
A Supplementary Material

A.1 Additional AdaPrune experiments

To further examine AdaPrune capabilities we checked two additional settings: (a) starting from
pre-trained dense model, and (b) staring from less constrained N:M mask.

A.1.1 AdaPrune from Dense

While this case is more common, we expect to see some degradation as we know that we have
50% mask violations. Yet as can be seen in table 2 we managed to restore accuracy to 2-3% of the
full-precision baseline using just AdaPrune. To further improve results we applied batch-norm-tuning
as suggested by Hubara et al. [19] and kept the first and last layers dense which results in less than
2% degradation. We believe it to be the first tolerable post-training-pruning results reported.

Table A.1: Using AdaPrune from dense pre-trained model. AP stands for AdaPrune and BNT stands
for batch-norm-tuning.

Model Dense BiasFix AP AP
BNT BNT

ResNet18 69.7% 62.47% 68.41% 68.63%
ResNet34 73.3% 68.72% 72.15% 72.36%
ResNet50 76.1% 67.42% 74.41 74.75%
ResNet101 77.27 % 71.54% 76.36% 76.48%

A.1.2 AdaPrune from N:M sparse

In Section 3 we explained why as the block size decreases the mask diversity decreases. Thus, we
expect to have many violations when a pre-trained sparse model with N1 :M1 translates to N2 :M2,
for N1 > N2 and M1 > M2. We argue that this might be a common case in the future as different
hardware vendors would support different formats. In table Table A.2 we can see results of converting
ResNet-50 model trained with 4 : 8 sparsity pattern to 2 : 4 and 1 : 2 patterns. As can be seen,
converting from 4 : 8 to 2 : 4 produces results with negligible accuracy degradation (less than 0.5%).
Therefore, we argue that AdaPrune is an efficient and useful approach to convert models which were
optimized on a different hardware than the one in use, as it removes the need for full sparse training.
This is even more important when the training data is not available.

Table A.2: Using AdaPrune to convert from one sparse pattern to the other. The baseline model
was trained with 4:8 sparsity (90 epochs). Thus, 4:8 column is the baseline. BNT stands for
batch-norm-tuning

Model 4:8 2:4 2:4 1:2 1:2
BNT BNT

RN50 76.5% 76.2% 76.4% 74.6% 75.1%
RN50-T 77.1% 76.3% 76.4% 74.7% 75.1%
RN18-T 70.75% 70.1% 70.2% 68.9% 69.2%

A.2 Proof of Lemma

Lemma. Algorithm 1 produces a tight 2-approximate solution, i.e., W (P ) < 2 ·W ∗.

Proof. Consider any node i ∈ V \ {s, t}. Let E′(i) = {e′1, e′2, e′3, ...e′M/2} denote the edges of an
optimal solution that are adjacent to node i and sorted in ascending order from light to heavy. Let
E(i) = {e1, e2, e3, ...eM/2} denote the first M/2 edges adjacent to i in P with respect to the order
in which Algorithm 1 picked them. By construction, we have that for all edges in E(i):

w(e1) ≤ w(e2)... ≤ w(eM
2
). (A.1)

14



We note that we can truncate the list of i at M/2, since if i has more than M/2 edges adjacent to it in
P , then any such edge (i, j) would also appear in E(j) (among the first M/2 edges adjacent to j) by
the minimality of the solution P . Thus, the union of the lists E(i) contains all edges in P . We now
prove by induction that for any n, n ≥ 1,

w(en) ≤ w(e′n). (A.2)

• Base case (n = 1): w(e1) ≤ w(e′1), since by construction of Algorithm 1, edge e1 is the
lightest edge adjacent to node i.

• Inductive step: assume w(en) ≤ w(e′n), then it must hold that w(en+1) ≤ w(e′n+1));
otherwise, if w(en+1) > w(e′n+1)), then e′n+1 should have been considered before en+1

and also chosen by Algorithm 1.

Thus,
M/2∑
j=1

w(ej) ≤
M/2∑
j=1

w(e′j).

To complete the proof, our goal is to charge the weight of the edges in P to the weight of the edges in
the optimal solution based on the above inequality. However, note that an edge (i, j) ∈ P may appear
in only one of the lists E(i) or E(j). Thus, for example, two edges in P , (i, j) and (i′, j), may
charge their weight to the same edge (i, i′) in the optimal solution. Clearly, this “double" charging
can happen at most twice for each edge in the optimal solution, hence:

W (P ) ≤ 2W ∗.

�

In the following, we show that our analysis of the upper bound of 2 on the approximation factor
(proved in the lemma) is asymptotically tight. Consider the example in Fig. A.1c. Let us assume
we want to zero out one element in each row and column in the block of size 4 × 4 presented in
Fig. A.1a using the 2-approximate algorithm (Algorithm 1). First, we need to convert the block into a
bipartite graph (as suggested in Figure 4). This construction appears in Fig. A.1b. Next, we sort the
the edges from light to heavy and go over the sorted list. In Fig. A.1c we show the seven iterations
of the 2-approximate algorithm. All edges are added to the list of chosen edges P up until the 7th
iteration. The algorithm stops at the 7th iteration, since after adding edge u4

1−→ v4, every node is
already “covered" by at least one edge (in other words, each row and each column has at least one
entry chosen for pruning). Note that the optimal solution would choose the edges that correspond
to the entries on the diagonal (i.e., u1

1−→ v1, u2
1−→ v2, u3

1−→ v3, and u4
1−→ v4), summing up to

a total weight of 4. Hence, we get an approximation ratio of 7
4 . It is easy to see that when using

the same construction for a general block of size M ×M , we get an approximation ratio of 2M−1
M ,

asymptotically converging to 2 as M goes to infinity.

A.3 Min cost flow vs. 2-approximation run-time analysis

In this section we specify the complexity of different min-cost flow methods and compare them with
the running time of our 2-approximation method. Ahuja et al. [1] specifies the running times of six
min-cost flow algorithms, two of which have distinctively better performance for our construction
compared to the others (see Ahuja et al. [1][pp. 396-397]). The running time of these two methods
depends on the following parameters: number of nodes n, number of edges m, the largest weight
coefficient W , and the flow demand U . The Goldberg-Tarjan algorithm and the double scaling
algorithm have running times of Õ(mn), where Õ hides polylogarithmic factors. Thus, in our
construction, for a block of size M ×M the number of edges is M2 + 2M , the number of nodes is
2M + 2, and the flow demand is 0.5M2. This boils down to running times of Õ(M3) for finding
an optimal mask.The running time of the 2-approximation algorithm in comparison is Õ(M2). In
Table A.3 we show the running time overhead of ResNet50 training using 2:4 transposable mask with
IP, min cost flow and 2-approximation algorithms over regular training. These overheads are smaller
than what we measured for 4:8 (Table 2). These methods were implemented in a non-optimized
way, therefore, we expect a further decrease of the overhead in the 2-approximation in an optimized
algorithm.

15



1 − 𝜀 1 1 1

∞ 1 + 𝜀 ∞ ∞

∞ ∞ 1 + 𝜀 ∞

∞ ∞ ∞ 1 + 𝜀

𝑢1

𝑢2

𝑢3

𝑢4

𝑣1 𝑣2 𝑣3 𝑣4

(a)

Rows Columns

𝑢1

𝑢2

𝑢3

𝑢4

𝑣1

𝑣2

𝑣3

𝑣4

(b)

Rows Columns

𝑢1

𝑢1

𝑢1

𝑢1

𝑢2

𝑢3

𝑢4

𝑣1

𝑣2

𝑣3

𝑣4

𝑣2

𝑣3

𝑣4

1 − 𝜀

1

1

1

1 + 𝜀

1 + 𝜀

1 + 𝜀

1)

2)

3)

4)

5)

6)

7)

(c)

Figure A.1: (a): Block of size 4× 4 where we want to zero out one element in each row and column
using the 2-approximation algorithm. (b): The block represented as a directed bipartite graph. (c):
The 7 iterations of the 2-approximation algorithm on the bipartite graph. Notice that we get an
approximation ratio of 7

4 , since the optimal solution picks only the diagonal entries.

Table A.3: Overhead of different algorithms for finding the 2:4 transposable mask: ratio of their running time
over regular training (ResNet50). Notice the overhead reduction in the 2-approximation algorithm in comparison
to the naive IP.

Method Overhead (%)
Integer-programming 160
Min-cost flow 65
2-approximation 13

A.4 Experiments Setting

In all our experiments we use 8 GPU GeForce RTX 2080 Ti.

AdaPrune We used a small calibration set of 1000 images (one per-class). We run AdaPrune for
1000 iterations with batch-size of 100. For the results in the supplementary material, we kept the first
and last layers dense.

N:M transposable sparsity mask from a pre-trained model We used torchvison [28] model-zoo
as our pre-trained dense baseline. For all ResNet models we used the original regime as given by
He et al. [16], i.e., SGD over 90 epochs starting with learning rate of 0.1 and decreasing it at epochs
30,60,80 by a factor of 10. For BERT-large and MaskRCNN we used the defaults scripts as in Nvidia
[35].

N:M transposable sparsity mask from scratch We use the exact same setting as given by Zhou
et al. [43].

A.5 N:M hardware requirements

For conventional hardware, Broadly, N:M sparsity requires adding an N+1 to 1 multiplexer (N+1:1)to
the adder tree in the code of the matrix multiplication. engine. Thus switching from 2:4 fine grained
sparsity to 4:8 requires 5:1 multiplexers instead of 3:1. The simplest implementation of a multiplexer
is build of set of 2:1 multiplexers which means that the area required for the multiplexers scale
logarithmicly with the number of zeros in the block (N).

A.6 Mask diversity Derivation

Let us consider W to be a block of size n× n from a weight tensor and our desired sparsity level
to be N/M . Thus, the MD of unstructured sparsity consists of all possibilities to pick N values
out of B (Eq. (2) (a)). The MD increases with the block size (B), which might explain the recent

16



success of global pruning. Next we investigate, fine-grained N : M structured sparsity [36]. This
approach requires us to zero out N values in each block of size M . Since we have T

M blocks this
results in Eq. (2) (b). If we wish to enforce the constraints on both row and columns of the matrix
(i.e., N :M transposable structured) the diversity decreases. Let us first assume N = 1. The number
of possibilities in each block of size M2 is M !. Repeating this process for general N in all the
B
M2 blocks results in Eq. (2) (c). A more constrained mask, is a fine-grained N : M mask with a
sequential structure. Here we require that each M contiguous elements would contain N sequential
zeros. In each block of size M2, there are M −N + 1 options of sequential zeros. Applying it on all
the B

M blocks results in Eq. (2)(d).

A.7 Mask diversity Experiments

In additional to the results in Section 3 we experimented in Fig. A.2 with ResNet50 over ImageNet
dataset. In all our experiments we used one-shot pruning from dense model and applied the same
regime as the original training as suggested by Nvidia [36].

10 15 20 25 30 35 40 45
log(MD)

72

73

74

75

76

77

Ac
cu

ra
cy

1:2 2:4 4:8
2:4

4:8

2:4

4:8
Structured
Transposable
Sequential
Unstructured

Figure A.2

Figure A.3: ResNet50 over ImageNet top-1 accuracy for weight sparsity of 50 % using different structured and
unstructured masks. As expected the mask diversity correlates with the pruned model accuracy.

A.8 2:4 transposable mask

In Table A.4 we show experiments with the 2:4 transposable mask in the "training from scratch"
setting. Moreover, after we published the first version of our paper, researchers from NVIDIA [39]
continued our work and demonstrated on a large set of models that one can achieve less than 1%
degradation even with 2:4 transposable masks in the "training from a trained dense model" setting.
As can be seen, 2:4 transpose mask can achieve high accuracy in part of the models. This results
correlates with the shown MD, since 2:4 transpose mask has similar MD to 1:2 mask which already
achieved high accuracy (Fig. A.2). Despite this, in some scenarios 2:4 transposable does not work as
well, as in the case of finetuning BERT-Large on SQuAD dataset. Here the 2:4 transposable mask
incurred a ∼ 1% degradation (90.18 F1 vs. 91.1 F1 for the dense model) while a 4:8 transposable
mask incurred less than 0.5% degradation in F1 score (90.65 F1).

17



Table A.4: Training from scratch of ResNet18, ResNet50 on imageNet dataset and fine-tuning of Bert-Large on
SQuAD dataset with 2:4 transposable mask using the proposed 2-approximation scheme. SU refers to the sparse
tensor cores utilization, used both in forward and backward passes in the proposed method, allowing 2x speedup
in comparison to previous methods [43]

Model Metric Baseline Ours 2:4-T
SU Accuracy SU Accuracy

ResNet18 Top1
0%

70.54%
66%

70.5%
ResNet50 Top1 77.3% 77.1%
Bert-Large F1 91.1% 90.18%

18


	Supplementary Material
	Additional AdaPrune experiments
	AdaPrune from Dense
	AdaPrune from N:M sparse

	Proof of Lemma
	Min cost flow vs. 2-approximation run-time analysis
	Experiments Setting
	N:M hardware requirements
	Mask diversity Derivation
	Mask diversity Experiments
	2:4 transposable mask


