36.2 27.4 1.43
openai humaneval 1 * RTX 6000 AR No Drafter (Autoregressive) 91.3 50.3 19.8 1.0

SLEM tiny starcoder py 113.4 43.8 22.4 1.14
CodeLlama-7b-Instruct-hf 256.6 77.5 12.4 0.63
DeepSeek-R1-Distill-Qwen-1.5B 292.5 70.9 13.6 0.69

DeepSeek-R1-Distill-Qwen-32B cnn dailymail 1 * H100 NVL AR No Drafter (Autoregressive) 121.2 48.0 20.8 1.0
SLEM DeepSeek-R1-Distill-Qwen-1.5B 167.1 51.3 18.9 0.91

vicuna-68m 148.1 32.5 30.6 1.47
openai humaneval 1 * H100 NVL AR No Drafter (Autoregressive) 72.0 48.3 20.7 1.0

SLEM tiny starcoder py 80.1 34.2 28.5 1.38
CodeLlama-7b-Instruct-hf 182.7 64.4 14.9 0.72
DeepSeek-R1-Distill-Qwen-1.5B 196.4 50.3 19.5 0.94

scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 933.1 77.7 12.5 1.0
SLEM DeepSeek-R1-Distill-Qwen-1.5B 988.1 57.6 17.1 1.37

vicuna-68m 979.9 59.3 16.5 1.32
phi-4 scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 483.9 47 21.3 1.0

SLEM Qwen2.5-0.5B-Instruct 457.7 29.5 33.9 1.59
Phi-3.5-mini-instruct 646.9 39.6 25.3 1.19

CodeLlama-13b-Instruct-hf humaneval 1 * A6000 AR No Drafter (Autoregressive) 70.7 46.8 21.4 1.0
SLEM tiny starcoder py 109.7 16.7 59.7 2.79

CodeLlama-7b-Instruct-hf 146.5 21.8 45.8 2.14
DeepSeek-R1-Distill-Qwen-7B cnn dailymail 1 * H100 NVL AR No Drafter (Autoregressive) 34.7 19.3 51.8 1.0

SLEM DeepSeek-R1-Distill-Qwen-1.5B 85.1 38.6 24.6 0.48
vicuna-68m 65.2 17.6 55.2 1.07

openai humaneval 1 * H100 NVL AR No Drafter (Autoregressive) 24.4 19.6 50.9 1.0
SLEM tiny starcoder py 36.1 23.7 39.6 0.78

CodeLlama-7b-Instruct-hf 138.0 54.4 17.5 0.34
DeepSeek-R1-Distill-Qwen-1.5B 149.3 42.2 22.7 0.45

scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 221.2 22.4 44.0 1.0
SLEM DeepSeek-R1-Distill-Qwen-1.5B 296.2 41.1 23.5 0.54

vicuna-68m 245.4 24.6 39.9 0.91
gemma-2-9b-it scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 584.0 95.3 9.9 1.0

SD gemma-2-2b-it 739.0 31.3 30.2 3.05
SLEM vicuna-68m 592.4 48.3 18.6 1.87

openai humaneval 1 * H100 NVL AR No Drafter (Autoregressive) 42.6 37.0 27.0 1.0

Continued on next page
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TTFT (ms) TPOT (ms) T/s Speedup
Target Dataset Hardware Method Drafter

SD gemma-2-2b-it 446.5 29.1 33.2 1.23
SLEM vicuna-68m 51.6 24.5 40.2 1.49

cnn dailymail 1 * H100 NVL AR No Drafter (Autoregressive) 73.7 37.3 26.7 1.0
SD gemma-2-2b-it 125.4 39.7 24.6 0.92
SLEM vicuna-68m 83.9 26.9 37.1 1.39

DeepSeek-R1-Distill-Llama-70B openai humaneval 2 * A100 80GB PCIe AR No Drafter (Autoregressive) 297.1 122.6 8.2 1.0
SD CodeLlama-7b-Instruct-hf 428.7 101.5 9.6 1.18

DeepSeek-R1-Distill-Llama-8B 353.5 54.3 18.3 2.25
SLEM tiny starcoder py 265.9 84.6 11.8 1.44

2 * H100 NVL AR No Drafter (Autoregressive) 130.1 76.1 13.1 1.0
SD CodeLlama-7b-Instruct-hf 277.3 93.3 10.4 0.79

DeepSeek-R1-Distill-Llama-8B 223.5 52.8 18.8 1.43
SLEM DeepSeek-R1-Distill-Qwen-1.5B 297.3 60.6 16.3 1.24

tiny starcoder py 143.3 63.2 15.6 1.19
cnn dailymail 2 * H100 NVL AR No Drafter (Autoregressive) 230.7 77.6 12.9 1.0

SD DeepSeek-R1-Distill-Llama-8B 452.5 78.7 12.5 0.97
Llama-3.1-8B 277.9 74.4 13.4 1.04
Llama-3.2-1B 242.3 51.4 19.4 1.51
Llama-3.2-3B 252.1 66.8 14.9 1.16

SLEM DeepSeek-R1-Distill-Qwen-1.5B 296.1 72.3 13.6 1.06
vicuna-68m 263.8 51.5 19.3 1.5

scrolls 2 * H100 NVL AR No Drafter (Autoregressive) 1836.9 127.1 7.7 1.0
SD DeepSeek-R1-Distill-Llama-8B 2121.4 88.0 10.9 1.42
SLEM DeepSeek-R1-Distill-Qwen-1.5B 1890.9 85.8 11.3 1.47

DeepSeek-R1-Distill-Llama-8B scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 245.3 34.3 27.9 1.0
SD Llama-3.2-1B 283.1 24.6 39.2 1.41

Llama-3.2-3B 353.1 35.2 27.3 0.98
SLEM DeepSeek-R1-Distill-Qwen-1.5B 315.7 45.2 20.2 0.73

vicuna-68m 263.4 27.7 34.9 1.25
cnn dailymail 1 * H100 NVL AR No Drafter (Autoregressive) 38.9 21.8 45.9 1.0

SD Llama-3.2-1B 48.2 25.6 38.6 0.84
Llama-3.2-3B 57.2 38.1 26.0 0.57

SLEM DeepSeek-R1-Distill-Qwen-1.5B 88.2 43.2 22.7 0.5
vicuna-68m 66.9 19.7 50.0 1.09

openai humaneval 1 * H100 NVL AR No Drafter (Autoregressive) 31.9 21.8 45.8 1.0
SD CodeLlama-7b-Instruct-hf 144.0 72.3 12.5 0.27
SLEM tiny starcoder py 36.7 37.1 25.8 0.56

1 * RTX 6000 AR No Drafter (Autoregressive) 73.4 40.8 24.5 1.0
SD CodeLlama-7b-Instruct-hf 279.8 120.1 7.9 0.32
SLEM tiny starcoder py 96.4 52.6 18.2 0.74

DeepSeek-R1-Distill-Qwen-1.5B 246.2 42.7 20.4 0.83

Table 7: Full benchmark for TLI (Algorithm 4).

TTFT (ms) TPOT (ms) Tok/s Speedup
Target Dataset Hardware Method Drafter

Mixtral-8x22B-Instruct-v0.1 scrolls 4 * H100 NVL AR No Drafter (Autoregressive) 1334.7 168.7 5.9 1.0
TLI Qwen2.5-0.5B-Instruct 1372.6 97.8 9.9 1.69

vicuna-68m 1329.7 138.2 7.2 1.22
openai humaneval 4 * H100 NVL AR No Drafter (Autoregressive) 217.5 128.1 7.8 1.0

TLI Qwen2.5-0.5B-Instruct 266.9 90.6 10.9 1.4
vicuna-68m 228.5 74.8 13.0 1.67

cnn dailymail 4 * H100 NVL AR No Drafter (Autoregressive) 266.8 128.1 7.8 1.0
TLI Qwen2.5-0.5B-Instruct 294.5 88.9 11.2 1.43

vicuna-68m 297.3 81.0 11.9 1.53
phi-4 scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 487.4 47.2 21.2 1.0

TLI Qwen2.5-0.5B-Instruct 454.7 32.5 30.8 1.45
Phi-3.5-mini-instruct 610.4 46.0 21.7 1.03

CodeLlama-13b-Instruct-hf humaneval 1 * A6000 AR No Drafter (Autoregressive) 70.5 45.3 22.1 1.0
TLI tiny starcoder py 65.1 25.9 38.5 1.74

CodeLlama-7b-Instruct-hf 141.3 25.6 39.1 1.77
DeepSeek-R1-Distill-Qwen-14B scrolls 1 * RTX 6000 AR No Drafter (Autoregressive) 1479.5 88.3 10.8 1.0

TLI DeepSeek-R1-Distill-Qwen-1.5B 1640.7 61.6 16.1 1.5
vicuna-68m 1502.2 57.2 17.1 1.59

cnn dailymail 1 * RTX 6000 AR No Drafter (Autoregressive) 176.1 54.4 18.4 1.0
TLI DeepSeek-R1-Distill-Qwen-1.5B 240.5 44.7 21.4 1.16

vicuna-68m 202.4 40.6 24.1 1.31
openai humaneval 1 * RTX 6000 AR No Drafter (Autoregressive) 90.4 50.9 19.6 1.0

TLI tiny starcoder py 93.9 38.6 25.4 1.3
CodeLlama-7b-Instruct-hf 150.2 66.0 14.6 0.75
DeepSeek-R1-Distill-Qwen-1.5B 172.6 45.6 21.2 1.08

DeepSeek-R1-Distill-Qwen-7B cnn dailymail 1 * H100 NVL AR No Drafter (Autoregressive) 35.0 19.8 50.6 1.0
TLI DeepSeek-R1-Distill-Qwen-1.5B 95.0 27.2 36.6 0.72

vicuna-68m 108.5 18.4 54.2 1.07
openai humaneval 1 * H100 NVL AR No Drafter (Autoregressive) 23.4 20.0 49.9 1.0

TLI tiny starcoder py 40.0 22.3 44.7 0.9
CodeLlama-7b-Instruct-hf 59.6 39.2 25.3 0.51
DeepSeek-R1-Distill-Qwen-1.5B 88.3 24.3 40.9 0.82

scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 220.5 22.8 43.2 1.0
TLI DeepSeek-R1-Distill-Qwen-1.5B 296.9 29.1 34.2 0.79

vicuna-68m 238.6 25.0 39.2 0.91
gemma-2-9b-it scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 585.1 90.6 10.4 1.0

Continued on next page
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TTFT (ms) TPOT (ms) T/s Speedup
Target Dataset Hardware Method Drafter

TLI vicuna-68m 603.0 46.0 21.4 2.04
SD gemma-2-2b-it 742.3 37.7 26.0 2.49

openai humaneval 1 * H100 NVL AR No Drafter (Autoregressive) 42.6 37.3 26.8 1.0
TLI vicuna-68m 92.8 25.1 39.2 1.46
SD gemma-2-2b-it 384.1 27.2 36.4 1.36

cnn dailymail 1 * H100 NVL AR No Drafter (Autoregressive) 73.7 37.8 26.5 1.0
TLI vicuna-68m 100.1 30.0 33.2 1.26
SD gemma-2-2b-it 117.8 33.5 29.8 1.13

DeepSeek-R1-Distill-Llama-70B openai humaneval 2 * A100 80GB PCIe AR No Drafter (Autoregressive) 244.0 123.5 8.1 1.0
TLI tiny starcoder py 258.7 85.5 11.7 1.44
SD CodeLlama-7b-Instruct-hf 317.3 87.2 11.4 1.41

DeepSeek-R1-Distill-Llama-8B 358.2 53.1 18.6 2.3
2 * H100 NVL AR No Drafter (Autoregressive) 129.9 76.7 13.0 1.0

TLI tiny starcoder py 147.9 55.3 18.0 1.38
SD CodeLlama-7b-Instruct-hf 214.5 68.8 14.5 1.11

DeepSeek-R1-Distill-Llama-8B 179.7 44.6 22.4 1.72
TLI DeepSeek-R1-Distill-Qwen-1.5B 220.4 45.5 21.9 1.68

scrolls 2 * H100 NVL AR No Drafter (Autoregressive) 1837.1 126.6 7.7 1.0
SD DeepSeek-R1-Distill-Llama-8B 2059.4 65.1 15.2 1.98
TLI DeepSeek-R1-Distill-Qwen-1.5B 1898.5 70.9 13.9 1.82

cnn dailymail 2 * H100 NVL AR No Drafter (Autoregressive) 231.2 77.9 12.8 1.0
SD DeepSeek-R1-Distill-Llama-8B 342.5 58.2 17.1 1.33
TLI DeepSeek-R1-Distill-Qwen-1.5B 315.5 59.7 16.7 1.3

vicuna-68m 263.4 55.8 17.8 1.39
SD Llama-3.1-8B 262.3 59.6 16.7 1.31

Llama-3.2-1B 248.5 51.3 19.4 1.51
Llama-3.2-3B 259.6 56.7 17.5 1.37

DeepSeek-R1-Distill-Qwen-32B scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 946.4 77.3 12.5 1.0
TLI DeepSeek-R1-Distill-Qwen-1.5B 997.8 43.0 22.7 1.82

vicuna-68m 977.1 61.6 15.9 1.27
openai humaneval 1 * H100 NVL AR No Drafter (Autoregressive) 72.2 48.6 20.6 1.0

TLI tiny starcoder py 86.2 35.5 28.1 1.37
CodeLlama-7b-Instruct-hf 123.4 49.5 20.1 0.97
DeepSeek-R1-Distill-Qwen-1.5B 147.4 28.5 35.0 1.7

cnn dailymail 1 * H100 NVL AR No Drafter (Autoregressive) 121.5 49.0 20.4 1.0
TLI DeepSeek-R1-Distill-Qwen-1.5B 167.5 37.9 26.1 1.28

vicuna-68m 146.4 34.2 29.1 1.42
DeepSeek-R1-Distill-Llama-8B scrolls 1 * H100 NVL AR No Drafter (Autoregressive) 246.7 38.6 24.9 1.0

TLI DeepSeek-R1-Distill-Qwen-1.5B 324.4 33.5 29.6 1.19
vicuna-68m 256.5 28.1 34.5 1.39

SD Llama-3.2-1B 295.2 24.9 39.7 1.6
Llama-3.2-3B 355.9 31.7 31.2 1.25

cnn dailymail 1 * H100 NVL AR No Drafter (Autoregressive) 39.6 22.3 44.9 1.0
TLI DeepSeek-R1-Distill-Qwen-1.5B 93.4 31.9 31.1 0.69

vicuna-68m 75.4 20.3 49.1 1.09
SD Llama-3.2-1B 51.8 22.6 44.2 0.98

Llama-3.2-3B 60.2 29.2 34.2 0.76
openai humaneval 1 * H100 NVL AR No Drafter (Autoregressive) 31.2 22.3 44.8 1.0

TLI tiny starcoder py 43.5 23.6 42.1 0.94
SD CodeLlama-7b-Instruct-hf 99.0 38.0 26.0 0.58

1 * RTX 6000 AR No Drafter (Autoregressive) 73.4 41.1 24.3 1.0
TLI tiny starcoder py 82.5 39.5 25.1 1.03

CodeLlama-7b-Instruct-hf 218.6 63.0 15.7 0.65
DeepSeek-R1-Distill-Qwen-1.5B 145.8 35.7 26.0 1.07

E Vocabularies and Overlap
This section examines the vocabularies of widely used off-the-shelf target and drafter models. Table 8 shows the vocabulary
sizes of widely used target and drafter models. Table 9 shows the vocabulary overlap between the target and drafter models.
Table 10 shows the ratio of the number of tokens in the intersection between the target and draft vocabularies |T ′ ∩D′|
to the number of tokens in the target vocabulary |T ′|, considering only the tokens that appeared in 50 randomly selected
prompts for the given task.

Table 8: Vocabulary sizes of widely used target and drafter models.

Target Model Vocabulary Size |T |
google/Gemma-2-9b 256,000
meta-llama/Llama-3.1-70B 128,256
mistralai/Mixtral-8x22B-Instruct-v0.1 32,768
microsoft/Phi-3-medium-128k-instruct 32,011
codellama/CodeLlama-13b-Instruct-hf 32,016

Drafter Model Vocabulary Size |D|
Qwen/Qwen2-0.5B-Instruct 151,646
bigcode/tiny starcoder py 49,152
double7/vicuna-68m 32,000
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Table 9: Vocabulary overlap metrics for widely used target and drafter models: the size of the intersection between the target
vocabulary and the draft vocabulary, and the ratio of the intersection size to the target vocabulary size. We can see a wide
range of overlap sizes and ratios.

Target Model Drafter Model |T ∩D| |T ∩D|/|T |
Llama-3.1-70B Qwen2-0.5B-Instruct 109,566 0.85
Gemma-2-9b vicuna-68m 30,489 0.12
Mixtral-8x22B-Instruct-v0.1 vicuna-68m 24,184 0.74
Mixtral-8x22B-Instruct-v0.1 Qwen2-0.5B-Instruct 10,566 0.32
Phi-3-medium-128k-instruct Qwen2-0.5B-Instruct 9,588 0.30
CodeLlama-13b-Instruct-hf tiny starcoder py 8,481 0.26

F Injectivity of Tokenizers Under the CMM-DM Dataset
The experiment sampled uniformly at random examples from the CNN-DM dataset (Nallapati et al., 2016b), and took the
prefix of 100 characters from each example. Using a SentencePiece tokenizer (Kudo & Richardson, 2018) or various other
Hugging Face Transformers tokenizers (Wolf et al., 2020), we encoded the prefix into tokens, and then decoded the tokens
back into text. We then checked whether the original prefix could be recovered by checking whether s = decode(encode(s)).
While a tokenizer may implement a non-injective function in general, this experiment specifically tested its injectivity on the
given dataset. The results of our experiment are summarized in Table 11.

G Proofs
Theorem 3.1. Let p be a non-trivial target probability distribution over a vocabulary T , where there exist t1, t2 ∈ T such
that p(t1) ̸= p(t2). Let q be the drafter probability distribution over the same vocabulary T . If q = p, namely, the drafter is
another instance of the target model, then the expected acceptance rate of the exact matching method αEM is strictly less
than the expected acceptance rate of the standard speculative decoding method αSD. Namely, it holds that αEM < αSD.

Proof. The expected acceptance rate of the standard speculative decoding verification method is αSD =∑
t∈T min{p(t), q(t)} by Leviathan et al. (2023). If q = p, we have αSD =

∑
t∈T min{p(t), p(t)} =

∑
t∈T p(t) = 1. For

exact matching, a token t is accepted if it is sampled by both the draft and the target models. Since these are independent
events, the probability of accepting t is p(t) · p(t) = p(t)2. Thus, we have αEM =

∑
t∈T p(t)

2. For any p(t) such that
0 < p(t) < 1, it holds that p(t)2 < p(t). Summing over all tokens t ∈ T , we get that

∑
t∈T p(t)

2 <
∑
t∈T p(t) = 1.

Therefore, αEM < αSD for any non-trivial target distribution p.

Theorem 3.2. For any token in the target vocabulary t ∈ T , Algorithm 3 outputs the token t with probability p(t) if we
define ψ(t) :=

∑
d1,d2,...,di : t=T (d1⊕...⊕di)1

∏
j∈{1,...,i}

q(dj). Namely, Algorithm 3 is lossless.

Proof. Denote the probability of accepting the token t1 by Pr [accept t | t]. We have that Pr [accept t | t] = 1 if p(t) ≥ ψ(t),
and p(t)

ψ(t) otherwise. We also have that the probability of sampling tokens from q such that their concatenation forms t is
ψ(t). Therefore,

∑
t Pr [accept t] =

∑
t Pr [accept t | t] · Pr [t] =

∑
tmin {p(t), ψ(t)}. The probability of outputting t is

then Pr [output t] = Pr [accept t] + (1−
∑
t Pr [accept t]) · p(t)−min{p(t),ψ(t)}

1−
∑

t′ min{p(t′),ψ(t′)} = p(t).

Lemma 3.1. For a target token t of length m ≤ n in a complete vocabulary Dn that contains all possible strings of length
up to n over a fixed alphabet Σ, the number of distinct sequences of draft tokens d1, . . . , di such that their concatenation
d1 ⊕ . . .⊕ di starts with t, namely, T (d1 ⊕ . . .⊕ di)1 = t, is 2m−1.

Proof. We can approach this counting problem by considering it as a combinatorial composition, specifically the number of
ways to write the length m of the target token t as the sum of a sequence of strictly positive integers. Consider the token t of
length m, which can be decomposed into a sequence of tokens t1, t2, . . . , tm. Each possible partition of m into smaller
segments corresponds to a unique way of concatenating draft tokens from the vocabulary. The problem can be reduced to
counting how many distinct ways we can concatenate these tokens to obtain the desired target token t. There are exactly
2m−1 ways to achieve this because, at each position between the tokens, we have two choices: either to concatenate the
next token with the previous segment or to keep it separate. For example, given the sequence t1, t2, . . . , tm, the possible
compositions include (t1 ⊕ t2), t3, . . . , tm; t1, (t2 ⊕ t3), . . . , tm; and (t1 ⊕ t2 ⊕ t3), t4, . . . , tm, and so forth, covering all
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Table 10: The ratio of the number of tokens in the intersection between the target and draft vocabularies |T ′ ∩D′| to the
number of tokens in the target vocabulary |T ′|, considering only the tokens that appeared in 50 randomly selected prompts
for the given task. Note that |T ′ ∩D′|/|T ′| for a given task could differ from |T ∩D|/|T | because some tokens of T or D
might not appear in the prompts of the given task.

Target Model Drafter Model Task Dataset |T ′∩D′|
|T ′|

CodeLlama-13b-Instruct-hf CodeLlama-7b-Instruct-hf coding openai humaneval 1.0
CodeLlama-13b-Instruct-hf tiny starcoder py coding openai humaneval 0.86
DeepSeek-R1-Distill-Llama-70B CodeLlama-7b-Instruct-hf coding openai humaneval 0.84
DeepSeek-R1-Distill-Llama-70B DeepSeek-R1-Distill-Llama-8B coding openai humaneval 1.0
DeepSeek-R1-Distill-Llama-70B DeepSeek-R1-Distill-Llama-8B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Llama-70B DeepSeek-R1-Distill-Llama-8B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Llama-70B DeepSeek-R1-Distill-Qwen-1.5B coding openai humaneval 1.0
DeepSeek-R1-Distill-Llama-70B DeepSeek-R1-Distill-Qwen-1.5B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Llama-70B DeepSeek-R1-Distill-Qwen-1.5B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Llama-70B Llama-3.1-8B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Llama-70B Llama-3.1-8B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Llama-70B Llama-3.2-1B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Llama-70B Llama-3.2-1B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Llama-70B Llama-3.2-3B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Llama-70B Llama-3.2-3B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Llama-70B tiny starcoder py coding openai humaneval 0.94
DeepSeek-R1-Distill-Llama-70B vicuna-68m long-ctx summ scrolls 0.97
DeepSeek-R1-Distill-Llama-70B vicuna-68m summ cnn dailymail 0.98
DeepSeek-R1-Distill-Llama-8B CodeLlama-7b-Instruct-hf coding openai humaneval 0.77
DeepSeek-R1-Distill-Llama-8B DeepSeek-R1-Distill-Qwen-1.5B coding openai humaneval 1.0
DeepSeek-R1-Distill-Llama-8B DeepSeek-R1-Distill-Qwen-1.5B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Llama-8B DeepSeek-R1-Distill-Qwen-1.5B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Llama-8B Llama-3.2-1B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Llama-8B Llama-3.2-1B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Llama-8B Llama-3.2-3B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Llama-8B Llama-3.2-3B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Llama-8B tiny starcoder py coding openai humaneval 0.94
DeepSeek-R1-Distill-Llama-8B vicuna-68m long-ctx summ scrolls 0.98
DeepSeek-R1-Distill-Llama-8B vicuna-68m summ cnn dailymail 0.98
DeepSeek-R1-Distill-Qwen-14B CodeLlama-7b-Instruct-hf coding openai humaneval 0.83
DeepSeek-R1-Distill-Qwen-14B DeepSeek-R1-Distill-Qwen-1.5B coding openai humaneval 1.0
DeepSeek-R1-Distill-Qwen-14B DeepSeek-R1-Distill-Qwen-1.5B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Qwen-14B DeepSeek-R1-Distill-Qwen-1.5B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Qwen-14B tiny starcoder py coding openai humaneval 0.93
DeepSeek-R1-Distill-Qwen-14B vicuna-68m long-ctx summ scrolls 0.98
DeepSeek-R1-Distill-Qwen-14B vicuna-68m summ cnn dailymail 0.99
DeepSeek-R1-Distill-Qwen-32B CodeLlama-7b-Instruct-hf coding openai humaneval 0.83
DeepSeek-R1-Distill-Qwen-32B DeepSeek-R1-Distill-Qwen-1.5B coding openai humaneval 1.0
DeepSeek-R1-Distill-Qwen-32B DeepSeek-R1-Distill-Qwen-1.5B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Qwen-32B DeepSeek-R1-Distill-Qwen-1.5B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Qwen-32B tiny starcoder py coding openai humaneval 0.93
DeepSeek-R1-Distill-Qwen-32B vicuna-68m long-ctx summ scrolls 0.98
DeepSeek-R1-Distill-Qwen-32B vicuna-68m summ cnn dailymail 0.98
DeepSeek-R1-Distill-Qwen-7B CodeLlama-7b-Instruct-hf coding openai humaneval 0.83
DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Qwen-1.5B coding openai humaneval 1.0
DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Qwen-1.5B long-ctx summ scrolls 1.0
DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Qwen-1.5B summ cnn dailymail 1.0
DeepSeek-R1-Distill-Qwen-7B tiny starcoder py coding openai humaneval 0.93
DeepSeek-R1-Distill-Qwen-7B vicuna-68m long-ctx summ scrolls 0.98
DeepSeek-R1-Distill-Qwen-7B vicuna-68m summ cnn dailymail 0.99
Llama-3.1-70B Llama-3.1-8B coding openai humaneval 1.0
Llama-3.1-70B Llama-3.1-8B long-ctx summ scrolls 1.0
Llama-3.1-70B Llama-3.1-8B summ cnn dailymail 1.0
Llama-3.1-70B Llama-3.2-1B coding openai humaneval 1.0
Llama-3.1-70B Llama-3.2-1B long-ctx summ scrolls 1.0
Llama-3.1-70B Llama-3.2-1B summ cnn dailymail 1.0
Llama-3.1-70B Llama-3.2-3B coding openai humaneval 1.0
Llama-3.1-70B Llama-3.2-3B long-ctx summ scrolls 1.0
Llama-3.1-70B Llama-3.2-3B summ cnn dailymail 1.0
Llama-3.1-70B Qwen2.5-0.5B-Instruct coding openai humaneval 1.0
Llama-3.1-70B Qwen2.5-0.5B-Instruct long-ctx summ scrolls 1.0
Llama-3.1-70B Qwen2.5-0.5B-Instruct summ cnn dailymail 1.0
Llama-3.1-70B-Instruct Llama-3.1-8B-Instruct coding openai humaneval 1.0
Llama-3.1-70B-Instruct Llama-3.1-8B-Instruct long-ctx summ scrolls 1.0
Llama-3.1-70B-Instruct Llama-3.1-8B-Instruct summ cnn dailymail 1.0
Llama-3.1-70B-Instruct Llama-3.2-1B-Instruct coding openai humaneval 1.0
Llama-3.1-70B-Instruct Llama-3.2-1B-Instruct long-ctx summ scrolls 1.0
Llama-3.1-70B-Instruct Llama-3.2-1B-Instruct summ cnn dailymail 1.0
Llama-3.1-70B-Instruct Llama-3.2-3B-Instruct coding openai humaneval 1.0
Llama-3.1-70B-Instruct Llama-3.2-3B-Instruct long-ctx summ scrolls 1.0
Llama-3.1-70B-Instruct Llama-3.2-3B-Instruct summ cnn dailymail 1.0
Llama-3.1-70B-Instruct Qwen2.5-0.5B-Instruct coding openai humaneval 1.0
Llama-3.1-70B-Instruct Qwen2.5-0.5B-Instruct long-ctx summ scrolls 1.0
Llama-3.1-70B-Instruct Qwen2.5-0.5B-Instruct summ cnn dailymail 1.0
Llama-3.1-70B-Instruct vicuna-68m coding openai humaneval 0.84
Llama-3.1-70B-Instruct vicuna-68m long-ctx summ scrolls 0.97
Llama-3.1-70B-Instruct vicuna-68m summ cnn dailymail 0.99
Llama-3.1-8B-Instruct Llama-3.2-1B-Instruct coding openai humaneval 1.0
Llama-3.1-8B-Instruct Llama-3.2-1B-Instruct long-ctx summ scrolls 1.0
Llama-3.1-8B-Instruct Llama-3.2-1B-Instruct summ cnn dailymail 1.0
Llama-3.1-8B-Instruct Llama-3.2-3B-Instruct coding openai humaneval 1.0
Llama-3.1-8B-Instruct Llama-3.2-3B-Instruct long-ctx summ scrolls 1.0
Llama-3.1-8B-Instruct Llama-3.2-3B-Instruct summ cnn dailymail 1.0
Llama-3.1-8B-Instruct Qwen2.5-0.5B-Instruct coding openai humaneval 1.0
Llama-3.1-8B-Instruct Qwen2.5-0.5B-Instruct long-ctx summ scrolls 1.0
Llama-3.1-8B-Instruct Qwen2.5-0.5B-Instruct summ cnn dailymail 1.0
Llama-3.1-8B-Instruct vicuna-68m coding openai humaneval 0.84
Llama-3.1-8B-Instruct vicuna-68m long-ctx summ scrolls 0.98
Llama-3.1-8B-Instruct vicuna-68m summ cnn dailymail 0.98
Mixtral-8x22B-Instruct-v0.1 Qwen2.5-0.5B-Instruct coding openai humaneval 0.78
Mixtral-8x22B-Instruct-v0.1 Qwen2.5-0.5B-Instruct long-ctx summ scrolls 0.89
Mixtral-8x22B-Instruct-v0.1 Qwen2.5-0.5B-Instruct summ cnn dailymail 0.9
Mixtral-8x22B-Instruct-v0.1 vicuna-68m coding openai humaneval 0.99
Mixtral-8x22B-Instruct-v0.1 vicuna-68m long-ctx summ scrolls 0.99
Mixtral-8x22B-Instruct-v0.1 vicuna-68m summ cnn dailymail 0.99
Qwen2.5-1.5B-Instruct Qwen2.5-0.5B-Instruct long-ctx summ scrolls 1.0
Qwen2.5-1.5B-Instruct vicuna-68m long-ctx summ scrolls 0.98
gemma-2-9b-it gemma-2-2b-it coding openai humaneval 1.0
gemma-2-9b-it gemma-2-2b-it long-ctx summ scrolls 1.0
gemma-2-9b-it gemma-2-2b-it summ cnn dailymail 1.0
gemma-2-9b-it vicuna-68m coding openai humaneval 1.0
gemma-2-9b-it vicuna-68m long-ctx summ scrolls 0.99
gemma-2-9b-it vicuna-68m summ cnn dailymail 0.99
phi-4 Phi-3.5-mini-instruct coding openai humaneval 0.77
phi-4 Phi-3.5-mini-instruct long-ctx summ scrolls 0.98
phi-4 Phi-3.5-mini-instruct summ cnn dailymail 0.99
phi-4 Qwen2.5-0.5B-Instruct coding openai humaneval 1.0
phi-4 Qwen2.5-0.5B-Instruct long-ctx summ scrolls 1.0
phi-4 Qwen2.5-0.5B-Instruct summ cnn dailymail 1.0
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Table 11: Results of injectivity tests for various tokenizers.

Library Tokenizer Injective
SentencePiece SentencePiece True
Hugging Face gpt2 True
Hugging Face double7/vicuna-68m False
Hugging Face bigcode/tiny starcoder py True
Hugging Face Qwen/Qwen2-0.5B-Instruct True

possible ways to concatenate adjacent tokens. Thus, the total number of valid concatenations is 2m−1, which follows from
the combinatorial nature of partitioning the sequence into contiguous segments.

Theorem 4.1. Let p and q be target and drafter probability distributions over vocabularies T and D, respectively. Define
p′, q1, q2 to be probability distributions over T∪D as follows. p′(x) = p(x) if x ∈ T and p′(x) = 0 otherwise. q1(x) = q(x)

if x ∈ D and q1(x) = 0 otherwise. q2(x) =
q(x)∑
t∈T q(t)

if x ∈ T and q2(x) = 0 otherwise. Given the target p′, we define α1

and α2 to be the probability of accepting a token x ∼ q1 and x ∼ q2, respectively, by the rejection sampling algorithm of
speculative decoding from Leviathan et al. (2023); Chen et al. (2023). Then, α1 ≤ α2, and the output tokens distribute
according to p.

Proof. By Leviathan et al. (2023), the expected acceptance rate is the sum of the minimum probabilities of the tar-
get and draft distributions, namely, we have α1 =

∑
x∈T∪Dmin {p′(x), q1(x)} =

∑
x∈T min {p′(x), q1(x)} ≤∑

x∈T min {p′(x), q2(x)} =
∑
x∈T∪Dmin {p′(x), q2(x)} = α2 since

∑
x∈T q(x) ≤ 1. The output tokens distribute

according to p′ because the rejection sampling algorithm of speculative decoding preserves the target distribution. Since
p′(x) = p(x) for x ∈ T , we have that the output tokens distribute according to p.
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