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Appendix
A Related Work
Prompt-Based Adaptation. Prompt-based adaptation methods learn a small set of continuous vectors to guide frozen
LLMs on downstream tasks. Early work like AutoPrompt (Shin et al., 2020) generated discrete prompts; Prefix Tuning (Li
& Liang, 2021) introduced trainable vectors as layer-wise key–value cache entries; and Prompt Tuning (Lester et al., 2021)
simplified the approach to input-only soft prompts. In contrast, Context Tuning initializes prompts or prefixes directly
from demonstration pairs, allowing the model to leverage task-relevant in-context information from the start.

In-Context Learning. ICL (Radford et al., 2019) enables LLMs to perform tasks by conditioning on a few demon-
stration pairs without updating model parameters. Extensions include Chain-of-Thought prompting (Wei et al., 2022),
self-consistency decoding (Wang et al., 2023), demonstration selection (Liu et al., 2021; Li & Qiu, 2023), and meta-training
for better efficiency (Min et al., 2022a; Chen et al., 2022). However, recent work has shown that ICL often exploits
surface-level patterns in demonstrations (Min et al., 2022b; Jang et al., 2024). Context Tuning addresses these limitations
by tuning the demonstration context itself.

Inference-Time Optimization. In-Context Optimization fits within the broader category of inference-time optimization,
which adapts models during test time. Test-Time Training has been applied to image classifiers (Sun et al., 2020), language
models (Hardt & Sun, 2024), video tasks (Dalal et al., 2025), and more recently to few-shot learning (Akyürek et al., 2024).
In parallel, diffusion models employ guidance techniques (Dhariwal & Nichol, 2021; Ho, 2022) to steer sampling, enabling
controllable generation (Nichol et al., 2022; Wallace et al., 2023; Lu et al., 2024).

B Additional Experiment Setup Details
We evaluate our methods and baselines on the following datasets.

• NLP-LR is the low-resource dataset split introduced by Min et al. (2022a), encompassing over 26 NLP tasks from Cross-
Fit (Ye et al., 2021) and UnifiedQA (Khashabi et al., 2020), such as sentiment analysis and paraphrasing. Following Min
et al. (2022a), we sample k = 16 demonstration pairs per task and evaluate task instances as multiple-choice problems.

• Massive Multitask Language Understanding (MMLU) is a diverse benchmark consisting of 57 subject-specific
tasks, including mathematics, history, law, and various other domains (Hendrycks et al., 2021). We sample k = 16
demonstration pairs per task and evaluate task instances as multiple-choice problems.

• BIG-Bench Hard (BBH) is a curated subset of BIG-Bench, consisting of 27 tasks across 23 task types that challenge
pretrained LLMs with questions involving algorithmic puzzles, symbolic manipulation, and other complex reasoning
domains (Srivastava et al., 2023; Suzgun et al., 2022). Following Akyürek et al. (2024), we sample k = 10 demonstration
pairs per task and prepend trainable instructions to all of our methods. Tasks are evaluated as question-answering
problems.

• Abstraction and Reasoning Corpus (ARC) is a challenging symbolic reasoning benchmark with 400 evaluation
tasks, each defined by a few grid transformation pairs and one or more query input grids (Chollet, 2019). Since the
average number of available demonstration pairs is fewer than 4, we use all of them in context. Tasks are evaluated as
question-answering problems.

We use k = 16 demonstrations for NLP-LR, 16 for MMLU, 10 for BBH, and all provided demonstrations for ARC. For
multiple-choice tasks, where the LLM must select an output from a predefined set of answers, we follow Min et al. (2022a)
in choosing the option with the lowest loss. For question-answering tasks, the LLM must generate an answer that matches
the ground-truth output exactly. We use greedy decoding for all question-answering tasks. For ARC, we fine-tune our
Llama3.2-1B checkpoint following the setup of Franzen et al. (2024), using 2 A100 GPUs for 24 epochs with a learning rate
of 2→ 10→4, a cosine learning rate scheduler, 1 warmup epoch, and a global batch size of 32 (after gradient accumulation).
All inference-time experiments in Table 1 ran on a single A100 GPU, except for NLP-LR, which uses an RTX8000.

For TTT experiments, we follow Akyürek et al. (2024): using a LoRA learning rate of 1e-4, sampling a random permutation
of the k demonstration pairs at each training step, and setting the LoRA rank to 128 for ARC and 64 for all other tasks. In
our combined TTT+CT-KV experiments, we find that a small number of CT-KV training iterations and lower learning rates
further improve performance on top of a TTT-adapted model.
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BBH
Instruction:   A logical deduction task which requires deducing the order of a sequence of objects. Answer with only the corresponding 
                     letter (e.g. (A)).
Query:          The following paragraphs each describe a set of three objects arranged in a fixed order. The statements are logically consistent 
                     within each paragraph. In a golf tournament, there were three golfers: Ada, Mel, and Mya. Mya finished below Ada. Mel finished 
                     above Ada.
                     Options:
                     (A) Ada finished last
                     (B) Mel finished last
                     (C) Mya finished last
Answer:       (C)

Query

Answer

ARCNLP-LR
Query:      What would you measure in a graduated 
                 cylinder?
Options:   nitrogen, Perfume, Oxygen, helium
Answer:    Perfume

MMLU
Query:      Find the degree for the given field
                 extension Q(sqrt(2) + sqrt(3)) over Q.
Options:   0, 4, 2, 6
Answer:   4

Test(1) (2) (3)

Figure 3: One test pair from BBH, NLP-LR, and MMLU each, and 3 demonstration pairs followed by a test pair from ARC.
BBH contains instructions that we prepend to model inputs. NLP-LR and MMLU contain multiple-choice options for the
model to select. To avoid clutter, we show demonstration pairs from BBH, NLP-LR, and MMLU in Section G.

For all other experiments, we search over learning rates 3e-4, 1e-3, and 3e-3, and token dropout rates 0, 0.05, 0.1. We
search training iterations 150, 200, 250, 300 for NLP-LR and ARC, 15, 20, 25, 30 for MMLU, and 12, 16, 20, 24 for BBH.
To ensure a fair comparison, we perform hyperparameter sweeps for all methods. All experiments use the Adam optimizer,
a cosine learning rate scheduler with no warm-up, bfloat16 precision, and up to 32GB of CPU RAM.

To fairly compare efficiency, we train each method with the largest batch size supported by the GPU used in its experiment.
Since TTT, Prompt Tuning (m = # demo), and CT-Prompt consume more memory due to computing larger QK

T matrices
(as shown in our derivation in Section C), we limit their batch sizes to 4 for NLP-LR, MMLU, and ARC, and 5 for BBH.
MMLU and BBH models use gradient checkpointing. For all other methods, we use batch size 16 for NLP-LR, 8 for
MMLU, 2 for BBH, and a full batch for ARC (depending on the number of demonstration pairs per task). None of these
models require gradient checkpointing.

C Time Complexity
At each training iteration, an LLM’s forward and backward passes are dominated by its self-attention operations. Consider a
single attention head of dimension d. Let LQ denote the number of query tokens and LK the number of key (and value)
tokens. We form the query matrix Q ↑ RLQ↑d and the key and value vectors K,V ↑ RLK↑d, then compute

Attention (Q,K,V) = softmax
(

QK→
↓
d

)
V,

whose dominant cost is the matrix multiplication QK↔, requiring O(LQ LK d) operations per head. Because d is a constant
for a given model, we omit it in our comparisons below.

Next, let n be the number of tokens in the task’s query and p the number of additional trainable prompt or prefix tokens per
layer, we analyze how the training time of each method in ICO scales with n and p.

Test Time Training. At each layer of each training iteration, TTT prepends p trainable tokens to the n query tokens and
computes their keys and values, giving LQ = n+ p and LK = n+ p with a per-head cost of

O
(
(n+ p)2

)
.
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CT-Prompt. CT-Prompt prepends p trainable soft token embeddings to the query and computes their keys and values, also
giving LQ = n+ p and LK = n+ p with a per-head cost of

O
(
(n+ p)2

)
.

CT-KV. Unlike from TTT and CT-Prompt, CT-KV prepends p trainable tokens as past keys and values, so these tokens do
not generate queries. This yields LQ = n and LK = n+ p with a per-head cost of only

O (n (n+ p)) .

Time Complexity for k Demonstrations Suppose we have k demonstration pairs, each of length ω (assuming equal length).
In TTT, n = ω is the length of a demonstration pair and p = (k ↓ 1)ω is the summed length of other demonstration pairs.
For CT-Prompt and CT-KV, n and p have the same values as TTT because Leave One Out masks out one of the in-context
demonstration pairs. Table 2 summarizes the per-head costs in k and ω, showing that both CT-Prompt and TTT incur
quadratic cost in k, while CT-KV grows only linearly in k. This k-fold reduction in self-attention complexity explains
CT-KV’s faster empirical training speed in Table 1.

Method LQ LK Per-Head Cost

TTT kω kω O
(
(kω)2

)

CT-Prompt kω kω O
(
(kω)2

)

CT-KV ω kω O
(
k ω

2
)

Table 2: Per-head self-attention time complexity for methods with k demonstration pairs of length ω.

D Ablation Study
We perform ablations on our design choices for CT-KV, namely Leave-One-Out Masking and Token Dropout. Table 3 shows
that across all benchmarks, CT-KV without Token Dropout performs marginally worse than CT-KV with both components.
This suggests that when tuning more parameters than traditional Prefix Tuning, applying dropout along the token dimension
of ! serves as an effective regularization technique for improving generalization. For NLP-LR, BBH, and MMLU, CT-KV

performs significantly worse when Leave-One-Out Masking is not applied. This indicates that during training, it is crucial to
mask out the portion of εcontext corresponding to the demonstration pair being solved, as it prevents the model from cheating
by retrieving the target output directly from the prefix initialization. However, on ARC, the model performs better without
Leave-One-Out Masking. We hypothesize this is because ARC evaluation tasks typically include very few demonstration
pairs (fewer than 4), so masking out even one pair during training can meaningfully reduce the effectiveness of the prompt
or prefix in ICL. We also observe that when neither Leave-One-Out Masking nor Token Dropout is applied, CT-KV performs
worse than ICL on MMLU and only marginally better on BBH, highlighting that these two design choices are essential to its
overall performance.

Method NLP-LR MMLU BBH ARC
Neither 41.0± 0.75 40.2± 0.73 51.4± 0.76 21.0
No Leave-One-Out Masking 42.6± 0.45 41.5± 0.65 54.4± 0.88 23.8
No Token Dropout 43.9± 0.62 42.7± 0.62 55.3± 0.72 21.0
Both 44.2± 0.55 43.7± 0.54 57.9± 0.78 22.5

Table 3: Ablation study on the effects of Leave-One-Out Masking and Token Dropout in CT-KV. Means and standard
deviations are computed over 5 seeds.

E Qualitative Samples vs. Training Iteration
In this section, we select sample tasks from question-answering datasets to illustrate how autoregressively generated answers
gradually improve with CT-KV training. We present two ARC tasks in Figure 5. In the top task, the model’s prediction at
iteration 0 (equivalent to ICL) shows a strong bias toward filling orange squares with yellow. As CT-KV training progresses,
the model gradually learns to fill each orange square with the correct color. Similarly, in the bottom task, the model first
learns that only grey grid cells can turn red, and then correctly completes the cross shapes.

Similarly, for BBH, in Figure 4’s top query, the model initially predicts “padre, panicking” and “schoolmate, suburbia” in
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Instruction:     Sort a list of words. Answer with only a sequence of words.

Query:             Sort the following words alphabetically: List: wv habitation panicking schoolmate aerodynamic 
                        giacomo nebulous offset vector roosevelt jimmy botanist suburbia padre
Iteration 0:      aerodynamic botanist giacomo habitation jimmy nebulous offset panicking padre roosevelt suburbia schoolmate vector wv
Iteration 12:    aerodynamic botanist giacomo habitation jimmy nebulous offset panicking padre roosevelt suburbia schoolmate vector wv
Iteration 16:    aerodynamic botanist giacomo habitation jimmy nebulous offset panicking padre roosevelt schoolmate suburbia vector wv
Iteration 20:    aerodynamic botanist giacomo habitation jimmy nebulous offset padre panicking roosevelt schoolmate suburbia vector wv

Instruction:     Sort a list of words. Answer with only a sequence of words.

Query:             Sort the following words alphabetically: List: scrumptious sidereal thermal yakima siena gorky saxon scottish figural hydroxyl 
                        seventeen neapolitan rampage nerve grapple fate plainfield stooge knives allotted
Iteration 0:      allotted fate figural gorky grapple hydroxyl knives neapolitan nerve plainfield rampage saxon scottish seventeen siena sidereal 
                        stooge thermal yakima
Iteration 12:    allotted fate figural gorky grapple hydroxyl knives neapolitan nerve plainfield rampage saxon scottish seventeen siena sidereal 
                        stooge thermal yakima
Iteration 16:    allotted fate figural gorky grapple hydroxyl knives neapolitan nerve plainfield rampage saxon scottish scrumptious seventeen 
                        siena sidereal stooge thermal yakima
Iteration 20:    allotted fate figural gorky grapple hydroxyl knives neapolitan nerve plainfield rampage saxon scottish scrumptious seventeen 
                        sidereal siena stooge thermal yakima

Figure 4: We display LLM predictions at CT-KV training iterations 0, 12, 16, 20 for two queries from the task “word sorting”
in BBH. We omit showing the 16 demonstration pairs of each task for brevity. We color-code the iterations of correct
predictions in green and incorrect predictions in red.

reversed order at iteration 0. During CT-KV training, the model learns to use the second letter of each word for sorting and
eventually answers the query correctly. Likewise, for the bottom query, CT-KV helps the model avoid omitting the word
“scrumptious” from its outputs and sort the words “sidereal, siena” into the correct order based on their second letters.

F Qualitative Analysis

ICL correct ICL wrong
CT-KV correct 44 51
CT-KV wrong 9 296

Table 4: Confusion matrix for the number of solved/unsolved
ARC tasks by ICL and CT-KV.

We compare our CT-KV to ICL on the 400 ARC
evaluation tasks. Table 4 shows the confusion matrix
indicating the number of tasks solved or not solved by
each method. CT-KV recovers 51 tasks that ICL fails to
solve, demonstrating the benefit of tuning the key and
value representations corresponding to the in-context
demonstration pairs. However, CT-KV fails to solve 9
tasks that ICL is able to, despite initializing its trainable
prefix with the same demonstration pairs, suggesting that
it can overfit to the few-shot examples.

Figure 6 shows one failure case for each method, where the other successfully solves the task. The task on the left illustrates
that CT-KV can effectively adapt to the demonstration pairs to solve a geometric puzzle involving cropping the upper-left
portion of objects in the query. On the right, we show a case where CT-KV makes an incorrect prediction. Since CT-KV

performs optimization on the 3 demonstration pairs and two of them, illustrated on the right side of Figure 6, have answer
grids that are 3-row by 4-column, we hypothesize that CT-KV became incorrectly biased toward predicting a grid of the
same shape during optimization.

G Demonstration Pairs for Figure 3
We present three demonstration pairs of datasets: BBH, NLP-LR, and MMLU in Figure 7, Figure 8, and Figure 9,
respectively.
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Query 1

Answer 1

Query 2

Answer 2

Query 3

Answer 3

Query 4

Answer 4

Test Query

Test Query

Iteration 0 Iteration 50 Iteration 100 Iteration 150 Iteration 200

Query 1 Query 2 Query 3 Query 4

Answer 1 Answer 2 Answer 3 Answer 4

Iteration 0 Iteration 50 Iteration 100 Iteration 150 Iteration 200

Figure 5: For each of the two ARC tasks at the top and bottom, we display 4 demonstration query-answer pairs, the test
query, and LLM predictions at CT-KV training iterations 0, 50, 100, 150, 200. Note that iteration 0 is equivalent to ICL. We
color-code the iterations of correct predictions in green and incorrect predictions in red.
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Query 1 Test QueryQuery 2

Answer 1 Answer 2 ICL Prediction CT-KV Prediction

Query 1

Answer 1 Answer 2 CT-KV Prediction ICL Prediction

Query 2 Query 3 Test Query

Answer 3

Figure 6: Left is an ARC task that CT-KV successfully solves, but ICL does not. Conversely, the task on the right is solved
by ICL but not by CT-KV.

A logical deduction task which requires deducing the order of a sequence of objects. 
Answer with only the corresponding letter (e.g. (A)).
The following paragraphs each describe a set of three objects arranged in a fixed order. 
The statements are logically consistent within each paragraph. In an antique car show, 
there are three vehicles: a motorcycle, a limousine, and a convertible. The motorcycle is 
newer than the limousine. The convertible is newer than the motorcycle.
Options:
(A) The motorcycle is the oldest
(B) The limousine is the oldest
(C) The convertible is the oldest
(B)

A logical deduction task which requires deducing the order of a sequence of objects. 
Answer with only the corresponding letter (e.g. (A)).
The following paragraphs each describe a set of three objects arranged in a fixed order. 
The statements are logically consistent within each paragraph. On a shelf, there are three 
books: a blue book, an orange book, and a red book. The blue book is the rightmost. The 
orange book is the leftmost.
Options:
(A) The blue book is the second from the left
(B) The orange book is the second from the left
(C) The red book is the second from the left
(C)

A logical deduction task which requires deducing the order of a sequence of objects. 
Answer with only the corresponding letter (e.g. (A)).
The following paragraphs each describe a set of three objects arranged in a fixed order. 
The statements are logically consistent within each paragraph. In an antique car show, 
there are three vehicles: a motorcycle, a minivan, and a tractor. The minivan is older than 
the tractor. The minivan is the second-newest.
Options:
(A) The motorcycle is the newest
(B) The minivan is the newest
(C) The tractor is the newest
(C)

Instruction:

Query:

Answer:

Instruction:

Query:

Answer:

Instruction:

Query:

Answer:

(1)

(2)

(3)

Figure 7: 3 demonstration pairs for the BBH task from Figure 3.
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Cellular respiration releases
blood, waste, snot, feces
waste

Query:
Options:
Answer:

(1)

During what period of the Earth cycle would you 
see someone having a picnic outside?
Day, Night, Extinction, Ice Age
Day

Which uses gills to breathe?
hermit crab, human, blue whale, bluebird
hermit crab

(2)

(3) Query:
Options:
Answer:

Query:

Options:
Answer:

Figure 8: 3 demonstration pairs for the NLP-LR task from Figure 3.

Query:
Options:
Answer:

(1)

(2)

(3) Query:
Options:
Answer:

Query:

Options:
Answer:

Find the degree for the given field extension Q(sqrt(2), 
sqrt(3), sqrt(18)) over Q.
0, 4, 2, 6
4

Find the order of the factor group (Z_11 x Z_15)/(<1, 1>)
1, 2, 5, 11
1

The inverse of -i in the multiplicative group, {1, -1, i , -i} is
1, -1, i, -i
i

Figure 9: 3 demonstration pairs for the MMLU task from Figure 3.
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