
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix - Matchmaker: Schema Matching
with self-improving compositional LLM
programs

Table of Contents
A Matchmaker additional details 17

A.1 Matchmaker within the context of LLM table reasoning. 17
A.2 Matchmaker algorithm . 18
A.3 Schema matching challenges. 19
A.4 Complexity of the MIMIC-OMOP task . 20
A.5 Further details on schema matching formalism 21
A.6 Detailed explanation of self-improvement . 21
A.7 Extended related work . 22
A.8 Metrics: accuracy, precision, recall, F1-Score 23

B Experimental details: Benchmarks & datasets 25
B.1 Benchmarks . 25

B.1.1 Matchmaker . 25
B.1.2 ReMatch . 25
B.1.3 Jellyfish . 25
B.1.4 LLM-DP . 25
B.1.5 SMAT . 26

B.2 Datasets . 26

C Examples using Matchmaker (with prompts) 27
C.1 Matchmaker prompt examples . 27

C.1.1 Example 1. 27
C.1.2 Example 2 . 32

C.2 LLM Evaluator . 35

D Additional experiments 37
D.1 Number of LLM calls . 37
D.2 Matchmaker with other LLMs . 37
D.3 Further performance results: ReMatch reimplementation 38
D.4 Improving performance: Use of Existing Mappings to remedy errors 38
D.5 Comparison of Matchmaker on ontology matching tasks 39
D.6 Detailed error analysis . 40
D.7 Ranking ablation . 40

E Broader Impact 41

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A MATCHMAKER ADDITIONAL DETAILS

A.1 MATCHMAKER WITHIN THE CONTEXT OF LLM TABLE REASONING.

There has recently been works on LLMs for table reasoning. We contrast them to Matchmaker along
a variety of dimensions below.

Task/Goal: The table reasoning papers tackle a variety of tasks centered around understanding
and interacting with tabular data. Some examples include: TabSQLify (Nahid & Rafiei, 2024) and
OPENTAB (Kong et al., 2023) focus on table question answering and fact verification, aiming to
extract relevant information from tables to answer questions or verify statements. Chain-of-Table
(Wang et al., 2023b) and "Large Language Models are Few-Shot Table Reasoners" (Chen, 2023)
explore LLMs’ capabilities in reasoning over tables for question answering and fact verification
tasks. The survey paper "Large Language Model for Table Processing" (Lu et al., 2024) covers a
broader range of tasks, including table manipulation, table augmentation, and text-to-SQL conversion,
showcasing LLMs’ potential in interpreting and manipulating tabular data. In contrast, Matchmaker
addresses the task of schema matching, which aims to find correspondences between attributes across
different schemas or tables. The goal is to enable data integration by mapping attributes from a source
schema to a target schema, considering the structural and semantic differences between them. This
task is crucial for creating ML-ready datasets by harmonizing data from diverse sources.

Approach: Table reasoning approaches span prompting LLMs for direct answers (Chen, 2023),
program synthesis to generate SQL/code (Nahid & Rafiei, 2024; Kong et al., 2023), iterative table
transformation (Wang et al., 2023b), instruction tuning (Lu et al., 2024), and agent-based methods (Lu
et al., 2024). Matchmaker proposes a novel self-improving compositional language model program. It
leverages LLM reasoning via a pipeline with multiple LLM calls for candidate generation, refinement
and confidence scoring. It also self-improves without labeled data via synthetic in-context examples.

Inputs: The table reasoning papers mostly focus on single tables as input along with a question/query.
Matchmaker takes as input two tables/schemas (source and target) that need to be matched. It operates
solely on schema-level information (attribute names, metadata) without access to raw data in the
tables. This is also a key difference compared to the table reasoning papers, which often rely on the
actual data values for answering questions or verifying facts.

Outputs: Table reasoning papers aim to output answers to questions, binary fact verification labels,
updated tables after manipulation, generated SQL/code, etc. In contrast, Matchmaker outputs a
mapping between the source and target schema attributes, or indicates no match is possible for certain
attributes. The set of attribute pairs representing the schema matching results, can be used to guide
data integration processes.

Use of the LLM: Table reasoning employs LLMs for direct answer generation (Chen, 2023), program
synthesis (Nahid & Rafiei, 2024; Kong et al., 2023), iterative prompting (Wang et al., 2023b), or as
part of an agent system (Lu et al., 2024). Matchmaker uses LLMs for reasoning within a compositional
program, generating candidates, refining them, and scoring confidence.

Optimization/Training: Table reasoning works explore fine-tuning (Nahid & Rafiei, 2024), instruc-
tion tuning (Lu et al., 2024), and in-context few-shot learning (Chen, 2023). Matchmaker introduces
a novel optimization process to select synthetic in-context examples for self-improvement without
labeled data or fine-tuning.

Key differences: In summary, while the table reasoning papers focus on tasks like question answering,
fact verification, and table manipulation on single tables, Matchmaker addresses the distinct task of
schema matching across table pairs. Its novel approach of a self-improving compositional language
model program operating on schema-level information contrasts with general table reasoning which
mostly use LLMs for direct table QA or program synthesis.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2 MATCHMAKER ALGORITHM

Below we provide a high-level overview algorithm of Matchmakers compositional language model
program for schema matching.

Algorithm 2 Matchmaker: Schema Matching with Self-Improving Compositional Language Model
Programs

Require: Source schema Ss, Target schema St

Ensure: Schema matches M
1: Stage 1: Multi-Vector Document Creation
2: for each table T ∈ St do
3: Create document DT with attribute names and descriptions
4: Append table metadata to DT

5: Encode DT using ColBERT-v2 to obtain multi-vector representation VT

6: Add VT to vector database V
7: end for
8: Stage 2: Candidate Generation
9: for each source attribute qi ∈ Ss do

10: Encode qi using ColBERT-v2 to obtain query embedding Eqi
11: Retrieve top-k semantic candidates Cs from V using Eqi
12: Generate reasoning-based candidates CR using LLM lc(qi, St)
13: Refine candidate set C∗ ← lr(Cs ∪ CR, qi)
14: end for
15: Stage 3: Confidence Scoring
16: for each source attribute qi ∈ Ss do
17: Format candidate set C as multiple-choice question Qi

18: for each candidate cj ∈ C do
19: Compute confidence score sj ← ls(Qi, cj)
20: end for
21: mi ← argmaxcj∈Csj ▷ Select match with highest confidence
22: Add (qi,mi) to schema matches M
23: end for
24: Self-Improvement Optimization (Over all steps)
25: Generate evaluation set Deval from unlabeled schemas
26: for each example ei ∈ Deval do
27: (ŷi, tracei)←Matchmaker(ei) ▷ Run Matchmaker to get output and traces
28: si ← El(ei, ŷi) ▷ Compute evaluation score using LLM El

29: Add (ei, tracei, ŷi, si) to Ddemo

30: end for
31: Sort Ddemo by score si
32: Select top-n examples from Ddemo as synthetic in-context examples
33: Update Matchmaker components with selected in-context examples
34: return Final output: Schema matches M

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 SCHEMA MATCHING CHALLENGES.

• Database Heterogeneity: The number of tables in each schema may differ, i.e., |Ts| ≠ |Tt|,
making it challenging to establish correspondences between attributes across schemas.

• Structural Heterogeneity: Schemas may have different architectures, hierarchies, and
representational granularity. If we define a hierarchy function h(Ti) that describes the level
of nesting within tables, differences in h(Tsj) and h(Ttk) for any j, k can lead to significant
challenges in aligning attributes Asj and Atk.

• Semantic Heterogeneity: Attributes in different schemas may have the same name but
different meanings, or different names but the same meaning. Let Ni = {nij |Aij ∈ Ai}
be the set of attribute names for schema Si. Semantic heterogeneity occurs when ∃Asj ∈
As, Atk ∈ At : f(Asj) = Atk ∧ nsj ̸= ntk or when ∃Asj ∈ As, Atk ∈ At : f(Asj) ̸=
Atk ∧ nsj = ntk.

• Data Type Heterogeneity: Attributes in different schemas may have different data types,
even if they refer to the same concept. Let dij be the data type of attribute Aij . Data type
heterogeneity occurs when ∃Asj ∈ As, Atk ∈ At : f(Asj) = Atk ∧ dsj ̸= dtk.

• Information Mismatch: Some attributes in one schema may lack a corresponding match in
the other schema. This necessitates reasoning about "no possible match" cases, which is as
important as reasoning about possible matches.

• Unsupervised Nature: Schema matching is unsupervised, where no labeled data pairs
(Asj , Atk) are available to train or validate the mappings. This necessitates reliance on the
intrinsic structure and semantic information encoded in Ai, making the development of an
effective mapping function f challenging without external supervision.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.4 COMPLEXITY OF THE MIMIC-OMOP TASK

MIMIC-OMOP is a real-world healthcare schema matching task, which is reflective of complex
structures, interlinking and hierarchies that can be expected in real-world schema matching tasks.
Hence, Matchmakers ability to empirically outperform baselines on these tasks highlights its ability
to handle complex schemas.

To illustrate the complexity of the schemas that Matchmaker can handle, Figure 5 illustrates the
complex schema structure and multiple tables.

So
ur

ce
 S

ch
em

a
(M

IM
IC

)
Ta

rg
et

 S
ch

em
a

(O
M

O
P)

Figure 5: Illustration of the MIMIC-OMOP schema matching task showing the complexity and
schema hierarchies.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.5 FURTHER DETAILS ON SCHEMA MATCHING FORMALISM

In this appendix, we provide further details on the formulation of schema matching. We look at
properties that a schema matching algorithm or function should possess, as well as, detailing how
Matchmaker satisfies these properties.

Properties necessary. In practice, correctness in schema matching is evaluated against expert-
validated ground truth mappings between the datasets (e.g. MIMIC to OMOP and Synthea to OMOP).
However, this begs the question what properties would be useful ti improve emprical performance.

These lie along the following dimensions:

• Semantic Equivalence/Consistency: f(AS) = At implies A and At represent the same
real-world concept (i.e. the mapped attributes serve equivalent purposes)

• Type Compatibility: Mapped attributes must have compatible data types

• Structural Consistency: Mappings must respect schema hierarchies

• Coverage: f identifies all valid matches while avoiding incorrect mappings through absten-
tion. i.e. coverage is maximized by improved accuracy@k

We can then practically assess if a function f (such as Matchmaker) satisfies these criteria based on
its performance against expert-validated ground truth mappings in real-world benchmark datasets as
has been done in the paper.

How does Matchmaker satisfy these properties?

While we have empirically shown Matchmaker satisfies the properties needed of a schema matching
function f , based on its strong performance on real-world schema matching tasks where it signifi-
cantly outperforms existing approaches on standard benchmarks. In particular, the strong empirical
performance outperforming the baselines implies that Matchmaker better satisfies the properties
compared to the baseline schema matching algorithms.

However, let us analyze how Matchmaker also has specific design aspects within its compositional
LLM structure that promotes addressing the properties.

• Semantic equivalence/consistency: Matchmaker employs multiple mechanisms: multi-
vector document representation captures semantic nuances beyond simple name matching,
while dual candidate generation combines both semantic retrieval and LLM reasoning to
identify conceptually equivalent attributes.

• Type compatibility: enforced through inclusion of data type information in our multi-vector
documents (Section 4.1) and LLM reasoning during candidate generation and refinement
(Section 4.2), with examples in Appendix C showing explicit consideration of type compati-
bility (e.g., string->varchar, integer->bigint).

• Structural consistency is maintained by incorporating table metadata and hierarchical infor-
mation in document creation (Section 4.1), using reasoning-based candidate generation that
considers schema structure (Section 4.2), and including table context in confidence scoring.

• Coverage is optimized through our MCQ format with a "None of the above" option enabling
abstention when no good match exists, while confidence scoring helps identify and rank
high-quality matches. Our empirical results validate that these properties translate to superior
performance in practice.

A.6 DETAILED EXPLANATION OF SELF-IMPROVEMENT

The self-improvement mechanism of Matchmaker is a pivotal component. We provide the Algorithm
below.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 3 Optimize LM program L
1: Input: Set of evaluation queries Deval = e1, e2, . . . , en
2: Output: Set of top n demonstrations Ddemo

3: for each input ei ∈ Deval do
4: ŷi, tracei ← L(ei) ▷ Teacher L predicts, storing outputs and intermediate traces
5: si ← E(ei, ŷi) ▷ Evaluation score
6: Ddemo ← Ddemo ∪ (ei, tracei, ŷi, si)
7: end for
8: Sort Ddemo by score
9: return Ddemo[0 : n] ▷ Select top n

In particular, we clarify that the self-improvement approach aims to address the issue of in-context
learning for multi-stage LLM programs like Matchmaker. However, in doing so we need to address
two fundamental challenges in our setting (C1 and C2):

(C1) Lack of labeled demonstrations: We do not have access to labeled input-output demonstrations
from which to select in-context examples.

(C2) Lack of an evaluator for selection: To assess Matchmaker’s capabilities and guide selection of
examples, we need an evaluator.

We address each as follows:

• Addressing (C1): The process begins by creating an evaluation dataset Deval from unlabeled
schemas with two properties: "easy queries" where top-n semantic matches have similarity
scores > 0.95, and "challenging queries" with the lowest semantic match scores. This ensures
diverse coverage of different matching scenarios. The complete Matchmaker compositional
program L is then run on each evaluation example ei ∈ Deval. We capture full execution
traces including intermediate reasoning steps, candidate generation and refinement decisions,
and final confidence scores and matches. The synthetic in-context examples refer to the
intermediate input-output pairs generated by the LLM for the intermediate steps of the
compositional LLM program. This deals with the challenge of a lack of labeled examples
(i.e. zero-shot).

• Addressing (C2): To handle the lack of an evaluator (validation metric), we use an evaluator
LLM E (i.e. an LLM-as-a-judge) to assess match quality through chain-of-thought reasoning,
producing scores from 0-5 based on match relevance. Finally, the top-n traces are selected
based on these evaluation scores. This systematic approach, detailed in Algorithm 1, enables
principled selection of in-context examples based on traces that lead to good performance.
We then use these as in-context examples for the different parts of the LLM program (as they
led to good performance) — in order to guide the reasoning. As shown in the main paper
our novel approach to self-improve outperforms random selection of in-context examples
and self-reflection confirming that our systematic selection of in-context samples is the key
driver of performance gains, rather than the mere inclusion of any in-context examples.

A.7 EXTENDED RELATED WORK

Classical Schema Matching approaches. Classical approaches to schema matching, as thoroughly
reviewed by Rahm & Bernstein (2001), use a range of strategies, including heuristic-driven linguistic
matching, constraint-based methods, and structural analysis. These methods have historically focused
on simple relational schemas, matching elements between individual tables or flat structures. In
particular, the primary focus is matching between individual tables or simple schemas (such as
purchase orders).

Key Weaknesses of Classical Approaches and How Matchmaker Addresses Them:

• Single-Table and Flat Structure Focus: Classical methods typically perform schema matching
at the element level, treating tables as isolated entities and matching attributes based on
direct comparisons of names, data types, or simple structural cues. In particular, often a
focus was simple relational schemas, where the goal was to map elements between single

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

tables. However, this approach fails to handle the complexity of modern data systems, where
schemas are often multi-table, hierarchical, or require cross-table reasoning. Contrast:
Matchmaker, in contrast, uses LLM-based reasoning to connect attributes across multi-table
and hierarchical schemas, understanding how data relationships span multiple tables. This
makes our approach significantly more capable of handling complex and interrelated schema
structures.

• Dependency on Heuristics and Limited Semantic Understanding: Classical methods rely
on heuristic-driven matching based on linguistic similarities (e.g., name matching using
synonyms, hypernyms, or edit distance) and structural constraints like key relationships.
While these heuristics work in well-defined contexts, they are insufficient for domains
where semantic meaning is implicit, such as in healthcare and as we show in Fig 1 — only
semantic matching is in fact insufficient. Contrast: Matchmaker employs chain-of-thought
prompting and advanced LLMs to perform reasoning, allowing it to capture relationships
that are not explicitly defined in the schema structure or names. This enables Matchmaker
to handle complex mappings that classical methods cannot infer.

• Manual Effort and Lack of Adaptability: Classical techniques require significant manual
effort for tuning and adaptation, making them less suitable for rapidly evolving or heteroge-
neous environments. Constraint-based approaches, in particular, are difficult to scale across
different domains without manual intervention. Alternatively, they might also rely on labeled
data for effective matching. This makes these classical approaches impractical in real-world
environments. Contrast: Matchmaker’s zero-shot and self-optimization capabilities mean it
can adapt autonomously to new schemas using synthetic in-context examples, significantly
reducing the need for manual tuning and making it more practical for dynamic, real-world
data integration tasks.

Key Weaknesses of SMAT and how Matchmaker improves: We also compared Matchmaker to
state-of-the-art (SOTA) methods like SMAT Zhang et al. (2021), which applies attention mechanisms
for schema matching. While SMAT represents an important advancement over classical methods, it
has several limitations that Matchmaker overcomes:

• High Dependency on Labeled Data: SMAT requires extensive labeled data (over 50%
labeled matches) for training, which is often impractical in real-world schema matching.
Contrast: Matchmaker’s zero-shot matching capability allows it to perform well without
any labeled training data, using LLMs to generate and refine matches autonomously.

• Binary formulation: SMAT formulates the problem as binary classification task over the
full Cartesian product of source and target schema attributes. e.g. for each pair of source-
target attributes. This leads to a large amount of comparisons. Contrast: Matchmakers
formulation as information retrieval reduces the number of comparisons and leads to greater
efficiency — in addition to the better performance.

A.8 METRICS: ACCURACY, PRECISION, RECALL, F1-SCORE

In our m:1 schema matching setup, accuracy@1, precision, recall, and F1-score are equivalent due to
the specific constraints of the task and the prediction mechanism employed. Below, we provide a
detailed explanation of this equivalence:

2. Task Constraints: The schema matching task is constrained such that each source attribute can
match to at most one target attribute (m:1 constraint). This ensures that the number of predictions
equals the number of source attributes.

Equivalence of Metrics Given the above setup, the following equivalences hold:

Precision:
Precision =

True Positives (TP)
True Positives (TP) + False Positives (FP)

In our setup, every prediction corresponds to exactly one target attribute, and there are no extraneous
or unassigned predictions. Therefore:

Precision =
Correct Matches
Total Predictions

= Accuracy@1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Recall:
Recall =

True Positives (TP)
True Positives (TP) + False Negatives (FN)

Since every source attribute must be matched to a target attribute, there are no unassigned predictions
in our setup. However, incorrect matches can occur, leading to both false positives (FP) and false
negatives (FN). In our m:1 schema matching setup, a prediction is either correct (a true positive,
TP) or incorrect. An incorrect match to the wrong target attribute results in a false positive (FP)
for the predicted target and a corresponding false negative (FN) for the true target. Consequently,
the number of FP and FN are always equal, as they reflect the same prediction errors. In this setup,
precision, recall, and accuracy@1 are equivalent because they all measure the proportion of correct
matches (TPs) relative to the total predictions, with incorrect matches impacting all metrics identically.
This equivalence holds when correctness is measured against the ground truth annotations from the
benchmark datasets. Thus:

Recall =
Correct Matches
Total Predictions

= Accuracy@1.

F1-Score:
F1-Score = 2 · Precision · Recall

Precision + Recall
As both precision and recall are equal to accuracy@1 in this setup, the F1-score simplifies to:

F1-Score = Accuracy@1.

In summary, due to the constraints of our m:1 schema matching task and the argmax prediction
mechanism, accuracy@1, precision, recall, and F1-score are mathematically equivalent. We report
accuracy@1 in the main results, but the corresponding precision, recall, and F1-scores are identical
and can be directly interpreted from the accuracy@1 values. We note this equivalence does not hold
for one-to-many mappings

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS: BENCHMARKS & DATASETS

All experiments are run on a single Nvidia A4000 GPU with 20 GB of vram. We invoke GPT-4 via
the Azure OpenAI API.

B.1 BENCHMARKS

B.1.1 MATCHMAKER

Matchmaker is a compositional language model program for schema matching made up of multiple
component modules — formulated in the context of information retrieval.

GPT-4 Hyper-parameters. The model version used as the LLM was GPT-4-1106, with the fol-
lowing settings: {’temperature’: 0.5, ’max_tokens’: 1024, ’top_p’: 1, ’frequency_penalty’: 0,
’presence_penalty’: 0, ’n’: 1, }

Embedding model and documents. We use Colbert-V2 (Santhanam et al., 2022) as the embedding
model and follow the document creation process as outlined in Sec. 4.1. We use the implementation
of Colbert-v2 from RAGatouille (https://github.com/bclavie/RAGatouille/).

Candidates. For both semantic and reasoning-based candidates, we set k=5.

Optimization. As described in the main paper, we generate synthetic in-context samples to address
the unique challenges of a lack of labeled data and no demonstrations. As described, to achieve this
we follow a boostrapping process like in DSPy (Khattab et al., 2023). For our experiments we select
at maximum 4 synthetic in-context examples

Prompts: We show examples with the prompts for each component of Matchmaker in Appendix C.

B.1.2 REMATCH

In the main text we report the numbers directly from the ReMatch paper, as there is no open-source
implementation.

How we selected the numbers to report: The ReMatch paper does an exploration of the number of
documents retrieved. Hence, we use the following two criteria.
(i) At least 1 document must be retrieved. i.e. the retrieval step cannot be skipped.

(ii) We then select the result that satisfies (i), with the highest accuracy@5.

Our implementation of ReMatch follows the original paper (Sheetrit et al., 2024). We use OpenAI
Ada embeddings for the embedding model and GPT-4 as the LLM.

We following the document creation procedure and use the prompt template as provided.

GPT-4 Hyper-parameters. The model version used for generation was GPT-4-1106, with the fol-
lowing settings from the ReMatch paper: {seed=42, temperature=0.5, max_tokens=4096, top_p=0.9,
frequency_penalty=0, presence_penalty=0}

B.1.3 JELLYFISH

Jellyfish (Zhang et al., 2023b) is a fine-tuned language model tailored for data preprocessing tasks
including schema matching. The 7B and 13B models are fine tuned upon the OpenOrca-Platypus2
model.

Implementation (7b): https://huggingface.co/NECOUDBFM/Jellyfish-7B

Implementation (13b): https://huggingface.co/NECOUDBFM/Jellyfish-13B

B.1.4 LLM-DP

LLM-DP (Narayan et al., 2022; Zhang et al., 2023a) refer to works which have used pre-trained
LLMs like GPT-3.5 or GPT-4 for data processing tasks like schema matching via prompting. Since
the papers in the few-shot case use labeled examples we do not use those — given its unrealistic in
practice. Hence, for these baselines they operate in a zero shot manner.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Implementation: https://github.com/HazyResearch/fm_data_tasks

B.1.5 SMAT

SMAT is a supervised learning approach which performs schema matching via an attention mecha-
nism. Of course, the model needs labeled data to train on. In our experiments, we assess two variants
given that labeled training data for schema matching is hard to access: (i) 20-80: 20% train and 80%
test and (ii) 50-50: 50% train and 50% test.

We use the default hyper-parameters: {Learning Rate: 0.8, Batch Size: 64, Epochs: 30}

Implementation: https://github.com/JZCS2018/SMAT

B.2 DATASETS

We outline the two real-world schema matching benchmarks used in this paper — MIMIC and
Synthea. These datasets mapping different clinical/healthcare schemas were chosen as they are
the standard datasets used in schema matching literature and consequently, used by prior works
providing fair assessment. They are also considered the most reflective of real-world schema matching
complexity and challenges. We note that the scarcity of complex and challenging real-world datasets,
underscores the challenges in collecting and annotating real-world schema matching data. For
instance, as noted in Sec 1, annotating MIMIC-OMOP alone required 500 hours from two medical
experts.

Table 5 provides a summary of the table properties.

Note there is no specific train-test sets used as in supervised learning. As we perform the schema
matching task in a zero-shot manner.

Table 5: Summary of the table properties of our two schema matching datasets.

Dataset Source Tables Target Tables
MIMIC-OMOP 26 14

SYNTHEA-OMOP 12 21

MIMIC Dataset: The dataset contains a schema mapping between the MIMIC-III electronic health
record (Source schema) (Johnson et al., 2016) and The Observational Medical Outcomes Partnership
Common Data Model (OMOP schema) (Target schema).

This dataset is currently the largest publicly available schema matching dataset (Sheetrit et al., 2024)
and is the cloest to a real-world schema matching use case, wherein a proprietary database created
for a specific purpose (a source schema) is mapped to a given industry standard (a target schema) for
further uses. In this case the proprietary database schema is MIMIC and the industry standard is the
OMOP common data model.

Open-source data: https://github.com/meniData1/MIMIC_2_OMOP

Synthea Dataset: The Synthea dataset is part of the OMAP benchmark (Zhang et al., 2021) and
is a partial mapping of the Synthea (Walonoski et al., 2018) (Source Schema) which is a synthetic
healthcare dataset of a Massachusetts health records and attempts to map it to a subset of the
OMOP CDM (Target Schema). The dataset has widely been used in previous schema matching
papers (Sheetrit et al., 2024; Narayan et al., 2022; Zhang et al., 2021) as a realistic and challenging
real-world schema matching benchmark.

Open-source data: https://github.com/JZCS2018/SMAT/tree/main/datasets/omap/

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C EXAMPLES USING MATCHMAKER (WITH PROMPTS)

C.1 MATCHMAKER PROMPT EXAMPLES

We show two end-to-end schema matching examples with Matchmaker, where other methods fail. (1)
Example 1: case with No possible target schema match for the source schema query, (2) Example 2:
challenging reasoning case, where there is a match possible between source and target schema.
▶ In each component, we can show the "Optimized" In-context examples.

C.1.1 EXAMPLE 1.

Source schema query: admissions-marital_status(string): Table admissions details-the admissions
table gives information regarding a patient’s admission to the hospital., Attribute marital_status details
-describe patient demographics.

Target scheme match: None possible.

Matchmaker: None of the above.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 6: EXAMPLE 1: Candidate generation.

Candidate generation

You are an OMOP Schema expert. Your goal is to take the OMOP schema and based on the input,
refine the schema to include only 5 most likely matches to the input query.
—
Follow the following format.
Input Schema: Input OMOP schema values Input Query: input query Refined Schema: Five most
likely matches to input query. Include most likely matches to the input query. Respond with a single
JSON object. JSON Schema: {"defs": {"Extractor": {"properties": {"related": {"description":
"related matches", "title": "Related", "type": "string"}}, "required": ["related"], "title": "Extractor",
"type": "object"}}, "properties": {"value": {"items": {"ref": "/defs/Extractor"}, "title": "Value",
"type": "array"}}, "required": ["value"], "title": "Output", "type": "object"}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ... ’procedure_occurrence-provider_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’]
Input Query: procedureevents_mv-itemid
Refined Schema: "value": ["related": "procedure_occurrence-person_id(bigint)", "re-
lated": "procedure_occurrence-visit_occurrence_id(bigint)", "related": "procedure_occurrence-
procedure_date(date)", "related": "procedure_occurrence-procedure_source_value(varchar(50))",
"related": "procedure_occurrence-procedure_concept_id(integer)"]
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ... ’procedure_occurrence-provider_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’]
Input Query: noteevents-text
Refined Schema: "value": ["related": "note-note_text(varchar(max))", "related": "note-
note_title(varchar(250))", "related": "note-note_source_value(varchar(50))", "related": "note-
note_date(date)", "related": "note-note_datetime(datetime)"]
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ... ’procedure_occurrence-provider_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’]
Input Query: admissions-marital_status(string): Table admissions details-the admissions table
gives information regarding a patient’s admission to the hospital., Attribute marital_status details
-describe patient demographics.
Refined Schema:
—————————————————————–
LLM Response
—————————————————————-
{"value": [{"related": "person-person_id(bigint)"}, {"related": "person-
gender_source_value(varchar(50))"}, {"related": "person-birth_datetime(datetime)"},
{"related": "person-death_datetime(datetime)"}, {"related": "visit_occurrence-
admitted_from_source_value(varchar(50))"}]}

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 7: EXAMPLE 1: Candidate refinement.

Candidate refiner

You are an expert OMOP matching ranker. Your task is to take the OMOP candidates and based
on the input, refine the candidates to select the 5 most likely matches to the input query. Return
ONLY the keys.
—
Follow the following format.
Input Schema: List of key: value pairs
Input Query: input query
Reasoning: Let’s think step by step in order to {produce the refined_string_list}. We ...
Refined String List: Five most likely matches to input query. Include maximum of the 5 most
likely matches to the input query. Return ONLY the keys
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central
identity management for all persons in the database. it contains records that uniquely identify
each person or patient, and some demographic information., Attribute person_id details -it is
assumed that every person with a different unique identifier is in fact a different person and should
be treated independently.’, ... ’measurement-measurement_concept_id(integer): the measure-
ment_concept_id field is recommended for primary use in analyses, and must be used for network
studies’]
Input Query: procedureevents_mv-itemid
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for a
match to ’procedureevents_mv-itemid’, which seems to relate to a procedure event and its item
identifier. The ’procedureevents_mv’ part suggests we’re looking at a procedure occurrence, and
the ’itemid’ part suggests we’re looking for an identifier or id field. Given that, we should look for
keys in the ’procedure_occurrence’ table that represent identifiers.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central
identity management for all persons in the database. it contains records that uniquely identify
each person or patient, and some demographic information., Attribute person_id details -it is
assumed that every person with a different unique identifier is in fact a different person and should
be treated independently.’, ... ’measurement-measurement_concept_id(integer): the measure-
ment_concept_id field is recommended for primary use in analyses, and must be used for network
studies’]
Input Query: noteevents-text
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for
matches to "noteevents-text" in the input schema. The term "noteevents" matches with "note" in
the input schema, and "text" matches with "note_text". So, we should consider those keys that
contain both "note" and "text".
Refined String List: [’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-
note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central
identity management for all persons in the database. it contains records that uniquely identify
each person or patient, and some demographic information., Attribute person_id details -it is
assumed that every person with a different unique identifier is in fact a different person and should
be treated independently.’, ... ’measurement-measurement_concept_id(integer): the measure-
ment_concept_id field is recommended for primary use in analyses, and must be used for network
studies’]
Input Query: admissions-marital_status(string): Table admissions details-the admissions table
gives information regarding a patient’s admission to the hospital., Attribute marital_status details
-describe patient demographics.
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
"produce the refined string list. We are looking for a match to ’admissions-marital_status’, which
seems to relate to a hospital admission and the marital status of the patient. The ’admissions’ part
suggests we’re looking at a visit occurrence or visit detail, and the ’marital_status’ part suggests
we’re looking for demographic information, which is usually found in the ’person’ table. Given
that, we should look for keys in the ’visit_occurrence’, ’visit_detail’, and ’person’ tables.String List:
’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ’visit_detail-
person_id(bigint)’, ’visit_detail-visit_occurrence_id(bigint",

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 8: EXAMPLE 1: MCQ Formatter.

MCQ Formatter

You are an expert MCQ formatter. Your task is to take a list of schema values and convert them
into a multiple choice question format with (letter)Schema value, where the schema values should
be key(description).
—
Follow the following format.
Input: input list of schema values Mcq: MCQ format of schema values e.g (A)Schema value,
(B)Schema value. Do not include additional options, only the schema values as options. where the
schema values should be key(description). Add a No Match option.
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’"] Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match
—
Input: ["[’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’,
’note-note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]"] Mcq:
(A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
—
Input: ["’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’,
’visit_detail-person_id(bigint)’, ’visit_detail-visit_occurrence_id(bigint"] Mcq:
—————————————————————–
LLM Response
—————————————————————-
"(A)’visit_occurrence-person_id(bigint)’, (B)’visit_occurrence-visit_occurrence_id(bigint)’,
(C)’visit_detail-person_id(bigint)’, (D)’visit_detail-visit_occurrence_id(bigint)’, (E)No Match",

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 9: EXAMPLE 1: Confidence scoring.

Confidence scoring

You are a schema matching expert. Your task is given the input and the MCQ format of the schema,
predict the likelihood or relation score from 0-100 of the input query being related to each option.
Your scores will be calibrated. If there is no good match score No Match as 100
—
Follow the following format.
Input Mcq: Input MCQ format of schema values
Input Query: input query
Relation: Relation score of input query being related to the option as value. Assess each indepen-
dently including No Match, returning a score from 0-100 for each. Return with key as MCQ letter
e.g (A) and score=value as JSON
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match
Input Query: procedureevents_mv-itemid
Relation: {"(A)": 0, "(B)": 0, "(C)": 0, "(D)": 0, "(E)": 0, "(F)": 100}
—
Input Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
Input Query: noteevents-text
Relation: {"A": 90, "B": 0, "C": 0, "D": 90, "E": 10}
—
Input Mcq: (A)’visit_occurrence-person_id(bigint)’, (B)’visit_occurrence-
visit_occurrence_id(bigint)’, (C)’visit_detail-person_id(bigint)’, (D)’visit_detail-
visit_occurrence_id(bigint’, (E)No Match Input Query: admissions-marital_status(string):
Table admissions details-the admissions table gives information regarding a patient’s admission to
the hospital., Attribute marital_status details -describe patient demographics.
Relation:
—————————————————————–
LLM Response
—————————————————————-
"{(̈A):̈ 0, (̈B):̈ 0, (̈C):̈ 0, (̈D):̈ 0, (̈E):̈ 100}"

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

C.1.2 EXAMPLE 2

Source schema query: admissions-marital_status(string): Table admissions details-the admissions
table gives information regarding a patient’s admission to the hospital., Attribute marital_status
details -describe patient demographics.

Target scheme match: ’procedure_occurrence- quantity

Matchmaker: ’procedure_occurrence- quantity

Figure 10: Candidate generation.

EXAMPLE 2: Candidate generation.

You are an OMOP Schema expert. Your goal is to take the OMOP schema and based on the input,
refine the schema to include only 5 most likely matches to the input query.
—
Follow the following format.
Input Schema: Input OMOP schema values Input Query: input query Refined Schema: Five
most likely matches to input query. Include maximum of the 10 most likely matches to the input
query. Respond with a single JSON object. JSON Schema: {"defs": {"Extractor": {"properties":
{"related": {"description": "related matches", "title": "Related", "type": "string"}}, "required":
["related"], "title": "Extractor", "type": "object"}}, "properties": {"value": {"items": {"ref":
"/defs/Extractor"}, "title": "Value", "type": "array"}}, "required": ["value"], "title": "Output",
"type": "object"}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ’visit_detail-visit_detail_source_value(varchar(50))’]
Input Query: procedureevents_mv-itemid Refined Schema: {"value": [{"related":
"procedure_occurrence-person_id(bigint)"}, {"related": "procedure_occurrence-
visit_occurrence_id(bigint)"}, {"related": "procedure_occurrence-procedure_date(date)"},
{"related": "procedure_occurrence-procedure_source_value(varchar(50))"}, {"related":
"procedure_occurrence-procedure_concept_id(integer)"}]}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ’visit_detail-visit_detail_source_value(varchar(50))’] Input
Query: noteevents-text Refined Schema: {"value": [{"related": "note-note_text(varchar(max))"},
{"related": "note-note_title(varchar(250))"}, {"related": "note-note_source_value(varchar(50))"},
{"related": "note-note_date(date)"}, {"related": "note-note_datetime(datetime)"}]}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ’visit_detail-visit_detail_source_value(varchar(50))’] Input
Query: procedures_icd-seq_num(integer): Table procedures_icd details-contains icd procedures
for patients, most notably icd-9 procedures, Attribute seq_num details -provides the order in which
the procedures were performed Refined Schema:
"{v̈alue:̈ [{r̈elated:̈ p̈rocedure_occurrence-person_id(bigint)}̈, {r̈elated:̈ p̈rocedure_occurrence-
visit_occurrence_id(bigint)}̈, {r̈elated:̈ p̈rocedure_occurrence-procedure_date(date)}̈, {r̈elated:̈
p̈rocedure_occurrence-procedure_concept_id(integer)}̈, {r̈elated:̈ p̈rocedure_occurrence-
quantity(integer)}̈]}"

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 11: EXAMPLE 2: Candidate Refinement.

Candidate refinement

You are an expert OMOP matching ranker. Your task is to take the OMOP candidates and based
on the input, refine the candidates to select the 5 most likely matches to the input query. Return
ONLY the keys.
—
Follow the following format.
Input Schema: List of key: value pairs
Input Query: input query
Reasoning: Let’s think step by step in order to {produce the refined_string_list}. We ...
Refined String List: Five most likely matches to input query. Include maximum of the 5 most
likely matches to the input query. Return ONLY the keys
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this
table contains records of activities or processes ordered by, or carried out by, a healthcare provider
on the patient with a diagnostic or therapeutic purpose., Attribute person_id details -the person_id
of the person for whom the procedure is recorded. this may be a system generated code.’
’visit_detail-care_site_id(bigint): this field provides information about the care site where the visit
detail took place’]
Input Query: procedureevents_mv-itemid
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for a
match to ’procedureevents_mv-itemid’, which seems to relate to a procedure event and its item
identifier. The ’procedureevents_mv’ part suggests we’re looking at a procedure occurrence, and
the ’itemid’ part suggests we’re looking for an identifier or id field. Given that, we should look for
keys in the ’procedure_occurrence’ table that represent identifiers.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this
table contains records of activities or processes ordered by, or carried out by, a healthcare provider
on the patient with a diagnostic or therapeutic purpose., Attribute person_id details -the person_id
of the person for whom the procedure is recorded. this may be a system generated code.’
’visit_detail-care_site_id(bigint): this field provides information about the care site where the visit
detail took place’]
Input Query: noteevents-text
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for
matches to "noteevents-text" in the input schema. The term "noteevents" matches with "note" in
the input schema, and "text" matches with "note_text". So, we should consider those keys that
contain both "note" and "text".
Refined String List: [’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-
note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this
table contains records of activities or processes ordered by, or carried out by, a healthcare provider
on the patient with a diagnostic or therapeutic purpose., Attribute person_id details -the person_id
of the person for whom the procedure is recorded. this may be a system generated code.’
’visit_detail-care_site_id(bigint): this field provides information about the care site where the visit
detail took place’]
Input Query: procedures_icd-seq_num(integer): Table procedures_icd details-contains icd proce-
dures for patients, most notably icd-9 procedures, Attribute seq_num details -provides the order in
which the procedures were performed
Reasoning: Let’s think step by step in order to
"produce the refined string list. We are looking for a match to ’procedures_icd-seq_num’, which
seems to relate to a procedure occurrence and its sequence number. The ’procedures_icd’ part sug-
gests we’re looking at a procedure occurrence, and the ’seq_num’ part suggests we’re looking for a
sequential number or order field. Given that, we should look for keys in the ’procedure_occurrence’
table that represent order or sequence.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_date(date)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-
quantity(integer)’"

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 12: EXAMPLE 2: MCQ Formatter.

MCQ Formatter

You are an expert MCQ formatter. Your task is to take a list of schema values and convert them
into a multiple choice question format with (letter)Schema value, where the schema values should
be key(description).
—
Follow the following format.
Input: input list of schema values Mcq: MCQ format of schema values e.g (A)Schema value,
(B)Schema value. Do not include additional options, only the schema values as options. where the
schema values should be key(description). Add a No Match option.
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’"] Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match
—
Input: ["[’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’,
’note-note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]"] Mcq:
(A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_date(date)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-
quantity(integer)’"] Mcq:
"(A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_date(date)’,
(D)’procedure_occurrence-procedure_concept_id(integer)’, (E)’procedure_occurrence-
quantity(integer)’, (F)No Match",

Figure 13: EXAMPLE 2: Confidence scoring.

Confidence scoring

You are a schema matching expert. Your task is given the input and the MCQ format of the schema,
predict the likelihood or relation score from 0-100 of the input query being related to each option.
Your scores will be calibrated. If there is no good match score No Match as 100
—
Follow the following format.
Input Mcq: Input MCQ format of schema values Input Query: input query Relation: Relation
score of input query being related to the option as value. Assess each independently including
No Match, returning a score from 0-100 for each. Return with key as MCQ letter e.g (A) and
score=value as JSON
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match Input Query: procedureevents_mv-itemid Relation: {"(A)": 0, "(B)": 0,
"(C)": 0, "(D)": 0, "(E)": 0, "(F)": 100}
—
Input Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match Input Query:
noteevents-text Relation: {"A": 90, "B": 0, "C": 0, "D": 90, "E": 10}
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_date(date)’,
(D)’procedure_occurrence-procedure_concept_id(integer)’, (E)’procedure_occurrence-
quantity(integer)’, (F)No Match Input Query: procedures_icd-seq_num(integer): Table
procedures_icd details-contains icd procedures for patients, most notably icd-9 procedures,
Attribute seq_num details -provides the order in which the procedures were performed Relation:
"{(̈A):̈ 0, (̈B):̈ 0, (̈C):̈ 0, (̈D):̈ 0, (̈E):̈ 90, (̈F):̈ 10}",

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

C.2 LLM EVALUATOR

We provide examples of the LLM evaluator, showing demonstrations achieving high and low scores.

LLM Evaluator Example: High Score

You are a schema matching expert, your task is to rate if any of the suggested matches are potential
good matches for the query. Be lenient and rate a match as good (4 or 5) if it is relevant to the
query. Rate the matches from 1-5. If none of the matches are good, rate 0.
—
Follow the following format.
Query: The query.
Answers: possible matches
Reasoning: Let’s think step by step in order to {produce the rating}. We ...
Rating: Rate if any of the suggested matches are good for the query from 1-5. Only output the
rating and nothing else.
—
Query: noteevents-chartdate
Answers: ["’note-note_date(date)’, ’note-note_datetime(datetime)’,
’note-visit_occurrence_id(bigint)’, ’note-provider_id(bigint)’, ’note-person_id(bigint)’"]
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
produce the rating. We can see that the query is looking for a match related to the date of
a note event in a chart. The first two suggested matches, ’note-note_date(date)’ and ’note-
note_datetime(datetime)’, are both related to dates and notes, making them potentially good
matches for the query. The other three suggestions are not directly related to dates or note events,
so they are not as good matches.
Rating: 4

Figure 14: LLM evaluator example, rated with a high score.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

LLM Evaluator Example: Low Score

You are a schema matching expert, your task is to rate if any of the suggested matches are potential
good matches for the query. Be lenient and rate a match as good (4 or 5) if it is relevant to the
query. Rate the matches from 1-5. If none of the matches are good, rate 0.
—
Follow the following format.
Query: The query.
Answers: possible matches
Reasoning: Let’s think step by step in order to {produce the rating}. We ...
Rating: Rate if any of the suggested matches are good for the query from 1-5. Only output the
rating and nothing else.
—
Query: cptevents-subsectionheader
Answers: [’visit_occurrence-visit_type_concept_id(int)’,
’visit_detail-visit_detail_concept_id(int)’, ’procedure_occurrence-procedure_concept_id(int)’,
’procedure_occurrence-visit_detail_id(int)’, ’condition_occurrence-visit_occurrence_id(int)’]
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
"produce the rating. We can see that the query is looking for a match related to ’cptevents-
subsectionheader’. However, none of the suggested matches seem to directly relate to this
query. They all refer to different concepts such as ’visit_occurrence’, ’visit_detail’, ’proce-
dure_occurrence’, and ’condition_occurrence’. Therefore, none of the matches seem to be a good
fit for the query.
Rating: 0

Figure 15: LLM evaluator example, rated with a low score.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

D.1 NUMBER OF LLM CALLS

Goal. To compare the number of LLM calls required by Matchmaker and other baseline methods for
schema matching on the MIMIC-OMOP and SYNTHEA-OMOP datasets.

Experiment. We count the number of LLM calls made by each method during the schema matching
process on both the MIMIC-OMOP and SYNTHEA-OMOP datasets. For methods that do not rely
on LLMs (e.g., SMAT), we consider the number of forward passes through the neural network as
equivalent to an LLM call for comparison purposes.

Results. Table 6 presents the number of LLM calls required by each method on the two datasets.

Table 6: Number of LLM calls

Method MIMIC-OMOP SYNTHEA-OMOP
Matchmaker 1340 890
ReMatch 268 178
Jellyfish-13b 24771 29637
Jellyfish-7b 24771 29637
LLM-DP 24771 29637
SMAT 24771 29637

Discussion. The results in Table 6 highlight the efficiency of Matchmaker and ReMatch in terms of
the number of LLM calls required for schema matching.

Both Matchmaker and ReMatch formulate schema matching as an information retrieval problem,
which significantly reduces the search space compared to the binary classification formulation used
by Jellyfish-13b, Jellyfish-7b, LLM-DP, and SMAT.

The high number of LLM calls required by Jellyfish-13b, Jellyfish-7b, LLM-DP, and SMAT can
be attributed to their formulation of schema matching as a binary classification problem over the
Cartesian product of source and target attributes. In this formulation, the LLM is prompted to provide
a label of Yes/No for each pair of source-target attributes, resulting in a large number of LLM calls
that scales (O(n2)). Consequently, these methods are computationally expensive and less scalable
compared to Matchmaker and ReMatch, which employ a more efficient approach.

The fewer number of LLM calls used by Matchmaker and ReMatch has practical implications in terms
of computational cost and runtime efficiency. By reducing the number of LLM calls, these methods
can perform schema matching more quickly and with lower computational overhead compared to
methods that rely on a large number of calls. This is particularly important when dealing with
large-scale schemas or when schema matching needs to be performed frequently in real-world
applications.

D.2 MATCHMAKER WITH OTHER LLMS

Goal. To understand the performance of Matchmaker when using a less powerful LLM backbone
compared to GPT-4, and contrast it with the ReMatch baseline using GPT-4.

Experiment. We evaluate the performance of Matchmaker using GPT-3.5 as the backbone LLM for
all components, instead of GPT-4 which was used in the main experiments. We compare this to the
performance of Matchmaker with GPT-4 and ReMatch with GPT-4. All other aspects of the setup
remain the same as in the main text.

Results. Table 7 shows the schema matching accuracy@k for the different methods. We observe
that Matchmaker with GPT-3.5 performs worse than Matchmaker with GPT-4, which is expected
given GPT-3.5 is a less powerful LLM. Interestingly, Matchmaker with GPT-3.5 achieves comparable
performance to ReMatch with GPT-4, despite GPT-3.5 being a much weaker LLM than GPT-4. On
MIMIC, Matchmaker with GPT-3.5 slightly outperforms ReMatch with GPT-4 for accuracy@1 and
is competitive at higher k. On Synthea, performance is similar for accuracy@1 but Matchmaker with
GPT-3.5 outperforms ReMatch with GPT-4 for accuracy@3 and accuracy@5.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 7: Comparison of schema matching performance of different baselines.

Matchmaker (GPT-4) Matchmaker (GPT-3.5) ReMatch (GPT-4)

M
IM

IC acc@1 62.20 ± 2.40 ↑ 48.30± 2.80 ↑ 42.50
acc@3 68.80 ± 2.00 62.00 ± 4.20 63.80
acc@5 71.10 ± 2.00 70.00 ± 4.20 72.90

Sy
nt

he
a acc@1 70.20 ± 1.70 47.80 ± 3.20 50.50

acc@3 78.60 ± 2.50 63.30 ± 4.30 ↑ 58.10
acc@5 80.90 ± 1.10 77.10 ± 0.70 ↑ 74.30

Discussion. These results demonstrate that the Matchmaker approach of using a compositional
LLM program is quite robust and can provide good schema matching performance even with weaker
LLM backbones. The fact that Matchmaker with GPT-3.5 is competitive with ReMatch using GPT-4
highlights the strength of the multi-stage Matchmaker approach over ReMatch’s single-stage LLM
usage. However, using a more powerful LLM like GPT-4 still provides significant gains, underlining
the importance of using an LLM with powerful reasoning capabilities for this complex task.

D.3 FURTHER PERFORMANCE RESULTS: REMATCH REIMPLEMENTATION

Goal. To compare the performance of Matchmaker against the ReMatch baseline, using both the
original reported results from the ReMatch paper and the re-implementation of ReMatch.

Experiment. In the main paper, we report the performance of the ReMatch baseline using the results
directly from the paper, as code is not available for ReMatch. However, for completeness, we also
re-implement the ReMatch approach based on the details provided in the ReMatch paper.

Our re-implementation uses the OpenAI Ada-002 text embeddings for the retrieval step, following
the same procedure as ReMatch for chunking and creating documents. We then use the same prompts
as described in the ReMatch paper for the schema matching task. We compare the performance of
our re-implemented ReMatch with the original reported results and Matchmaker.

Results. Table 8 presents the schema matching accuracy@k for Matchmaker, the original ReMatch
results, and our re-implemented ReMatch. We observe that Matchmaker consistently outperforms
both the original ReMatch results and our re-implementation across all metrics and datasets. We also
find the re-implemented ReMatch achieves lower performance compared to the original reported
results.

Table 8: Comparison of schema matching performance of different baselines.

Matchmaker ReMatch (Original) ReMatch (Reimplemented)

M
IM

IC acc@1 62.20 ± 2.40 42.50 41.99 ± 0.61
acc@3 68.80 ± 2.00 63.80 46.63 ± 1.99
acc@5 71.10 ± 2.00 72.90 46.63 ± 1.99

Sy
nt

he
a acc@1 70.20 ± 1.70 50.50 29.10 ± 0.80

acc@3 78.60 ± 2.50 58.10 32.71 ± 0.35
acc@5 80.90 ± 1.10 74.30 33.46 ± 0.63

Discussion. These results further confirm the superiority of Matchmaker over the ReMatch baseline,
even when considering our re-implementation of the method. The lower performance of the re-
implemented ReMatch compared to the original reported results could be due to differences in
implementation details, such as the choice of text embeddings or variations not accounted for.
However, it is important to note that even with these differences, Matchmaker consistently outperforms
ReMatch (original) by a significant margin. The fact that Matchmaker achieves strong performance
gains over both the original ReMatch and our re-implementation underscores the value of the novel
techniques introduced in Matchmaker, such as the multi-stage language model program, the use
of diverse candidate generators and the self-improvement mechanism through synthetic in-context
examples.

D.4 IMPROVING PERFORMANCE: USE OF EXISTING MAPPINGS TO REMEDY ERRORS

Goal. To investigate the potential performance improvement in Matchmaker when leveraging readily
available mappings to rectify errors between directly mapped attributes.

Experiment. In schema matching, certain attributes like source_value and concept_id have a direct
mapping (e.g. in OMOP). If Matchmaker incorrectly maps the source attribute to the wrong target

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

attribute (e.g., mapping to source_value instead of concept_id or vice versa), these errors can be
easily rectified by leveraging the existing relationship.

To simulate this error correction, we implement a post-processing step where we adjust Matchmaker’s
predictions if the predicted target attribute has a direct mapping to the true target attribute. We apply
this correction for all values of k and measure the resulting performance improvement.

Results. Figure 16 shows the accuracy gains across different values of k when applying the mapping
correction. We observe consistent performance improvements across all k values. These results
indicate that leveraging knowledge can indeed help rectify some of the errors made by Matchmaker.

1 2 3 4 5

K

0.60

0.62

0.64

0.66

0.68

0.70

0.72

A
cc

u
ra

cy

Matchmaker

w/ Schema domain knowledge

Figure 16: Performance improvement in Matchmaker when leveraging readily available mappings to
correct errors between directly mapped attributes like source_value and concept_id.

Discussion. While the results demonstrate the potential benefit of using existing mappings for error
correction, it is important to note that the performance gains are relatively modest compared to other
strategies like human-in-the-loop deferral based on Matchmaker’s confidence scores (as shown in the
main text).

Moreover, the mapping correction relies on the availability of direct mappings between attributes,
which may not always exist in practice. Therefore, while this approach can serve as a useful post-
processing step, it should be seen as a complementary technique to be used alongside other strategies
like human-in-the-loop for improving schema matching performance.

D.5 COMPARISON OF MATCHMAKER ON ONTOLOGY MATCHING TASKS

While Schema matching and ontology matching are seemingly related, in reality they are completely
different tasks. Specifically, schema and ontology matching fundamentally differ in their task and
available information. Ontology matching leverages richer contextual info, including properties,
axioms, rules, concept hierarchies and additional annotations. In contrast, schemas are sparser, with
only attribute names, data types, descriptions and links.

Despite the difference for completeness we evaluate recent LLM ontology match methods using GPT-
4 backbones to mirror Matchmaker namely: OLaLa (Hertling & Paulheim, 2023) and LLMs4OM
(Giglou et al., 2024).

As shown in Table 9, Matchmaker outperforms these methods on both datasets.

Table 9: Accuracy@1: Matchmaker vs two LLM-based Ontology matching methods.

Method MIMIC Synthea
Olala 33.58± 0.47 31.53± 3.37
LLMs4OM 44.78± 0.41 64.50± 2.02
Matchmaker (Ours) 62.20± 2.40 70.20 ±1.70

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

D.6 DETAILED ERROR ANALYSIS

Goal. We wish to understand different dimensions of Matchmaker’s errors.

Discussion. We analyze the errors made by Matchmaker and find two categories of errors.

• 17% of Matchmaker’s errors occur when attempting to find matches for source attributes
that have no corresponding target attribute.

• The remaining 83% involve selecting incorrect but semantically related attributes. For these
incorrect matches, we find a mean semantic similarity of 0.862 between the erroneous
predicted attribute and the true target attribute. This confirms that Matchmaker typically
selects attributes semantically close to the correct match rather than completely unrelated
attributes.

These results further provide an understanding of Matchmaker’s errors, as well as, showing how they
can be addressed both via uncertainty deferral and remediation being easy to identify and correct.

D.7 RANKING ABLATION

Goal. Assess the importance of ranking to Matchmakers performance.

Results. Below we ablate the ranking step. The results shown highlight the importance of the
re-ranking step towards achieving better accuracy@1.

Table 10: Comparison of Matchmaker models with and without ranking on MIMIC and Synthea
datasets.

Matchmaker (with ranking) Matchmaker (No ranking)
MIMIC Acc@1 62.20 57.00

Acc@3 68.80 66.90
Acc@5 71.10 71.10

Synthea Acc@1 70.20 62.40
Acc@3 78.60 77.20
Acc@5 80.90 80.90

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

E BROADER IMPACT

Schema matching is a critical step in data integration, enabling the creation of large, harmonized
datasets that can be used to train machine learning models. The proposed Matchmaker approach,
with its self-improving compositional language model program, has the potential to significantly
accelerate and automate the schema matching process, thus facilitating the development of more
accurate and robust ML models across various domains.

The importance and value of schema matching cannot be overstated, as integrating data from various
sources such as different regions, organizations or applications is vital in many fields, including
healthcare, finance, and e-commerce. By enabling the integration of data from disparate sources,
schema matching plays a critical role in creating comprehensive, harmonized datasets that can provide
a more complete picture of the domain under study. For example, in healthcare, integrating data
from multiple hospitals can lead to more representative and diverse datasets, allowing researchers to
identify patterns and insights that may not be apparent when analyzing data from a single institution.

Moreover, schema matching is not only valuable for specific domains but also for the machine
learning community as a whole. By increasing the pool of available data (larger and more diverse) for
training and validation, schema matching can contribute to the development of more accurate, robust,
and generalizable ML models. Furthermore, having access to a larger pool of data can enable more
rigorous validation and testing of ML models, allowing researchers to assess their performance across
different subpopulations, time periods, and data sources. This, in turn, can lead to more reliable and
trustworthy ML models that can be confidently applied in real-world settings.

Below we describe some positive implications that could be unlocked as schema matching approaches
such as Matchmaker are used in practice. We also show some drawbacks with mitigation strategies.

Positive Impacts:

• Improved data integration: Matchmaker can help overcome the challenges of integrating
data from heterogeneous sources, leading to the creation of larger, more comprehensive
datasets. This can enable the development of more powerful and generalizable ML models.

• Accelerated research and discovery: By reducing the time and effort required for data
integration, Matchmaker can accelerate research and discovery in fields, where data often
resides in disparate databases with diverse schemas.

• Enhanced decision-making: The ability to train ML models on larger, more diverse datasets
enabled by Matchmaker can lead to more accurate and reliable predictions, supporting better
decision-making in various applications.

Potential Drawbacks and Mitigation Strategies:

• Overreliance on automated schema matching: While Matchmaker can significantly auto-
mate the schema matching process, it is not perfect and may make errors. Overreliance
on automated methods without human oversight could lead to incorrect data integration.
Mitigation: Matchmaker should be used as a tool to assist human experts in the schema
matching process, rather than as a complete replacement. The paper demonstrates how
Matchmaker can be effectively used with a human-in-the-loop approach, leveraging the
strengths of both human expertise and automated methods.

• Propagation of errors: If Matchmaker introduces errors during the schema matching process,
these errors can propagate downstream and affect the quality of the resulting integrated
datasets and ML models. Mitigation: It is essential to implement rigorous validation and
quality control measures to detect and correct errors introduced by Matchmaker. This
can include manual spot-checks, automated consistency checks, and the use of domain-
specific validation rules. Establishing a feedback loop to continuously monitor and improve
Matchmaker’s performance based on real-world usage can also help mitigate the propagation
of errors.

41

	 Appendix - Matchmaker: Schema Matching with self-improving compositional LLM programs
	Matchmaker additional details
	Matchmaker within the context of LLM table reasoning.
	Matchmaker algorithm
	Schema matching challenges.
	Complexity of the MIMIC-OMOP task
	Further details on schema matching formalism
	Detailed explanation of self-improvement
	Extended related work
	Metrics: accuracy, precision, recall, F1-Score

	Experimental details: Benchmarks & datasets
	Benchmarks
	Matchmaker
	ReMatch
	Jellyfish
	LLM-DP
	SMAT

	Datasets

	Examples using Matchmaker (with prompts)
	Matchmaker prompt examples
	Example 1.
	Example 2

	LLM Evaluator

	Additional experiments
	Number of LLM calls
	Matchmaker with other LLMs
	Further performance results: ReMatch reimplementation
	Improving performance: Use of Existing Mappings to remedy errors
	Comparison of Matchmaker on ontology matching tasks
	Detailed error analysis
	Ranking ablation

	Broader Impact

