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ABSTRACT

Task arithmetic refers to editing the pre-trained model by adding a weighted sum
of task vectors, each of which is the weight update from the pre-trained model
to fine-tuned models for certain tasks. This approach recently gained attention as
a computationally efficient inference method for model editing, e.g., multi-task
learning, forgetting, and out-of-domain generalization capabilities. However, the
theoretical understanding of why task vectors can execute various conceptual op-
erations remains limited, due to the highly non-convexity of training Transformer-
based models. To the best of our knowledge, this paper provides the first theo-
retical characterization of the generalization guarantees of task vector methods on
nonlinear Transformers. We consider a conceptual learning setting, where each
task is a binary classification problem based on a discriminative pattern. We the-
oretically prove the effectiveness of task addition in simultaneously learning a set
of irrelevant or aligned tasks, as well as the success of task negation in unlearning
one task from irrelevant or contradictory tasks. Moreover, we prove the proper
selection of linear coefficients for task arithmetic to achieve guaranteed general-
ization to out-of-domain tasks. All of our theoretical results hold for both dense-
weight parameters and their low-rank approximations. Although established in a
conceptual setting, our theoretical findings were validated on a practical machine
unlearning task using the large language model Phi-1.5 (1.3B).

1 INTRODUCTION

Large pre-trained models (Chowdhery et al., 2022; Touvron et al., 2023; Achiam et al., 2023) have
recently served as a foundational module in deep learning systems. Under the pre-training-and-
fine-tuning paradigm, although the traditional and straightforward full-parameter fine-tuning can
demonstrate superior performance in downstream tasks, its immense computational and memory
costs have become a serious practical issue. Consequently, many Parameter-Efficient Fine-Tuning
(PEFT) methods (Li & Liang, 2021; Hu et al., 2022; Jia et al., 2022; Wei et al., 2022b;a) have been
proposed to address this concern. Among them, the recent task vector approach receives increasing
attention (Ilharco et al., 2022a; Ortiz-Jimenez et al., 2023; Hendel et al., 2023; Todd et al., 2024).

The task vector approach first fine-tunes a pre-trained model on several simpler tasks to obtain task
vectors, which represent the weight differences between the fine-tuned models and the pre-trained
model. To handle more complex tasks, a proper model can be edited by adding a linear combination
of these task vectors to the pre-trained model. Since this approach only requires determining the
appropriate arithmetic hyperparameters, with no need for further fine-tuning on complicated tasks,
the task vector method offers a significant efficiency advantage and is particularly effective when
adapting to a wide range of downstream tasks. Empirical evidence shows that adding multiple task
vectors can improve the model’s performance on corresponding tasks, while subtracting certain task
vectors allows the model to forget associated tasks. A proper linear combination of task vectors can
even enable the model to generalize on an out-of-domain task that has an analogous relationship with
the given task vectors, without needing labeled data. Additionally, it has been found that using low-
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rank and/or sparse task vectors can further improve efficiency while maintaining the performance
(Yadav et al., 2023; Chitale et al., 2023; Yu et al., 2024; He et al., 2025).

Despite empirical successes, theoretical analysis of task vectors is less investigated. In particular,
we ask the following question:

When and why can the task vector approach perform well in multi-task learning, unlearning, and
out-of-domain generalization successfully and efficiently?

Some related theoretical works focus on analyzing the performance of machine unlearning from
a purely optimization perspective (Ginart et al., 2019; Neel et al., 2021; Guo et al., 2020; Mu &
Klabjan, 2024). However, these analyses do not apply to Transformer-based neural networks, which
are key components of large pre-trained models. Moreover, these works cannot be extended to study
multi-task learning or out-of-domain generalization to new tasks. Frankle et al. (2020) proposes the
concept of linear mode connectivity, suggesting that there exists a small-loss connected region in
the loss landscape of the model, thereby demonstrating that linear interpolation between models can
yield good performance. The most relevant workto this paper is (Ortiz-Jimenez et al., 2023), which
uses the Neural Tangent Kernel (NTK) framework (Jacot et al., 2018) to study neural networks as
linearized models under specific assumptions, to justify the use of linear arithmetic on task vectors
for targeted model editing. However, this work does not have generalization guarantees and cannot
explain the success of task vectors in nonlinear models without NTK assumptions.

1.1 MAJOR CONTRIBUTIONS

To the best of our knowledge, this work is the first theoretical generalization analysis of task arith-
metic on a nonlinear Transformer model for multi-task learning, unlearning, and out-of-domain
generalization. Focusing on binary classification tasks, we provide a quantitative analysis of the
dependence of the task arithmetic effect on arithmetic hyperparameters. Although our analysis is
centered on a simplified single-head and one-layer nonlinear Transformer, our theoretical insights
are validated on practical architectures. Our major contributions include:

1. A fine-grained feature-learning analysis of the effectiveness of task addition and negation.
We consider a data model in which binary labels are determined by the majority of discriminative
tokens, rather than their opposing discriminative counterparts, while other tokens do not affect the
labels. We begin by analyzing the learning dynamics of fine-tuning a Transformer and characterize
the properties of the resulting task vectors. Next, we provide sufficient conditions on the arithmetic
hyperparameters for the task vector approach to be successful. We prove that task addition is effec-
tive for multi-task learning when the tasks are either irrelevant or aligned. Aligned tasks are those
where solving one task contributes positively to solving the other. In contrast, task negation is prov-
ably successful for unlearning tasks that are either irrelevant or contradictory. Contradictory tasks
are defined as those where improving performance on one task harms the performance of the other.

2. The first provable out-of-domain generalization guarantees through task arithmetic. Focus-
ing on task vectors representing a set of irrelevant tasks, we prove a linear combination of these task
vectors can generalize to a wide range of new tasks by properly selecting the arithmetic coefficients.
Additionally, we characterize the range of suitable arithmetic coefficients sufficient for successful
generalization. This is the first theoretical justification of task vectors’ ability to adapt to new tasks.

3. Theoretical justification of low-rank approximation and magnitude-based pruning for task
vectors. We construct low-rank and sparse approximations to task vectors and prove that the
generalization guarantees are minimally affected by these approximations. This provides the first
theoretical support for the practice of using low-rank and sparse approximations to task vectors in
order to reduce computational complexity.

1.2 RELATED WORKS

Weight interpolation technique. Weight interpolation or model merging (Matena & Raffel, 2022;
Ilharco et al., 2022b; Yadav et al., 2023; Yu et al., 2024; He et al., 2025) refers to the practice of
linearly interpolating weights of multiple models, where these models may be fine-tuned from dif-
ferent downstream tasks or using different hyperparameters (model soups (Wortsman et al., 2022a)).
Weight interpolation is empirically observed to be able to guide the model towards wider optima
(Izmailov et al., 2018; Frankle et al., 2020) and better generalization in both single-task perfor-
mance and multi-task ablities, even surpassing fine-tuning methods in some cases (Rame et al.,
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2022; Wortsman et al., 2022b; Ramé et al., 2023). Task arithmetic can be viewed as a special type
of weight interpolation, where linear operations are performed on task vectors.

Feature learning analysis for Transformers. Several recent works study the optimization and
generalization analysis of Transformers following the feature learning framework, which describes
how neural networks gradually focus on important features while discarding unimportant features
during training. Jelassi et al. (2022); Li et al. (2023e); Oymak et al. (2023); Ildiz et al. (2024);
Nichani et al. (2024); Chen et al. (2024); Li et al. (2023a; 2024c; 2023b); Huang et al. (2024); Luo
et al. (2024) study the generalization of one-layer Transformers on different data models such as
spatial association, semantic/contextual structure, causal structure/Markov Chain of data, and the
majority voting of tokens in the data. However, no discussion was provided for merged models.

Theoretical study of PEFT methods. These are recent theoretical analyses on other PEFT methods.
For example, in-context learning is analyzed from the perspective of expressive power (Bai et al.,
2023; Akyürek et al., 2023; Von Oswald et al., 2023), the training dynamics or generalization (Xie
et al., 2021; Zhang et al., 2023a; Li et al., 2023c; 2024a;b; Huang et al., 2023). Some other works
focus on prompt engineering with a tunable prompt (Wei et al., 2021; Oymak et al., 2023; Zhang
et al., 2024). Another line of work theoretically investigates the low-rank adaptation in terms of the
implicit bias of the optimization process (Damian et al., 2022; Abbe et al., 2022; 2023; Boix-Adsera
et al., 2023; Jang et al., 2024; Li et al., 2024d) or model pruning with generalization analysis (Zhang
et al., 2021; Yang & Wang, 2023; Yang et al., 2023; Zhang et al., 2023b; Li et al., 2024a). However,
none of these works involve the task vector method or related approaches.

2 TASK VECTOR: DEFINITION AND OBSERVATIONS

2.1 PRELIMINARIES

Let f : X × Θ → Y be a neural network that maps inputs X ∈ X to labels y ∈ Y with Ψ ∈ Θ as
the model parameters. Denote Ψ(0) as the pre-trained model and Ψ∗

T as the fine-tuned model on a
given task T .
Definition 1. (Task Vector) The task vector ∆ΨT for the task T is computed as the element-wise
difference between the pre-trained and fine-tuned weights, i.e., ∆ΨT = Ψ∗

T −Ψ(0).

Task Arithmetic and Generalization. Given the pre-trained model Ψ(0) and a set of task vectors
{∆ΨTi}i∈V on tasks {Ti}i∈V , one can construct a merged model Ψ = Ψ(0) +

∑
i∈V λi∆ΨTi for

inference on downstream tasks, where λi ∈ R are arithmetic hyperparameters. Denote ℓ(X, y; Ψ)
as the loss function for the input X ∈ X , output y ∈ Y , and the model Ψ ∈ Θ. Hence, the
generalization error on the task T ′ with data (X, y) ∼ DT ′ is defined as

E(X,y)∼DT ′ ℓ(X, y; Ψ). (1)

Existing works (Ilharco et al., 2022a; Ortiz-Jimenez et al., 2023) conclude that by controlling λi,
the merged model Ψ can generalize across different tasks. Specifically, adding several ∆ΨTi

via
making λi > 0, i ∈ VA ⊂ V , leads to a model that exhibits desired performance on multiple tasks
from VA. Such a successful multi-task learning result can be mathematically represented as

E(X,y)∼DTi
ℓ(X, y; Ψ) ≤ Θ(ϵ), ∀i ∈ VA. (2)

Meanwhile, negating ∆ΨTi
with λi < 0, i ∈ VN ⊂ V , results in a machine unlearning model that

performs poorly on VN but roughly retains the accuracy on V\VN , i.e.,

E(X,y)∼DTi
ℓ(X, y; Ψ) ≥ Θ(1), E(X,y)∼DTj

ℓ(X, y; Ψ) ≤ Θ(ϵ), ∀i ∈ VN ,∀j ∈ V\VN . (3)

Moreover, task arithmetic is empirically (Ilharco et al., 2022a) shown to produce a model Ψ =
Ψ(0) + λ ·∆ΨT ′ that performs well on task analogy, in the form that “the target out-of-domain task
T ′(/∈ V) is to TA as TB is to TC ,” by constructing a task vector ∆ΨT ′ = ∆ΨTA

+(∆ΨTB
−∆ΨTC

).

2.2 EMPIRICAL OBSERVATIONS

Note that experiments in (Ilharco et al., 2022a) only summarize the empirical findings when tasks
are almost “orthogonal” to each other, while non-orthogonal cases are less explored. Therefore, in
Table 1, we further construct binary classification tasks on the parity of digits of Colored-MNIST
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(Arjovsky et al., 2019; Chapel et al., 2020). We control the colors of digits to generate a pair of
two datasets so that the parity classification tasks on different pairs of datasets are conceptually
“irrelevant,” “aligned,” or “contradictory” to each other, respectively.

For irrelevant tasks, odd and even digits are highly correlated with red and green colors in one dataset
but independent of colors in the other. In aligned tasks, the odd and even digits are correlated with
red and green colors in both datasets. In contradictory tasks, the color-parity correspondence is the
opposite in the two datasets. Let T1 and T2 denote the parity classification task on two different
datasets. Ψ = Ψ(0) +∆ΨT1

+ λ∆ΨT2
is used to evaluate the performance of T1 and T2.

A key finding from Table 1 is that the task vector method performs quite differently with dif-
ferent task correlations. To be concrete, given ∆ΨT1 and ∆ΨT2 for aligned tasks, the merged
model Ψ can acquire strong multi-task learning abilities but have poor unlearning capabilities. The
conclusion is exactly opposite for contradictory tasks. For irrelevant tasks, using task arithmetic can
result in good performance in both unlearning and multi-task learning. A question arises, i.e.,

(Q1) How does task correlation quantitatively affect the performance of task arithmetic in
multi-task learning and unlearning?

“Irrelevant” Tasks “Aligned” Tasks “Contradictory” Tasks
Multi-Task Unlearning Multi-Task Unlearning Multi-Task Unlearning

Best λ 1.4 -0.6 0.2 0.0 0.6 -1.0
T1 Acc 91.83 (-3.06) 95.02 (-0.56) 95.62 (0.00) 95.20 (-0.42) 79.54 (-16.70) 94.21 (-0.61)

T2 Acc 88.40 (-5.65) 50.34 (-45.24) 92.46 (-3.23) 90.51 (-5.18) 62.52 (-33.72) 4.97 (-89.85)

Table 1: Test accuracy (%) of Ψ = Ψ(0) + ∆ΨT1 + λ∆ΨT2 on task T1 and T2 with λ ∈
{−1,−0.8,−0.6, · · · , 2}. Multi-task learning aims to achieve good performance on both tasks, while un-
learning is to decrease the accuracy on T2 but maintain the accuracy on T1. The best λ is selected based on the
largest accuracy summation (or gap) of T1 and T2 for multi-task learning (or unlearning). The accuracy gap
(%) using Ψ to the fine-tuned models Ψ∗

T1
or Ψ∗

T2
is reported in the bracket.

We then explore the use of task arithmetic with two tasks T1 and T2 for an out-of-domain task T ′.
We construct tasks and data with Colored-MNIST, where we make T ′ more aligned with T1 and
contradictory to T2. This is a new out-of-domain setting different from task analogies in (Ilharco
et al., 2022a). Table 2 indicates that the optimal λ1 and λ2 results in a testing performance better
than using any separately trained model Ψ∗

T1
or Ψ∗

T2
. This implies that task arithmetic is powerful

in domain generalization and can be extended to more general scenarios beyond analogous tasks.
Hence, another question occurs, i.e.,

(Q2) Why do the arithmetic operations of task vectors perform well for out-of-domain gener-
alization, and how to choose the arithmetic hyperparameter λi for a desired performance?

Fine-Tuning Ψ∗
T1

Ψ∗
T2

Searching λ1, λ2 in [−2, 3]
(λ1, λ2) N/A (1, 0) (0, 1) (1.2,−0.6)
T ′ Acc 92.21 88.10 45.06 91.74

Table 2: Comparison between the test accuracy (%) by different methods with ∆ΨT1 and ∆ΨT2 . Searching λ1

and λ2 refers to evaluating Ψ = Ψ(0) + λ1∆ΨT1 + λ2∆ΨT2 on T ′ with λ1, λ2 ∈ {−2,−1.8,−1.6, · · · , 3}.

3 A DEEP DIVE INTO TASK VECTORS

We first summarize the main insights in Section 3.1. Section 3.2 introduces the mathematical for-
mulation of data and model. Sections 3.3 and 3.4 present the formal theoretical results on task
arithmetic for multi-task learning, unlearning, and out-of-domain generalization. Section 3.5 the-
oretically proves the existence of a low-rank approximation or a sparse version of task vectors to
maintain the performance.

3.1 MAIN THEORETICAL INSIGHTS

We focus on a set of binary classification tasks, where the labels in each task are determined by the
majority between the discriminative tokens versus their opposite tokens in each data. This follows
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the theoretical setting in (Cao et al., 2022; Kou et al., 2023; Li et al., 2023a; 2024c). We consider
one-layer single-head Transformers. Our major takeaways are:

P1. Quantitative Analysis of Multi-Task Learning and Unlearning via Task Addition and
Negation. Let α represent the correlations between two tasks T1 and T2, where positive, neg-
ative, and zero values correspond to aligned, contradictory, and irrelevant tasks, respectively. We
prove that the merged model, Ψ = Ψ(0) +∆ΨT1

+ λ∆ΨT2
, is successful for multi-task learning if

λ ≥ 1− α+ β for some small constant β. Moreover, the merged model is successful in unlearning
T2 if λ ≤ 0 for irrelevant tasks or if λ ∈ [−Θ(α−2), O(α−1)] for contradictory tasks.

P2. Successful Out-of-domain Generalization through Task Arithmetic. Given the correlation
γi between each existing task Ti and the target task T ′, we prove that as long as not all Ti are
irrelevant to T ′, we can achieve a desired out-of-domain generalization on T ′ using task arithmetic.
We explicitly quantify the arithmetic hyperparameter as functions of γi’s.

P3. Low-rank Approximation and Magnitude-Based Pruning Preserves the Model Editing
Performance. We provide the first theoretical generalization guarantees for the practical techniques
of low-rank approximation and task vector sparsity that reduce computation. Focusing on binary
classification tasks based on discriminative patterns, we demonstrate that both sparsification of task
vectors in the MLP layer (by removing rows with small magnitudes) and low-rank approximations
of task vectors offer guaranteed generalization through task arithmetic.

3.2 PROBLEM FORMULATION

Suppose that data X = (x1,x2, · · · ,xP ) ∈ Rd×P contains P tokens, where each token is d-
dimensional and ∥xi∥ = 1 for i ∈ [P ]. The label y ∈ {+1,−1} is a scalar. We consider the
learning model as a single-head one-layer Transformer with one self-attention layer and one two-
layer perceptron, which is mathematically written as

f(X; Ψ) =
1

P

P∑
l=1

a⊤
(l)Relu(WO

P∑
s=1

WV xssoftmaxl(xs⊤W⊤
KWQxl)), (4)

where Ψ = {{a(l)}Pl=1,WO,WV ,WK ,WQ} denotes the set of all the model parameters.
a(l) ∈ Rm and WO ∈ Rm×ma are the weights in the MLP layer. WV ∈ Rma×d,
WK ,WQ ∈ Rmb×d are weights in the self-attention layer. softmaxl((WKxi)

⊤WQxl) =

e(WKxi)
⊤WQxl/

∑P
j=1 e

(WKxj)
⊤WQxl . min{ma,mb} > d.

Fine-tuning algorithm for task vectors. Denote {Xn, yn}Nn=1 as a dataset with N data points for
the task function T , i.e., yn = T (Xn) for n ∈ [N ]. We fine-tune the model by minimizing the
empirical risk function, i.e., minΨ

1
N

∑N
n=1 ℓ(X

n, yn; Ψ), via stochastic gradient descent (SGD) to
obtain the task vector ∆ΨT for T . We use the Hinge loss ℓ(X, y,Ψ) = max{1 − y · f(X; Ψ), 0}
as the loss function. For simplicity of analysis, we let W = W⊤

KWQ ∈ Rd×d and V = WOWV ∈
Rm×d as (Jelassi et al., 2022; Huang et al., 2023; Zhang et al., 2023a). At the t-th iteration, t =
0, 1, · · · , T − 1, the gradient is computed using a mini-batch Bt with |Bt| = B. The step size is
η ≤ O(1). Every entry of W and V is initialized from N (0, ξ2) where ξ ≤ 1/

√
m. Each a(l)i is

sampled from {+1/
√
m,−1/

√
m}. a(l) does not update during the fine-tuning.

Following (Cao et al., 2022; Bu et al., 2024), we consider the data formulation as in Definition 2.

Definition 2. Denote µT ∈ Rd as the discriminative pattern for the task T . Let {v1,v2, · · · ,vM}
be a set of d-dimensional orthonormal vectors that spans the subspace of task-irrelevant tokens
vj ⊥ µT , j ∈ [M ]. Then, each (X, y) ∼ DT is generated as follows:

• Randomly generate the label y from {+1,−1} with an equal probability.

• Each token is randomly chosen from {µT ,−µT } ∪ {v1, · · · ,vM}. If y = 1 (or −1),
the number of tokens equal to µT (or −µT ) is larger than that of −µT (or µT )1. µT and
−µT (or “−µT and µT ”) are referred to label-relevant and confusion patterns for y = 1

1This is motivated by empirical observations that embeddings of data with opposite labels, such as anony-
mous words, are significantly distinct (Engler et al., 2022) and even in opposite directions (Liu et al., 2024).
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(or y = −1), respectively. The average fractions of label-relevant, confusion tokens, and
each vi, i ∈ [M ] are δ∗, δ#, and (1− δ∗ − δ#)/M , respectively.

The basic idea of Definition 2 is that each label is determined by the dominant tokens with ±µT
patterns while all vi do not affect labels.

3.3 HOW DO TASK ADDITION AND NEGATION AFFECT THE PERFORMANCE?
Next, we investigate the generalization of task addition and negation with task vectors obtained by
fine-tuning. Consider the setting where V = {1, 2} with ∆ΨT1 and ∆ΨT2 as the task vectors for two
binary tasks T1 and T2, respectively. T1 (or T2) is defined based on µT1 (or µT2 ) as the discriminative
pattern following Definition 2. Hence, Ψ = Ψ(0) +∆ΨT1

+ λ∆ΨT2
.

Denote α = µT1
⊤µT2

∈ [−1, 1], β = poly(ηδ∗) + Θ(ϵ
√
M)(< Θ(1)). Suppose the number of

neurons m ≳ M2 logM with M = Θ(d). Motivated by experiments in Table 1, we discuss three
cases, i.e., α > 0, α < 0, and α = 0, which corresponds to an “aligned”, “contradictory”, or
“irrelevant” relationship between T1 and T2, respectively. Then, we state Theorem 1 for multi-task
learning with the merged model Ψ.
Theorem 1. (Success of Multi-Task Learning on Irrelevant and Aligned Tasks) For any ϵ ∈ (0, 1)
and task T , suppose the following conditions hold when fine-tuning a pre-trained model: (i) the
batch size B ≥ Ω(ϵ−2 logM), (ii) the step size η ≤ O(1), (iii) the number of training it-
erations t ≥ T = Θ(η−1δ−2

∗ ), then the returned model Ψ∗
T achieves a generalization error

E(X,y)∼DT [ℓ(X, y; Ψ∗
T )] ≤ Θ(ϵ).

Moreover, given task vectors ∆ΨT1 and ∆ΨT2 obtained by fine-tuning as above for tasks T1 and T2,
the resulting Ψ = Ψ(0) +∆ΨT1

+ λ∆ΨT2
satisfies

E(X,y)∼DT1
ℓ(X, y; Ψ) ≤ Θ(ϵ) + |λ| · β, and E(X,y)∼DT2

ℓ(X, y; Ψ) ≤ Θ(ϵ) (5)

provided that α ≥ 0, λ ≥ 1− α+ β.
Remark 1. Theorem 1 first states the sufficient conditions during the fine-tuning stage to obtain
proper task vectors. Then, it characterizes the region of λ to ensure both tasks achieve Θ(M−1)
or Θ(ϵ) generalization error by adding task vectors. For irrelevant tasks with α = 0, a constant
λ ≥ 1 − β is required. This implies that adding up the task vector ∆ΨT2 in Ψ results in a desired
performance of multi-task learning. For aligned tasks with α > 0, we can obtain a good multi-task
learning performance if λ ≥ 1 − α + β. For contradictory tasks with α < 0, we cannot find the
proper λ such that Ψ obtains a small error on both T1 and T2 simultaneously, which means Ψ can
hardly generalize well on contradictory tasks.

We then study the unlearning using the merged model Ψ in different cases of α.
Theorem 2. (Success of Unlearning on Irrelevant and Contradictory Tasks) Given task vectors
∆ΨT1

and ∆ΨT2
that are fine-tuned following conditions (i)-(iii) in Theorem 1, the resulting Ψ =

Ψ(0) +∆ΨT1 + λ∆ΨT2 satisfies
E(X,y)∼DT1

ℓ(X, y; Ψ) ≤ Θ(ϵ) + |λ| · β, and E(X,y)∼DT2
ℓ(X, y; Ψ) ≥ Θ(1) (6)

when (A) α = 0, λ ≤ 0; or (B) α < 0, and −Θ(α−2) ≤ λ ≤ poly(ηδ∗)α, or (C) 0 < α < 1− c for
some c = Θ(1), and 0 ≤ λ ≤ c/2;
Remark 2. For irrelevant tasks with α = 0, a constant λ ≤ 0 can ensure a perfect unlearning on
T2 while retaining on T1. For contradictory tasks with α < 0, the unlearning performance is desired
if a negative λ is in [−Θ(α−2),−poly(ηδ∗)/α], i.e., negating ∆ΨT2

. For aligned tasks with α > 0,
a proper λ for unlearning to be successful only exists when α is small, indicating that unlearning
becomes more challenging when tasks are more aligned.
Remark 3. Theorem 1 and 2 generally justify the validity of task addition, i.e., λ > 0 for multi-task
learning and negation, i.e., λ < 0, for unlearning as long as |λ| is not too large. The appropriate
region for λ is determined by α, the correlation between the tasks.

3.4 CAN A MODEL PROVABLY GENERALIZE OUT-OF-DOMAIN WITH TASK ARITHMETIC?
Consider {∆ΨTi

}i∈VΨ
as a set of task vectors fine-tuned on Ψ(0) for binary classification tasks

{Ti}i∈VΨ
. Each task Ti is defined with µTi

, i ∈ VΨ as the discriminative pattern following Def-
inition 2. Given the observation that task vectors are usually orthogonal to each other in practice
(Ilharco et al., 2022a), we study the setup where {µTi}i∈VΨ forms a set of orthonormal vectors.
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We analyze the out-of-domain generalization on data (X, y) ∼ DT ′ for the task T ′, where the
discriminative pattern is denoted by µT ′ , and µT ′ =

∑
i∈VΨ

γiµTi
+κ ·µ′

⊥ with µ′
⊥ ⊥ {µTi

}i∈VΨ
,

∥µT ′∥ = ∥µ′
⊥∥ = 1, γi, κ ∈ R for i ∈ VΨ. Note that µT ′ contains a component µ′

⊥ that is
orthogonal to all discriminative patterns of existing tasks, characterizing it as an out-of-domain task.

The following theorem summarizes the required conditions for out-of-domain generalization on T ′.
Theorem 3. (Out-of-domain generalization using task arithmetic) Suppose µTi

⊥ µTj
for i ̸=

j, i, j ∈ VΨ . Let Ψ =
∑
i∈VΨ

λi∆ΨTi +Ψ(0), λi ̸= 0. Then, given that each ∆ΨTi is fine-tuned to
achieve Θ(ϵ) error following conditions (i)-(iii) in Theorem 1, as long as the following conditions
(A) there exists i ∈ VΨ s.t., γi ̸= 0 , and (B)

∑
i∈VΨ

λiγi ≥ 1 + c,∑
i∈VΨ

λiγ
2
i ≥ 1 + c,

|λi| · β ≤ c, for some c ∈ (0, 1) and all i ∈ VΨ,

(7)

we have E(X,y)∼DT ′ ℓ(X, y; Ψ) ≤ Θ(ϵ). (8)

Remark 4. Theorem 3 implies that linear operations of task vectors can produce a model that can
generalize well on out-of-domain tasks T ′ that has a distribution shift from tasks Ti, i ∈ VΨ. With
properly fine-tuned task vectors, the conditions to make out-of-domain generalization successful are
(1) the discriminative pattern of the target task T ′ has a non-zero projection onto at least one of the
discriminative pattern of tasks Ti, i ∈ VΨ; (2) the weighted summation of γi and γ2

i with λi as the
coefficient should be greater than the margin of the binary classification task; (3) the absolute value
of each λi is not too large to avoid large errors to the resulting model Ψ.
Remark 5. Note that λi satisfying (7) exists under mild conditions. In (75) of Appendix, we provide
a closed-form solution that meets (7). We omit them from the main paper to simplify the presentation.

3.5 CAN TASK VECTORS BE IMPLEMENTED EFFICIENTLY?
In this section, we theoretically investigate how to improve the computation efficiency of task vector
techniques during inference. We focus on two properties of task vectors, low rankness and sparsity.

Consider the fine-tuned model Ψ∗
T = {{a(l)}Pl=1,W

∗
OT ,W

∗
V T ,W

∗
KT ,W

∗
QT } with W ∗

T =

W ∗
K

⊤
T W

∗
QT and V ∗

T = W ∗
OT W

∗
V T from Lemma 1. Denote ∆WT = W ∗

T − W (0) and
∆VT = V ∗

T − V (0). We have the following conclusions.
Corollary 1. (Low-rank approximation) For any task T defined in Section 3.2, there exists
∆WLR ∈ Rd×d and ∆VLR ∈ Rm×d with rank(∆WLR) = rank(∆VLR) = 1, such that

∥∆WT −∆WLR∥F ≤ M · ϵ+ 1

logM
, and ∥∆VT −∆VLR∥F ≤ δ−1

∗ ϵ, (9)

hold. Moreover, Theorems 1-3 hold by replacing ∆WT and ∆VT with ∆WLR and ∆VLR in the
task vectors and replacing ϵ with ϵLR = (log η−1 + δ−1

∗ )ϵ in the results.
Remark 6. Corollary 1 states that when ϵ ∈ (0, (M logM)−1), we can find a rank-12 approxi-
mation of W ∗ and V ∗ with an error less than Θ(log−1 M) to ensure that all Theorems hold with
roughly the same generalization error. Specifically, with ϵ error derived in Theorems 1-3, using
rank-1 approximation leads to ϵLR = (log η−1 + δ−1

∗ )ϵ, which equals Θ(ϵ) given η and δ∗ as
constants. Hence, Corollary 1 indicates that low-rank approximation of individual task vectors
generally preserves the performance of the model after applying task arithmetic.

We also prove that task vectors are approximately sparse in Corollary 2, which implies that pruning
task vectors does not change the generalization.
Corollary 2. (Sparsity of task vectors) There exists L ⊂ [m] with |L| = Θ(m) s.t.,

∥ui∥ ≥ Ω(m−1/2), i ∈ L; ∥ui∥ ≤ O(m−1/2
√

logB/B), i ∈ [m]\L, (10)

where ui is the i-th row of ∆V ∗
T and B is the batch size of fine-tuning lower bounded in condition

(i) of Lemma 1. Then, pruning all rows in [m]\L of ∆V ∗
T ensures Theorems 1-3 to hold.

2The rank-1 approximation results from our simplified model that has one discriminative pattern per task.
Our result indicates that the proper rank for approximation depends on the number of discriminative patterns
for each task, which is far smaller than the model dimension in practice.
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Remark 7. Corollary 2 illustrates that a constant fraction of rows in ∆V ∗
T in L has a large mag-

nitude, while the remaining ones in [m]\L have much smaller magnitude. Then, we prove that
removing rows in [m]\L does not hurt the performance of multi-task learning, unlearning, and out-
of-domain generalization by task arithmetic. This indeed justifies the existence of redundancy in
“Delta parameters,” a similar notion of task vectors, defined in (Yu et al., 2024), and verifies the
validity of magnitude-based pruning on task vectors like TIES (Yadav et al., 2023) or DARE (Yu
et al., 2024).

3.6 PROOF SKETCH AND TECHNICAL NOVELTY

We first provide the following informal lemma for the fine-tuned task vector. Lemma 1 provides the
convergence of the fine-tuning process and the properties the obtained task vector satisfies.

Lemma 1. (informal) A model Ψ has a generalization error Θ(ϵ) on task T (with the discriminative
pattern µT ) if ∆Ψ := Ψ−Ψ(0) = {∆W ,∆V } satisfy both conditions as follows:

(A) the attention weights between two label-relevant patterns are dominant, while the attention
values between a label-relevant pattern and any other pattern are close to zero;

(B) A constant fraction of rows in ∆V in the MLP layer has a large magnitude with a direction
either close to µT or −µT , while the remaining rows have small weights.

Moreover, any task vector obtained by fine-tuning on task T satisfying conditions (i)-(iii) in Theorem
1 satisfy conditions (A) and (B) for task T .

The proof ideas of Theorems 1 and 2 are as follows. To ensure a successful multi-task learning
stated in (2), we need ∆ΨT1

+ λ∆ΨT2
satisfying both conditions (A) and (B) in Lemma 1 for tasks

T1 and T2. To ensure unlearning T2 and maintaining the generalization in T1 as stated in (3), we
need ∆ΨT1

+λ∆ΨT2
satisfying (A) and (B) for T1 but failing either (A) or (B) for T2. When α = 0,

the component of ∆ΨTi
in Ψ has negligibile effect on data from Tj , for any i ̸= j, i, j ∈ {1, 2}.

When α > 0, both T1 and T2 should tend to favor λ > 0 for a good generalization. When α < 0, T1
prefers a negative λ, while T2 prefers a positive λ.

To prove the out-of-domain generalization in Theorem 3, we need to find a proper set of λi, i ∈
VΨ ∩V ′ such that

∑
i∈VΨ

λi∆ΨTi
hold for conditions (A) and (B) in Lemma 1 for the task T ′. The

proof idea for Corollaries 1 and 2 comes from an observation from Lemma 1. That is, Conditions (A)
and (B) demonstrate that the rows in ∆V and the matrix ∆W only enlarge tokens in the direction
of label-relevant pattern or its opposite. This implies the sparsity of ∆V and the low-rank property
of the entire ∆Ψ. The proofs for Theorems 1 and 2 and 3 and Corollaries 1 and 2 can be found in
Appendix D, respectively.

Technical Novelty. Compared with (Li et al., 2023a), Lemma 1 establishes a more fine-grained
characterization of ∆ΨT , which allows us to perform a detailed analysis of layer-by-layer outputs of
the merged model. Furthermore, Lemma 1 extends the theoretical analysis to training from random
initialization with two merged trainable parameter matrices W and V .

Moreover, to the best of our knowledge, we provide the first generalization analysis of task arith-
metic in model editing (Theorems 1, 2, and 3). The merged model Ψ preserves the nonlinearity of
task vectors from the nonlinear model architecture rather than linearizing the model by impractical
infinite wide network assumption in (Ortiz-Jimenez et al., 2023). This allows us to expand the un-
derstanding of task arithmetic beyond the NTK region as in (Ortiz-Jimenez et al., 2023), where the
problem is extremely overparameterized.

4 NUMERICAL EXPERIMENTS

We conduct extensive experiments on image classification and natural language generation to verify
the effectiveness of task vectors in different downstream tasks. For image classification, we use
the ViT-Small/16 model (Dosovitskiy et al., 2020) pre-trained from ImageNet-21K (Russakovsky
et al., 2015) for downstream tasks with Colored-MNIST (Arjovsky et al., 2019; Chapel et al., 2020).
For natural language generation, we use the open-source Phi-1.5 (1.3B) language model (Gunasekar
et al., 2023; Li et al., 2023d). We repeat the experiment using LoRA with Phi-3-small (7B) in
Appendix B.
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4.1 EXPERIMENTS ON IMAGE CLASSIFICATION

Experiment Setup. To control the correlation between tasks, we use Colored-MNIST for image
classification tasks. We designed binary classification problems based on the parity of digits, where
odd digits are labeled as +1 and even digits as −1. We utilize two colors, red and green, to construct
different task correlations. Define ro and re as the proportion of red colors in odd and even digits,
respectively. Then, the proportion of green colors in odd and even digits are 1 − ro and 1 − re, re-
spectively. Across all of our experiments, we set re = 1−ro. The correlation α̂(Ψ∗

T1
,Ψ∗

T2
) between

two tasks T1 and T2, with D1 and D2 respectively as the corresponding test set, is approximated by
their averaged cosine similarity between centered outputs from the two fine-tuned models, i.e.,
α̂(Ψ∗

T1
,Ψ∗

T2
) = 1/2(α̂(Ψ∗

T1
,Ψ∗

T2
,D1) + α̂(Ψ∗

T1
,Ψ∗

T2
,D2)),

where α̂(Ψ∗
T1
,Ψ∗

T2
,Dj) =

∑
i∈Dj

cos
〈
ỹi1,j , ỹ

i
2,j

〉
|Dj |

, ỹil,j = ŷil,j −
1

|Dj |
∑
i∈Dj

ŷil,j , l, j ∈ {1, 2}. (11)

ŷil,j represents the i-th output of the fine-tuned model Ψ∗
Tl

on the test set Dj . Note that to compute
α̂(Ψ∗

T1
,ΨT ∗

2
) by (11), we do not require the availability of extra models or datasets except Ψ∗

T1
,

Ψ∗
T1

, and the test set D1 and D2.

Experiment Results. We first investigate the ability of task arithmetic using Ψ = Ψ(0) +∆ΨT1
+

λ∆ΨT2
to handle multi-task learning and unlearning under three cases in terms of task correlations.

Let ro = 0.95 for T1. In case I, let ro = re = 0.5 in T2. In case II, let ro = 0.9 in T2, and in
case III, let ro = 0.05 in T2. The computed correlations α̂(Ψ∗

T1
,Ψ∗

T2
) of the above three settings

are 0.164, 0.891, and −0.849, which corresponds to irrelevant (α ≈ 0), aligned (α > 0), and
contradictory (α < 0) tasks discussed in Theorem 1, respectively. Figure 1 illustrates that when
tasks are irrelevant, successful multi-task learning on both tasks and unlearning on task T2 can be
achieved when λ ≥ 1 and λ ≤ 0, respectively. When tasks are aligned, the trend of testing accuracy
of Ψ on T1 and T2 are consistent. A superior multi-task learning performance can be observed when
λ > 0, and one cannot find a region of λ where T2 is unlearned while maintaining the accuracy for
T1. When tasks are contradictory, one can obtain a good unlearning behavior when λ ≤ 0, and no
selection of λ can achieve multi-task learning. This result verifies Theorems 1 and 2 for α = 0,
α > 0, and α < 0, respectively.

(A) Irrelevant tasks (B) Aligned tasks (C) Contradictory tasks
Figure 1: Testing accuracy of the merged model Ψ on task T1 and T2.

(A) (B)
Figure 2: (A) The heatmap of the testing accu-
racy (the color bar %) on T ′ using the merged
model Ψ. The black dot is the baseline, while
the green cross is the best λ1, λ2. (B) The red re-
gion satisfies (7), while the blue region does not.

We then study the out-of-domain generalization capa-
bility of task arithmetic. We consider a merged model
Ψ = Ψ(0) + λ1∆ΨT1 + λ2∆ΨT2 constructed by two
task vectors. In T1, we let ro = 0.85, while in T2, we
let ro = 0.05. In the target task T ′, ro = 0.9. We
compute that α̂(Ψ∗

T1
,Ψ∗

T2
) = 0.115, which means

T1 and T2 are approximately irrelevant. Figure 2 (A)
demonstrates that in a triangular region with the black
dashed line of λ1 and λ2, we can achieve a good
generalization performance. This region is consistent
with the red region in Figure 2 (B), which is produced
by condition (7)3 where γ1 and γ2 are estimated by
α̂(Ψ∗

T1
,Ψ∗

T ′) = 0.792 and α̂(Ψ∗
T2
,Ψ∗

T ′) = −0.637.
We choose small values β = 0.01, c = 0.02. The
result justifies the sufficient conditions for a successful out-of-domain generalization in Theorem 3.

3Since the practical classification margin might be smaller than that of Hinge loss used in our theoretical
analysis, we replace 1 + c in (7) with 0.2 + c.
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4.2 EXPERIMENT ON LANGUAGE GENERATION TASK

Experiment setup. We study the unlearning performance using three datasets, “Harry Potter 1”
(HP1), “Harry Potter 2” (HP2) by J.K. Rowling, and “Pride and Prejudice” (PP) by Jane Austen.
We consider HP1 and HP2 as semantically similar and aligned books due to the shared authors
(α̂(Ψ∗

THP1
,Ψ∗

THP2
) = 0.498 by (11)) following Dou et al. (2024), while PP is less aligned with

HP1 than HP2 (α̂(Ψ∗
THP1

,Ψ∗
TPP

) = 0.239 by (11)). We study Next Token Prediction on these three
datasets separately as three different tasks, denoted by THP1, THP2, and TPP, respectively. Then THP1
and THP2 are greatly aligned, while THP1 and TPP are less aligned.

Denote the pre-trained Phi-1.5 model as Ψ(0). We first fine-tune Ψ(0) on all three datasets jointly to
obtain Ψ(0)′, which has favorable generalization for all tasks THP1, THP2, and TPP. Initialized from
Ψ(0), we fine-tune on dataset HP1 to obtain model Ψ∗

HP1. The task vector for THP1 is computed as:
∆ΨHP1 = Ψ∗

HP1 −Ψ(0). The merged model is Ψ = Ψ(0)′ + λ ·∆ΨHP1.

Experiment results. We vary λ and evaluate the performance on THP1, THP2, and TPP, respectively.
The evaluation metric is the Rouge-L score used in (Dou et al., 2024), which measures the ratio
of the longest common sequence between the original book and the LLM’s generation. A higher
score indicates a better generation performance. As shown in Table 3, when λ becomes negative,
the Rouge-L score for THP1 decreases, indicating the success of unlearning. When λ is the smallest
value in the experimental selection (λ = −1), the unlearning performance is the best, with the
Rouge-L decreasing by 37.23% from Ψ(0)′. Moreover, when THP1 is unlearned, the performance
of THP2 also degrades significantly, with the Rouge-L score decreasing by 34.71%. In contrast,
the performance degradation on TPP is much smaller, with a decrease by 15.13%4. This verifies
Theorem 2 that unlearning a task THP1 can effectively degrade the performance of the aligned task
(THP2) as well, while the performance degradation on the less aligned task (TPP) is relatively smaller.

λ 0 (baseline) −0.2 −0.4 −0.6 −0.8 −1

THP1 0.2213 0.2211 0.1732 0.1866 0.1572 0.1389 (37.23% ↓)
THP2 0.2302 0.2032 0.2111 0.2034 0.1695 0.1503 (34.71% ↓)
TPP 0.1983 0.1888 0.1877 0.1802 0.1932 0.1683 (15.13% ↓)

Table 3: Rouge-L scores of THP1, THP2, and TPP by Ψ = Ψ(0)′+λ ·∆ΨHP1 using full-rank task vector ∆ΨHP1.

We also implement our experiment using LoRA in fine-tuning to compute the task vector. We set
the rank of each parameter as 32, which requires to tune only 0.35% of total parameters and reduces
the peak memory consumption by 54%. Let ∆ΨLR

HP1 denote the resulting low-rank task vector for
THP1. We repeat the experiments by replacing ∆ΨHP1 with ∆ΨLR

HP1. Comparing Table 4 to Table 3,
on can see that all the insights still hold when using a low-rank task vector, verifying Corollary 1.

λ 0 (baseline) −0.2 −0.4 −0.6 −0.8 −1

THP1 0.2432 0.2033 0.1857 0.1665 0.1439 0.1568 (35.53% ↓)
THP2 0.2335 0.1932 0.2065 0.1813 0.1664 0.1772 (24.11% ↓)
TPP 0.2111 0.2001 0.1884 0.1963 0.1849 0.1819 (13.83% ↓)

Table 4: Rouge-L scores of THP1 THP2, and TPP by Ψ = Ψ(0)′ +λ ·∆ΨLR
HP1 using low-rank task vector ∆ΨLR

HP1.

5 CONCLUSIONS

In this paper, we theoretically investigate the generalization ability of the task vector technique.
Based on feature learning analysis of a one-layer nonlinear Transformer, we quantitatively charac-
terize the selection of arithmetic hyperparameters and their dependence on task correlations so that
the resulting task vectors achieve desired multi-task learning, unlearning, and out-of-domain gen-
eralization. We also demonstrate the validity of using sparse or low-rank task vectors. Theoretical
results are justified on large language models. Future directions include analyzing the performance
of task vectors in more complex models and designing more robust task vector selection methods.

4Note that the task vector method leads to a 13.1% decrease in Rouge-L score on BOOKS dataset on average
(Shi et al., 2024). The state-of-the-art unlearning methods are empirically shown to result in a performance drop
in utility (Maini et al., 2024; Shi et al., 2024).
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Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023.
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A ADDITIONAL DISCUSSION

It was brought to our attention after the acceptance of ICLR 2025 in January 2025, that there is a
recent submission on arxiv in February 2025 (Zeng et al., 2025) that also considers the theoretical
generalization analysis of task vectors in multi-task learning, unlearning, and out-of-domain gener-
alization. Their analysis is built upon assumptions that (i) the studied models are already fine-tuned
(Assumption 4.1); (ii) the norm of task vectors is upper bounded (Assumption 4.1); (iii) different
task vectors are almost orthogonal to each other (Assumption 4.2). In contrast, although our analysis
is based on a one-layer single-head Transformer, we do not rely on the aforementioned assumptions.
Our results show that the convergent models trained with SGD yield task vectors that support multi-
task learning, unlearning, and out-of-distribution (OOD) generalization. We analyze the behavior of
task arithmetic under aligned, irrelevant, and contradictory task relationships without requiring the
orthogonality assumption between task vectors. Moreover, unlike (Zeng et al., 2025) that assumes
sparsity of task vectors, we theoretically prove that task vectors obtained via fine-tuning can exhibit
both low-rank structure and sparsity.

B ADDITIONAL EXPERIMENTS

We repeat the language generation experiment in Section 4.2 with Phi-3-small (7B). The task vectors
are obtained by LoRA (Hu et al., 2022). Table 5 shows that the insight of Theorem 2 still holds, i.e.,
unlearning a certain task (HP1) can effectively forget the aligned task (HP2) with a 52.29% decrease
of Rouge-L scores, while the Rouge-L score for the less-aligned task (PP) has a decrease of only
20.65%. Moreover, by using a larger model than Phi-1.5, the unlearning performance of the aligned
task HP2 is improved from 37.23% decrease to 55.61% decrease. In comparison, the performance
difference on the less-aligned PP is much smaller, from 15.13% decrease to 20.65% decrease.

λ 0 (baseline) −0.2 −0.4 −0.6 −0.8 −1

THP1 0.2573 0.1989 0.1933 0.1888 0.1572 0.1142 (55.61% ↓)
THP2 0.2688 0.2113 0.1993 0.1938 0.1622 0.1563 (52.29% ↓)
TPP 0.1942 0.1825 0.1644 0.1687 0.1592 0.1541 (20.65% ↓)

Table 5: Rouge-L scores of THP1 THP2, and TPP by Ψ = Ψ(0)′ + λ ·∆ΨLR
HP1 using low-rank task vector ∆ΨLR

HP1
with Phi-3-small (7B).

C PRELIMINARIES OF THEORY

We first summarize the notations we use in this paper in Table (6).
Definition 3. For a task based on any discriminative pattern µ1,

1. q1(t) = µ⊤
1 W

(t)µ1.

2. Sn: the set of tokens in the n-th data. Sn1 : the set of tokens of µ1 in the n-th data. Sn2 : the
set of tokens of −µ1 in the n-th data. Rn

k : the set of tokens of vk in the n-th data.

3. ϕn(t) =
1

|Sn
1 |eq1(t)2+P−|S1|

.

4. pn(t) =
∑
s,l∈Sn

1 or s,l∈Sn
2

softmaxl(x
n
sW

(t)xnl ).

5. ζi,1,t = V
(t)
(i,·)x

n
s for s ∈ Sn1 .

6. ζ1,t = mini∈[m] ζi,1,t.

7. softmaxl(X
n⊤Wxl) = (softmaxl(x

n
1
⊤Wxl), · · · , softmaxl(x

n
P
⊤Wxl)).

Definition 4. Define

Rn
l (t) :=

P∑
s=1

V (t)xns softmaxl(x
n
s
⊤W (t)xnl ), (12)
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Table 6: Summary of Notations
Notations Annotation
X , xi, Xn, yn X is the input data, which contains P tokens. xi is the i-th token of X . Xn

is the n-th input data with yn as the corresponding label.
Ψ Ψ = {{a(l)}Pl=1,WO,WV ,WK ,WQ} denotes the set of all the model pa-

rameters. a(l) ∈ Rm and WO ∈ Rm×ma are the weights in the MLP layer.
WV ∈ Rma×d, WK ,WQ ∈ Rmb×d are weights in the self-attention layer.

Ψ(0), Ψ∗
T , ∆ΨT Ψ(0) is the pre-trained model. Ψ∗

T is the fine-tuned model on a given task
T . ∆ΨT is the task vector of the task T , which is computed as ∆ΨT =
Ψ∗

T −Ψ(0).
µT , vj µT is the discriminative pattern of the task T . vj is the j-th task-irrelevant

pattern, j ∈ [M ].
δ∗, δ# δ∗ is the average fraction of label-relevant pattern in the input data. δ# is the

average fraction of confusion pattern in the input data.
q1(t), ζ1,t, pn(t) q1(t) = µ⊤

1 W
(t)µ1 denotes the value of the product, where the patterns on

both sides of W (t) are the same. ζ1,t denotes the modified value embedding
of µ1 at the t-th iteration. pn(t) refers to the summation of attention weights
where the key and the query are the same discriminative pattern.

Wn,l, Un,l Wn,l and Un,l respectively represent of sets of positive or negative neurons so
that the Relu activation is activated with xnl as the query.

Bb Bb is the SGD batch at the b-th iteration.
O(), Ω(), Θ() We follow the convention that f(x) = O(g(x)) (or Ω(g(x)), Θ(g(x)))) means

that f(x) increases at most, at least, or in the order of g(x), respectively.
a a = |a(l)i | = 1/

√
m for i ∈ [m].

≳, ≲ f(x) ≳ g(x) (or f(x) ≲ g(x) ) means that f(x) ≥ Ω(g(x)) (or f(x) ≲
O(g(x))).

Define Wn,l, Un,l as the sets of lucky neurons such that

Wn,l = {i : V ⊤
(i,·)Rn,l(0) > 0, l ∈ Sn1 , ai > 0}, (13)

Un,l = {i : V ⊤
(i,·)Rn,l(0) > 0, l ∈ Sn2 , ai < 0}. (14)

Definition 5 ((Vershynin, 2010)). We say X is a sub-Gaussian random variable with sub-Gaussian
norm K > 0, if (E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted

∥X∥ψ2
, is defined as ∥X∥ψ2

= supp≥1 p
− 1

2 (E|X|p)
1
p .

Lemma 2 (Vershynin (2010) Proposition 5.1, Hoeffding’s inequality). Let X1, X2, · · · , XN be in-
dependent centered sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2

. Then for every
a = (a1, · · · , aN ) ∈ RN and every t ≥ 0, we have

Pr
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2∥a∥2

)
, (15)

where c > 0 is an absolute constant.

Lemma 3. For task T based on any µ1, 0 ≤ t ≤ T , there exists K(t) > 0, such that

W (t+1)µ1 = W (t+1)µ1 +K(t)µ1 +

M∑
l=1

ι′lµl, (16)

where

K(t) ≳ η
1

B

∑
n∈Bb

m|Sn1 |
aP

ζ1,tpn(t)ϕn(t)(P − |Sn1 |), (17)

ι′l ≤ K(t) · e−q1(t). (18)
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For k ∈ [M ],

∥µ⊤
1 W

(t)vk∥ ≲

√
logB

B

t∑
b=0

K(b), (19)

and for j ̸= k, j ∈ [M ],
∥v⊤

j W
(t)vk∥ ≲ K(t)e−q1(t), (20)

For any µ′ such that µ⊤
1 µ

′ = α and µ′ ⊥ v1,v2, · · · ,vM , we have

µ′⊤W (t)µ′ = α2µ⊤
1 W

(t)µ1 · (1±Θ(ϵ)), (21)

if B ≥ ϵ−2 logM for some ϵ < 1.

Lemma 4. Given a task T based on any µ1, 0 ≤ t ≤ T . Then, for i ∈ Wn,l,

V
(t)
(i,·)µ1 ≳ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aP

· pn(b), (22)

V
(t)
(i,·)vk ≲ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

, (23)

for k ∈ [M ]. For i ∈ Un,l, we similarly have

−V
(t)
(i,·)µ1 ≳ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn2 |
aP

· pn(b), (24)

V
(t)
(i,·)vk ≲ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

, (25)

for some k ∈ [M ]. For i /∈ Wn,l ∪ Un,l, we have that

V
(t)
(i,·)µ1 ≲

√
logB

B
V

(t)
(j,·)µ1, (26)

V
(t)
(i,·)vk ≲

√
logB

B
V

(t)
(j,·)vk, (27)

where k ∈ [M ], j ∈ Wn,l ∪ Un,l.
Lemma 5. (Full version of Lemma 1) Given a task T defined in Definition 2 based on the discrimi-
native pattern µT , we have that as long as conditions (i)-(iii) in Theorem 1 hold, then the returned
model Ψ∗

T after T iterations achieves a generalization error

E(X,y)∼DT [ℓ(X, y; Ψ∗
T )] ≤ Θ(ϵ). (28)

The required sample complexity is N = BT , where B is the batch size. We also have that

1.
pn(T ) ≥ 1− (1− δ∗)δ

−1
∗ T−C , (29)

for some constant C > 1.

2.
M∑
k=1

∥V (T )
(i,·)vk∥

2 ≲
1

M
∥V (T )

(i,·)µT ∥2, (30)

for i ∈ Wn,l with l ∈ Sn1 and for i ∈ Un,l with l ∈ Sn2 . We also have that (26) and (27)
hold when t = T .
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D PROOF OF MAIN THEOREMS AND COROLLARIES

D.1 PROOF OF THEOREM 1 AND 2

Proof. Since the model is initialized close to zero, then ∆Ψ is close to Ψ. Denote Ψ1 =

{{a(l,1)
P

l=1
},V1,W1} and Ψ2 = {{a(l,2)

P
l=1

},V2,W2}. We consider three cases of this learn-
ing problem.
(1) Consider α = 0. By (21) in Lemma 3, we know that

µ⊤
T1
(W

(T )
1 + λW

(T )
2 )µT1 = µ⊤

T1
W

(T )
1 µT1(1 + λα2(1±Θ(ϵ))) = µ⊤

T1
W

(T )
1 µT1 , (31)

−µ⊤
T1
(W

(T )
1 + λW

(T )
2 )µT1

= −µ⊤
T1
W

(T )
1 µT1

, (32)

µ⊤
T2
(W

(T )
1 + λW

(T )
2 )µT2

= λµ⊤
T2
W

(T )
2 µT2

, (33)

−µ⊤
T2
(W

(T )
1 + λW

(T )
2 )µT2

= −λµ⊤
T2
W

(T )
2 µT2

. (34)
Then, for any l ∈ [M ] and for task T1,∑

s∈Sn
1

softmaxl(xns
⊤W (T )xnl ) ≥ 1− 1− δ∗

δ∗
T−C , (35)

for task T2, ∑
s∈Sn

1

softmaxl(xns
⊤W (T )xnl ) ≥

δ∗T
λC

δ∗TλC + (1− δ∗)
≥ 1− 1− δ∗

δ∗
T−λC . (36)

Since that µT2 ⊥ {µT1 ,v1,v2, · · · ,vM} and µT1 ⊥ {µT2 ,v1,v2, · · · ,vM}, we have

V
(T )
(i,·)µT2

= 0, (37)

for V ∈ Ψ1, and
V

(T )
(i,·)µT1 = 0, (38)

for V ∈ Ψ2. Then, for data with the label y = 1, the network output for Ψ1 + λΨ2 is almost the
same as that for Ψ1 on task T1 when |λ| is not too large. To see this, for X from T1, we have

1− 1

P

P∑
l=1

∑
i∈[m]

1

a
Relu((V (T )

1(i,·) + λV
(T )
2(i,·))Xsoftmaxl(Xn⊤(W

(T )
1 + λW

(T )
2 )xnl ))

≤|λ| ·Θ(η
T−1∑
b=0

∑
i∈[m]

1

B

∑
n∈Bb

|Sn1 |
aPM

) · 1− δ∗
δ∗

T−C + |λ| ·Θ(

√
M

logB

B
)

≤|λ| ·Θ(1− δ∗) · poly(ηδ∗) + |λ| ·Θ(ϵ
√
M)

=|λ|β,

(39)

where the second to last step is by (26) and (27) and B ≳ ϵ2 logM . Therefore, a larger |λ| leads to
a performance drop in task T1. For data of T1 with the label y = −1, we can choose λ to be greater
than around 1 to make the network output smaller than −1. Meanwhile, for X from T2, we have

f(Xn,Ψ)

≳(1− 1− δ∗
δ∗

T−Cλ) · λ−Θ(

√
M logB

B
)−Θ(

1− δ∗
δ∗

) · poly(ηδ∗),
(40)

where we need λ ≥ 1 + β so that f(Xn,Ψ) ≥ 1−Θ(ϵ).

If λ ≤ 0, the attention map tends to be uniform. Then, for Xn in task T2, we have

f(Xn; Ψ1 + λΨ2) ≲ − 1

P
, (41)

which leads to
E(X,y)∼DT2

ℓ(X, y; Ψ) ≥ Θ(1). (42)
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(2) Consider α > 0. We first have

µ⊤
T1
(W

(T )
1 + λW

(T )
2 )µT1

= µ⊤
T1
W

(T )
1 µT1

(1 + λα2), (43)

µ⊤
T2
(W

(T )
1 + λW

(T )
2 )µT2

= (λ+ α2)µ⊤
T2
W

(T )
2 µT2

. (44)
Then, for yn = 1 in task T1, we have that when λ > 0,

f(Xn,Ψ)

≳(1−Θ(ϵ)) · (1 + λα)− |λ| ·Θ(η

T−1∑
b=0

∑
i∈[m]

1

B

∑
n∈Bb

|Sn1 |
aPM

) · 1− δ∗
δ∗

T−λC

− |λ| ·Θ(

√
M logB

B
)

≥1 + Θ(λα)− |λ| ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M)

=1 + Θ(λα)− |λ| ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M),

(45)

and for yn = 1 in task T2, we have that when λ ≥ 0,

f(Xn,Ψ) ≳(1− 1− δ∗
δ∗

T−C(λ+α2)) · (λ+ α)−Θ(

√
M logB

B
)

−Θ(
1− δ∗
δ∗

) · poly(ηδ∗).
(46)

Therefore, when λ ≥ 1− α+ β, we have that for task T1,
f(Xn,Ψ) ≥ 1− |λ|β −Θ(ϵ), (47)

and for task T2,

f(Xn,Ψ) ≥(1−Θ(ϵ))(λ+ α)− 1− δ∗
δ∗

· ·poly(ηδ∗)−Θ(

√
M logB

B
)

≥(1−Θ(ϵ))(λ+ α)− β

≥1−Θ(ϵ).

(48)

We can obtain corresponding conclusions for yn = −1. Hence,
E(X,y)∼DT1

ℓ(X, y; Ψ) ≤ Θ(ϵ) + |λ|β, (49)
E(X,y)∼DT2

ℓ(X, y; Ψ) ≤ Θ(ϵ). (50)
Meanwhile, for yn = 1 in task T1, we have that when λ < 0,

f(Xn,Ψ) ≳(1− 1− δ∗
δ∗

T−C − (
1− δ∗
δ∗

T−C(1+λα2) − 1− δ∗
δ∗

T−C)) · (1 + λα)

− (|λ|+ 1) ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M)

≥1 + λα(1− 1− δ∗
δ∗

T−C(1+λα2))− (
1− δ∗
δ∗

T−C(1+λα2) − 1− δ∗
δ∗

T−C)

− (|λ|+ 1) ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M),

(51)

and for yn = 1 in task T2, we have that when λ < 0,

f(Xn,Ψ) ≳(1− 1− δ∗
δ∗

T−C(λ+α2)) · (λ+ α)−Θ(

√
M logB

B
)−Θ(

1− δ∗
δ∗

) · poly(ηδ∗)

≥(1− 1− δ∗
δ∗

T−C − (
1− δ∗
δ∗

T−C(λ+α2) − 1− δ∗
δ∗

T−C)) · (λ+ α)

−Θ(

√
M logB

B
)−Θ(

1− δ∗
δ∗

) · poly(ηδ∗)

≥λ+ α(1− 1− δ∗
δ∗

T−C(λ+α2))− λ(
1− δ∗
δ∗

T−C(λ+α2) − 1− δ∗
δ∗

T−C)

−Θ(

√
M logB

B
)−Θ(

1− δ∗
δ∗

) · poly(ηδ∗).

(52)
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Then, for task T1, when 0 > λ ≥ −Θ(1/α2),

E(X,y)∼DT1
ℓ(X, y; Ψ)

=min{Θ(−λα(1− 1− δ∗
δ∗

T−C(1+λα2)) + (
1− δ∗
δ∗

T−C(1+λα2) − 1− δ∗
δ∗

T−C) + ϵ

+ (|λ|+ 1) ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗) + |λ| ·Θ(ϵ
√
M)),Θ(1)}

≥min{Θ(−λα+ (|λ|+ 1) · poly(ηδ∗) + |λ| ·Θ(ϵ
√
M)),Θ(1)}

=min{Θ(−λα+ |λ|β + poly(ηδ∗)),Θ(1)},

(53)

Hence,
E(X,y)∼DT1

ℓ(X, y; Ψ) ≥ min{Θ(−λα+ (1 + |λ|)β),Θ(1)}. (54)

When λ < −Θ(1/α2),
E(X,y)∼DT1

ℓ(X, y; Ψ)

=Θ(1− 1

M
· 1

M
·M)

≥Θ(1).

(55)

For task T2, when 0 > λ ≥ Θ(1)− α2,

E(X,y)∼DT2
ℓ(X, y; Ψ)

=min{Θ(1− λ− α+ α
1− δ∗
δ∗

T−C(λ+α2) + λ(
1− δ∗
δ∗

T−C(λ+α2) − 1− δ∗
δ∗

T−C) + ϵ

+Θ(

√
M logB

B
) + Θ(

1− δ∗
δ∗

) · poly(ηδ∗)),Θ(1)}

≥min{Θ(1 + ηC − λ− α+Θ(poly(ηδ∗) + ϵ
√
M)),Θ(1)}

=min{Θ(1 + ηC − λ− α+ β),Θ(1)},

(56)

where the second step is by λ+ α ≥ Θ(1) + α− α2 ≥ Θ(1). When λ < Θ(1)− α2 < 0,

E(X,y)∼DT2
ℓ(X, y; Ψ) ≥ Θ(1). (57)

(3) Consider α < 0. When λ ∈ (−Θ(1/α2), 0), we have that for task T1,

f(Xn,Ψ)

≳(
1− 1−δ∗

δ∗
T−C(1+λα2)

1− 1−δ∗
δ∗

T−C
−Θ(ϵ)) · (1 + λα)− |λ| ·Θ(η

T−1∑
b=0

∑
i∈[m]

1

B

∑
n∈Bb

|Sn1 |
aPM

)

· 1− δ∗
δ∗

T−λC − |λ| ·Θ(

√
M logB

B
)

≥(1−Θ(ϵ)) · (1 + λα)− |λ| ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M)

−
1−δ∗
δ∗

(T−C(1+λα2) − T−C)

1− 1−δ∗
δ∗

T−C
(1 + λα)

≥(1−Θ(ϵ)) · (1 + λα)− |λ| ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M)

− poly(ηδ∗)λα2(− log ηδ∗)(1 + λα),

(58)

Hence, if λ ≤ poly(ηδ∗)α, we have

f(Xn,Ψ) ≥ 1− |λ|β −Θ(ϵ). (59)

E(X,y)∼DT1
ℓ(X, y; Ψ) ≤ Θ(ϵ) + |λ|β. (60)
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If λ > β
α−β , we have

E(X,y)∼DT1
ℓ(X, y; Ψ) ≥ min{Θ(1),Θ(−λα+ (|λ|+ 1) · poly(ηδ∗) + |λ| ·Θ(ϵ

√
M))}. (61)

If λ ≤ −Θ(1/α2), we have
E(X,y)∼DT1

ℓ(X, y; Ψ) ≥ Θ(1). (62)

For task T2, we have that when λ ≥ 1 + ηC − α+ β,

f(Xn,Ψ) ≳ (1− ηC)(λ+ α)− 1− δ∗
δ∗

· poly(ηδ∗)−Θ(

√
M logB

B
) ≥ 1, (63)

E(X,y)∼DT2
ℓ(X, y; Ψ) ≤ Θ(ϵ). (64)

When λ ≤ 1 + ηC − α+Θ(poly(ηδ∗) + ϵ
√
M),

E(X,y)∼DT2
ℓ(X, y; Ψ) ≥ min{Θ(1), 1 + ηC − λ− α+ β}. (65)

One can easily find that there is no region of λ such that Ψ performs well on both T1 and T2.
However, when −Θ(1/α2) < λ < poly(ηδ∗)α < 1 + ηc − α+ β, we can unlearn T2 and retain the
performance of T1.

D.2 PROOF OF THEOREM 3

Proof. By Lemma 1, we know that

µT ′
⊤W (T )µT ′

=
∑
i∈VΨ

γiµ
⊤
Ti
(
∑
j=1

λjW
(T )
j )

∑
k∈VΨ

γkµTk

≳
∑
i∈VΨ

γ2
i µ

⊤
Ti

· λiW (T )
i µTi

.

(66)

For positive neurons, we also have

V (T )µT ′ =
∑
i∈VΨ

λiVTi

(T )
∑
i∈V′

γiµTi =
∑
i∈VΨ

λiγiVTi

(T )µTi (67)

Then, we need ∑
i∈VΨ

λiγi ≥ 1 + c, (68)

∑
i∈VΨ

λiγ
2
i ≥ 1 + c, (69)

|λi|(Θ(
1− δ∗
δ∗

poly(ηδ∗) + ϵ
√
M)) = |λi|β ≤ c, for some c > 0 and all i ∈ VΨ, (70)

to hold simultaneously.

Then, when γi = k does not hold for all i ∈ VΨ and for some fixed k < 0, we can find λi in the
middle of the normalized γi and γ2

i to satisfy (68) and (69), i.e.,

λi ∝
γi√∑
i∈VΨ

γ2
i

+
γ2
i√∑

i∈VΨ
γ4
i

. (71)

By Cauchy–Schwarz inequality, we have

−
√∑
i∈VΨ

γ2
i ·
√∑
i∈VΨ

γ4
i <

∑
i∈VΨ

γ3
i <

√∑
i∈VΨ

γ2
i ·
√∑
i∈VΨ

γ4
i . (72)
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Hence,

∑
i∈VΨ

λiγi ∝
√∑
i∈VΨ

γ2
i +

∑
i∈VΨ

γ3
i√∑

i∈VΨ
γ4
i

=

√∑
i∈VΨ

γ2
i ·
√∑

i∈VΨ
γ4
i +

∑
i∈VΨ

γ3
i√∑

i∈VΨ
γ4
i

> 0, (73)

∑
i∈VΨ

λiγ
2
i ∝

∑
i∈VΨ

γ3
i√∑

i∈VΨ
γ2
i

+

√∑
i∈VΨ

γ4
i =

√∑
i∈VΨ

γ2
i ·
√∑

i∈VΨ
γ4
i +

∑
i∈VΨ

γ3
i√∑

i∈VΨ
γ2
i

> 0. (74)

Therefore, by letting

λi = Cγ ·

 γi√∑
i∈VΨ

γ2
i

+
γ2
i√∑

i∈VΨ
γ4
i

 , (75)

where

Cγ =
(1 + c)

√∑
i∈VΨ

γ4
i√∑

i∈VΨ
γ2
i ·
√∑

i∈VΨ
γ4
i +

∑
i∈VΨ

γ3
i

, (76)

we can obtain (68) and (69) hold if Cγ ≲ β−1.
When γi = k hold for all i ∈ VΨ and for some fixed k < 0 with |VΨ| > 0, we cannot find λi such
that both (68) and (69) hold.

D.3 PROOF OF COROLLARY 1

Proof. Let {µ1,v1,v2, · · · ,vM} ∪ {u1,u2, · · · ,ud−M+1} form a set of orthonormal vectors,
which is denoted by

U = (µ1,v1,v2, · · · ,vM ,u1,u2, · · · ,ud−M+1). (77)

Note that for any a, b ∈ {µ1,v1,v2, · · · ,vM} ∪ {u1,u2, · · · ,ud−M+1},

a⊤W (0)b =
∑

1≤i,j≤d

aibjW
(0)
i,j ∼ N (0,

∑
1≤i,j≤d

|aibj |ξ2), (78)

where the last step comes from that each entry of W (0) ∼ N (0, ξ2). Given that ∥a∥ = ∥b∥ = 1,
we have ∑

1≤i,j≤d

|aibj | = (|a1|, · · · , |ad|)⊤(|b1|, · · · , |bd|) ≤ 1. (79)

By (90), we know that for a ∈ {u1,u2, · · · ,ud−M+1} and any t = 0, 1, · · · , T − 1,

η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W (t)
a = 0, (80)

a⊤η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W (t)
= 0. (81)

Then, we have that for some C > 1,

[U⊤W (T )U ]i,j =


Θ(log T ), i = j = 1,

O(ϵ · 1

eΘ(log T )·(1− 1−δ∗
δ∗ T−C)

) = O(ϵ · T−C), j = 1, 1 ≤ i ≤ M − 1,

O(ϵ · log T ), j ∈ [2,M − 1], i ∈ [1,M − 1],

O(ξ), else.
(82)
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Let Ei,j be the matrix that only the (i, j) entry equals 1, while all other entries are 0. Therefore,

∥U⊤W (T )U −E1,1 ·Θ(log T )∥2F
≤(ϵ · T−C)2 · (M − 1) + (ϵ · log T )2 · (M − 1)(M − 2) + ξ2(d2 −M2)

≤ϵ2 log2 T ·M2 + d2/m

≲ϵ2 ·M2 +
1

logM
,

(83)

where the last step comes from that m ≳ M2 logM and M = Θ(d). Then,

∥W (T ) −UE1,1 ·Θ(log T ) ·U⊤∥F
≤∥W (T )U −UE1,1 ·Θ(log T )∥F · ∥U⊤∥
≤∥U∥ · ∥U⊤W (T )U −E1,1 ·Θ(log T )∥F
≤ϵM + 1/ logM.

(84)

Likewise, by (132), we know that neurons of V (T ) with a non-trivial magnitude are in the direction
of the iterative summation of

(∑P
s=1 x

n
s softmaxl(xns

⊤Wxnl )
)

. Hence, there exists v̂1 ∈ Rm and

v̂2 ∈ Rd such that

∥V (T ) − v̂1v̂2
⊤∥F ≤ Θ(1) ·

√
m ·

√
logB

B
· δ−2

∗ · δ∗ ·
1√
m

≤ δ−1
∗ ϵ (85)

Then, for n such that yn = +1, we have that the low-rank trained model, where W
(T )
LR = UE1,1 ·

Θ(log T ) ·U⊤, satisfies

f(Xn,ΨLR) ≥ 1 · (1− δ∗ϵ) · (1−Θ(ϵ log T )) = 1−Θ((log T + δ∗)ϵ), (86)

which leads to

ℓ(Xn, yn; ΨLR) ≤ Θ(ϵLR), where ϵLR = (log T + δ∗)ϵ. (87)

D.4 PROOF OF COROLLARY 2

Proof. We know that from Lemma 1, there is a number of Ω(m) lucky neurons with large weights.
We can denote the set of lucky neurons as L ⊂ [m]. By combining (148) and (163), we have that
for any lucky neuron ui,

∥ui∥ ≥ ηη−1δ−1
∗ · δ∗ ·

1√
m

= m−1/2. (88)

For any unlucky neurons, by (149), we have

∥ui∥ ≤ m−1/2

√
logB

B
. (89)

Since that B ≥ ϵ−2 logM by Lemma 1, we have that if we remove neurons from m\L, the output
in (158) and (159) will only be affected by a factor of ϵ. Therefore, Lemma 1 still holds, so that
Theorems 1-3 all hold.
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E PROOF OF KEY LEMMAS

E.1 PROOF OF LEMMA 3

For ease of presentation, we sometimes use µ2 to represent −µ1 in the proof. We first investigate
the gradient of W , i.e.,

η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W

=η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂f(Xn; Ψ)

f(Xn; Ψ)

∂W

=η
1

B

∑
n∈Bb

(−yn)
1

P

P∑
l=1

m∑
i=1

a(l)i1[V(i,·)Xsoftmaxl(Xn⊤Wxnl ) ≥ 0]

·
(
V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl )

P∑
r=1

softmaxl(xnr
⊤Wxnl )(x

n
s − xnr )x

n
l
⊤
)

=η
1

B

∑
n∈Bb

(−yn)
1

P

P∑
l=1

m∑
i=1

a(l)i1[V(i,·)X
nsoftmaxl(Xn⊤Wxnl ) ≥ 0]

·
(
V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤
)

(90)

For j, l ∈ Sn1 , we have

softmaxl(xnj
⊤W (t)xnl ) ≳

e∥q1(t)∥

|Sn1 |e∥q1(t)∥ + (P − |Sn1 |)
(91)

For j /∈ Sn1 and l ∈ Sn1 , we have

softmaxl(xnj
⊤W (t)xnl ) ≲

1

|Sn1 |e∥q1(t)∥ + (P − |Sn1 |)
, (92)

where ∥q1(0)∥ = 0. For l /∈ Sn1 ∪ Sn2 , j ∈ [P ], we have

softmaxl(xnj
⊤W (0)xnl ) ≲

1

P
. (93)

Therefore, for s, r, l ∈ Sn1 , let

xns −
P∑
r=1

softmaxl(xnr
⊤W (t)xnl )x

n
r := βn1 (t)µ1 + βn2 (t), (94)

where

βn1 (t) ≳
P − |Sn1 |

|Sn1 |e∥q1(t)∥ + P − |Sn1 |
:= ϕn(t)(P − |Sn1 |). (95)

βn2 (t) =

M1∑
l=2

ι′lµl, (96)

where

|ι′l| ≤ βn1 (t)
|Snl |

P − |Sn1 |
. (97)

Note that |ι′l| = 0 if P = |Sn1 |, l ≥ 2.
If s ∈ Sn1 , we have

V
(t)
(i,·)x

n
s softmaxl(xns

⊤Wxnl ) ≥ ζi,1,t ·
pn(t)

|Sn1 |
. (98)
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If s ∈ Sn2 and j ∈ Sn1 , we have

V
(t)
(i,·)x

n
s softmaxl(xns

⊤W (t)xnl ) ≲ V
(t)
(i,·)x

n
j softmaxl(xnj

⊤W (t)xnl )ϕn(t) ·
|Sn1 |
pn(t)

. (99)

If s /∈ (Sn1 ∪ Sn2 ) and j ∈ Sn1 ,

V
(t)
(i,·)x

n
s softmaxl(xns

⊤W (t)xnl ) ≲ V
(t)
(i,·)x

n
j softmaxl(xnj

⊤W (t)xnl )ϕn(t) ·
|Sn1 |√
Bpn(t)

. (100)

Then, by combining (94) to (100), we have that for l ∈ Sn1 , i ∈ Wn,l,

µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1

≳ζi,1,t · pn(t)ϕn(t)(P − |Sn1 |).

(101)

For l ∈ Sn1 , i ∈ Wn,l, we have that for k ̸= 1, 2,

µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1

= −µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1.

(102)

For l ∈ Sn1 , i ∈ Wn,l, we have that for k ∈ [M ],

v⊤
k V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1

≤µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1

· |Rn
k |

P − |Sn1 |
· |S

n
1 |ϕn(t)
pn(t)

.

(103)

For i ∈ Un,l, by the definition of Un,l in Definition 4, we have

1[V(i,·)X
nsoftmaxl(Xn⊤Wxnl ) ≥ 0] = 0. (104)

For i /∈ Wn,l ∪ Un,l, we have that for j ∈ Wn,l, k ∈ [M ],

µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1

· ϕn(t)
|Sn1 |√
Bpn(t)

.

(105)

µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1

=− µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1.

(106)

v⊤
k V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ1

· ϕn(t)
|Sn1 |√
Bpn(t)

· |Rn
k |

P − |Sn1 |
.

(107)
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When l /∈ Sn1 , we have that xnl
⊤µ1 = 0. If l ∈ Sn2 , we can obtain that

µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2

≳ζi,1,t ·
pn(t)|Sn2 |

|Sn1 |
ϕn(t)(P − |Sn1 |),

(108)

µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2

=− µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2,

(109)

v⊤
k V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2

≤µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2

· |Rn
k |

P − |Sn2 |
|Sn1 |ϕn(t)
pn(t)

,

(110)

where k ∈ [M ], i ∈ Un,l. If i ∈ Wn,l,

1[V(i,·)X
nsoftmaxl(Xn⊤Wxnl ) ≥ 0] = 0. (111)

If i /∈ Wn,l ∪ Un,l, we have that for j ∈ Un,l, k ∈ [M ],

µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2

≤µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2

· ϕn(t)
|Sn1 |√
Bpn(t)

.

(112)

µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2

=− µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2.

(113)

v⊤
k V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2

≤µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤µ2

· ϕn(t)
|Sn1 |√
Bpn(t)

· |Rn
k |

P − |Sn1 |
.

(114)

If l ∈ Rn
k , k ∈ [M ], we have that for j ∈ Wn,l, if V(j,·)

∑P
s=1 x

n
s softmaxl(xns

⊤Wxnl ) > 0,
l′ ∈ Sn1 ,

0 ≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤vk

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl′(xns
⊤Wxnl′) · (xns −

P∑
r=1

softmaxl′(xnr
⊤Wxnl′)x

n
r )x

n
l′
⊤µ1,

(115)
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µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤vk

=− µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤vk,

(116)

v⊤
k V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤vk

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl′(xns
⊤Wxnl′) · (xns −

P∑
r=1

softmaxl′(xnr
⊤Wxnl′)x

n
r )x

n
l′
⊤µ1

· |Rn
k |

P − |Sn1 |
.

(117)

Likewise, if l ∈ Rn
k , k ∈ [M ], V(j,·)

∑P
s=1 x

n
s softmaxl(xns

⊤Wxnl ) > 0, j ∈ Un,l, l′ ∈ Sn1 ,
l′′ ∈ Sn2 ,

0 ≤µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤vk

≤µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl′′(xns
⊤Wxnl′′) · (xns −

P∑
r=1

softmaxl′′(xnr
⊤Wxnl′′)x

n
r )x

n
l′′

⊤µ2,

(118)

µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤vk

=− µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl′′(xns
⊤Wxnl′′) · (xns −

P∑
r=1

softmaxl′′(xnr
⊤Wxnl′′)x

n
r )x

n
l′′

⊤µ2,

(119)

v⊤
k V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl )x

n
r )x

n
l
⊤vk

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl′(xns
⊤Wxnl′) · (xns −

P∑
r=1

softmaxl′(xnr
⊤Wxnl′)x

n
r )x

n
l′
⊤µ1

· |Rn
k |

P − |Sn1 |
.

(120)

Therefore, by the update rule, we know

W (t+1)µ1 =W (t)µ1 − η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W (t)
µ1

=W (t)µ1 +K(t)µ1 +

M∑
l=2

ι′lµl,

(121)

where

K(t) ≳ η
1

B

∑
n∈Bb

m|Sn1 |
aP

ζ1,tpn(t)ϕn(t)(P − |Sn1 |), (122)

ι′l ≤ K(t) ·max
n

{
|Sn1 |ϕn(t)
pn(t)

}
≤ K(t) · e−q1(t). (123)

We know that
W (0)µ1 ≈ 0. (124)
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Then,
q1(t+ 1) = µ⊤

1 W
(t+1)µ1

=µ⊤
1 W

(t)µ1 +K(t)

=q1(t) +K(t)

=

t∑
b=0

K(b).

(125)

Similarly,

W (t+1)µ2 =W (t)µ2 − η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W (t)
µ2

=W (t)µ2 +K(t)µ2 +
∑
l ̸=2

ι′lµl.
(126)

µ⊤
2 W

(t+1)µ2 =

t∑
b=0

K(b). (127)

For k ∈ [M ],

W (t+1)vk = W (t)vk + J1(t)µ1 + J2(t)µ2 +

M∑
l=1

ι′lvl. (128)

By Hoeffding’s inequality (15), with high probability,

∥µ⊤
1 W

(t+1)vk∥ ≤ Θ(1) ·
√

logB

B

t∑
b=0

K(b) ≲ ϵ ·
t∑

b=0

K(b), (129)

where the second step holds if B ≥ ϵ−2 logM . And for j ̸= k, j ∈ [M ],

∥v⊤
j W

(t)vk∥ ≤ K(t)e−q1(t). (130)

For any µ′ such that µ⊤
1 µ

′ = α and µ′ ⊥ {v1,v2, · · · ,vM}, we can write µ′ as αµ1±
√
1− α2µ⊥

for some µ⊥ ⊥ {µ1,v1,v2, · · · ,vM}. Therefore,

µ′⊤W (t+1)µ′ =(αµ1 ±
√
1− α2µ⊥)

⊤
W (t+1)(αµ1 ±

√
1− α2µ⊥)

=α2µ1
⊤W (t+1)µ1 ±Θ(ϵ) · µ1

⊤W (t+1)µ1.
(131)

E.2 PROOF OF LEMMA 4

For ease of presentation, we sometimes use µ2 to represent −µ1 in the proof.

η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂V(i,·)

=η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂f(Xn; Ψ)

f(Xn; Ψ)

∂V(i,·)

=η
1

B

∑
n∈Bb

(−yn)
1

P

P∑
l=1

a(l)i1[V(i,·)Xsoftmaxl(Xn⊤Wxnl ) ≥ 0]

·
( P∑
s=1

xns softmaxl(xns
⊤Wxnl )

)
.

(132)

For n such that yn = +1 and i ∈ Wn,l, we have that

1[V(i,·)Xsoftmaxl(xns
⊤Wxnl ) ≥ 0] = 1, (133)
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and for l ∈ Sn1 ,

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) = pn(t)µ1 +

M2∑
l=1

ι′lvl + ι′M2+1µ2, (134)

where

ι′l ≤ (1− pn(t)) ·
|Rl

k|
P − |Sn1 |

. (135)

If l ∈ Sn2 , we have

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) = p′n(t)µ2 +

M2∑
l=1

κ′
lvl + κ′

M2+1µ2, (136)

where
p′n(t) ≤ pn(t), (137)

κ′
l ≤ (1− pn(t)) ·

|Rl
k|

P − |Sn2 |
. (138)

If l ∈ Rn
k , k ∈ [M ], we have

P∑
s=1

xns softmaxl(xns
⊤Wxnl ) = p′n(t)µ1 + p′′n(t)µ2 + on(t)vk +

∑
l ̸=k

u′
lvl, (139)

where

p′n(t) ≤
|Sn1 |
P

· pn(t), (140)

p′′n(t) ≤
|Sn2 |
P

· pn(t), (141)

on(t) ≤
|Rn

k |
P

· pn(t) (142)

u′
l ≤ (1− |Sn1 |+ |Sn2 |+ |Rn

k |
|Sn1 |

· pn(t)) ·
|Rl

k|
P − |Sn1 | − |Sn2 | − |Rn

k |
. (143)

Therefore, we have

− η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂V
=

M∑
l=1

u′
lvl + qn(t)µ1 + q′n(t)µ2, (144)

where

qn(t)
′ ≳ η

1

B

∑
n∈Bb

|Sn1 |
aP

· pn(t), (145)

|q′n(t)| ≲ η
1

B

∑
n∈Bb

|Sn2 |
aP

· pn(t), (146)

|u′
k| ≲ η

1

B

∑
n∈Bb

|Rn
k |

aP
· (1− pn(t))

1

M
. (147)

Then,

V
(t)
(i,·)µ1 ≥ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aP

· pn(b), (148)

V
(t)
(i,·)µ2 = −V

(t)
(i,·)µ1, (149)

V
(t)
(i,·)vk ≤ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

, (150)
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for k ∈ [M ]. For i ∈ Un,l, we similarly have

V
(t)
(i,·)µ2 ≥ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn2 |
aP

· pn(b), (151)

V
(t)
(i,·)µ1 = −V

(t)
(i,·)µ2, (152)

V
(t)
(i,·)vk ≤ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

, (153)

for some k ∈ [M ]. For i /∈ Wn,l ∪ Un,l, we have that

V
(t)
(i,·)vk ≤

√
logB

B
V

(t)
(j,·)vk, (154)

V
(t)
(i,·)µ1 ≤

√
logB

B
V

(t)
(j,·)µ1, (155)

where k ∈ [M ], j ∈ Wn,l ∪ Un,l.

E.3 PROOF OF LEMMA 1

We know that by Lemma 3 and 4 in (Li et al., 2023a), for i ∈ Wn,l(0) and l ∈ Sn1 , we have that

1[V
(t)
(i,·)R

n
l (t)] = 1, (156)

and for i ∈ Un,l(0) and l ∈ Sn2 , we have that

1[V
(t)
(i,·)R

n
l (t)] = 1. (157)

We also have that the size of Wn,l and Vn,l are larger than Ω(m). Therefore, for yn = +1, by
Lemma 4 and 3, we have

f(Xn; Ψ) =
1

P

P∑
l=1

∑
i∈Wl,n(0)

1

a
Relu(V(i,·)Xsoftmaxl(Xn⊤Wxnl ))

+
1

P

P∑
l=1

∑
i/∈Wl,n(0),a(l)i>0

1

a
Relu(V(i,·)Xsoftmaxl(Xn⊤Wxnl ))

− 1

P

P∑
l=1

∑
i:a(l)i<0

1

a
Relu(V(i,·)Xsoftmaxl(Xn⊤Wxnl )).

(158)

We know that
1

P

P∑
l=1

∑
i∈Wl,n(0)

1

a
Relu(V (T )

(i,·)Xsoftmaxl(Xn⊤W (T )xnl ))

≳
|Sn1 |
P

· m
a

· ζT · pn(T )

≳
|Sn1 |
P

· m
a2

· η
T−1∑
b=0

1

B

∑
h∈Bb

|Sh1 |
P

ph(b) · pn(T ).

(159)

We can derive that

q1(T ) =

T−1∑
b=0

K(b)

≥
T−1∑
b=0

η
1

B

∑
n∈Bb

m|Sn1 |
aP

pn(b)ϕn(b)(P − |Sn1 |)η
b−1∑
c=0

1

B

∑
h∈Bc

|Sh1 |
aP

ph(c)

≳ δ4∗η

T−1∑
b=0

1

eq1(b)
.

(160)
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Therefore, we have that when q1(T ) ≤ O(1) or q1(T ) ≥ Θ(T c) for c = Θ(1), (160) does not hold.
When q1(T ) = Θ(log T ), we have that (160) holds. In this case,

pn(T ) ≥
δ∗T

C

δ∗TC + 1− δ∗
≥ 1− 1− δ∗

δ∗
T−C , (161)

where C > 1. Meanwhile, for l ∈ Rn
k , k ∈ [M ], and any s ∈ [P ],

softmaxl(xns
⊤W (T )xnl ) = Θ(

1

P
). (162)

We can then derive that as long as
T ≳ η−1δ−2

∗ , (163)
we have

|Sn1 |
P

· m
a2

· η
T−1∑
b=0

1

B

∑
h∈Bb

|Sh1 |
P

ph(b) · pn(T ) ≥ 1. (164)

Then,
f(Xn; Ψ) ≥ 1, ℓ(Xn, yn; Ψ) = 0. (165)

With (163), we can also derive that
M∑
k=1

∥V (T )
(i,·)vk∥

2 ≲
1

M
∥V (T )

(i,·)µ1∥2, (166)

which means that for i ∈ Wn,l with l ∈ Sn1 , V (T )
(i,·) is mainly in the direction of µ1. This verifies

condition (B) of Lemma 1. Therefore, by Hoeffding’s inequality (15), for any W ′ ∈ Ψ,

Pr

(∥∥∥ 1

|Bb|
∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W ′ − E
[
∂ℓ(Ψ;P n, zn)

∂W ′

] ∥∥∥ ≥
∣∣∣E [∂ℓ(Ψ;P n, zn)

∂W ′

]
ϵ

)
≤e−Bϵ

2

≤ M−C ,

(167)

as long as
B ≳ ϵ−2 logM. (168)

Then,
E(X,y)∼DT ℓ(X, y; Ψ) ≤ ϵ. (169)

F EXTENSION TO MULTI-CLASSIFICATION

Define that a 2c-classification is achieved by c times of binary classification with the orthonormal
set {µ(1)

T , · · · ,µ(c)
T } as the discriminative patterns for the task T . We have µ

(i)
T ⊥ vm, m ∈ [M ],

i ∈ [c]. The label y is c-dimensional with each entry chosen from {+1,−1}. Specifically, each
(X ∈ Rd×P ,y ∈ Rc) ∼ DT is generated as follows:

• Randomly generate the k-th entry yk, k ∈ [c] of the label y from {+1,−1} with an equal
probability.

• Each token is randomly chosen from {µ(i)
T ,−µ

(i)
T }ci=1 ∪ {v1, · · · ,vM}. If yk = 1 (or

−1), the number of tokens corresponding to µTk
(or −µTk

) is larger than that of −µTk
(or

µTk
). µ

(i)
T and −µ

(i)
T (or “−µ

(i)
T and µ

(i)
T ”) are referred to label-relevant and confusion

patterns for yk = 1 (or yk = −1), respectively. The average fractions of label-relevant and
confusion tokens of µ(i)

T are δ
(i)
∗ and δ

(i)
# , respectively.

We then need c sets of our binary model (4) to generate the output for 2c-classification, i.e.,

f(X; Ψ) = (f1(X; Ψ), f2(X; Ψ), · · · , fc(X; Ψ))

fi(X; Ψ) =
1

P

P∑
l=1

a⊤
(l)i

Relu(WOi

P∑
s=1

WVi
xssoftmaxl(xs⊤W⊤

Ki
WQi

xl)),
(170)
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with Ψ = {{a(l)i}Pl=1,WOi
,WVi

,WKi
,WQi

}ci=1. The dimensions of WOi
,WVi

,WKi
,WQi

,
i ∈ [c] follow Section 3.2.

The learning process is then c independent and parallel binary classification problems for each entry
of the c-dimensional output. After fine-tuning, the trained model of each output entry has a similar
property to Lemma 1 for single binary classification. δ(i)∗ , the fraction of label-relevant pattern µ

(i)
T ,

i ∈ [c], may decrease by c times in average from the binary classification scenario. Therefore, by
condition (iii) of Theorem 1, the number of iterations and samples increases by c2 times, which is a
polynomial of log scale of the number of classes 2c. Then, for the disrminative patterns {µ(i)

T1
}ci=1

of task T1 and {µ(i)
T2
}ci=1 and T2 of task T2, if for any µ

(i)
T1

, there exists a unique µ
(i)
T2

close to be

orthogonal to µ
(i)
T1

, then T1 and T2 are irrelevant. If for any µ
(i)
T1

, there exists a unique µ
(i)
T2

with a

small angle to (or almost opposite to) µ(i)
T1

, then T1 and T2 are aligned (or contradictory). We can
then derive similar conclusions as our Theorems 1 and 2 by combining the results of all the output
entries.
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