Under review as a conference paper at ICLR 2023

A OPTIMIZATION ALGORITHM OF CASCADED TEACHING

In this section, we develop an optimization algorithm to solve the multi-level optimization problem.
We first approximate 77 (A) using one-step gradient descent w.r.t L (A, T, D(‘m)):

Ti(A) ~ Ty = Ty — 0V, L (A, Ty, D) . (13)

We substitute 77 into L (To, D™ (T (A))) and get an approximated objective. Then we ap-
proximate TQ/ using one-step gradient descent w.r.t the approximated loss as 15 ~ TQI =T5 —
NV, L <T27 D(P“)(Tl/)). For the nested function T} (T;_, (- - - T7(A))), we approximate it using

one-step gradient descent T} ~ T}, = Ty, — V1, L (T,€7 D(pse)(T]é_l)), In this way, we can plug
{T;}K | into the validation loss:

K
L (A, Ty (A), DY) + XY L (17, D)
=2

We update A by gradient descend w.r.t the approximated validation loss:

K
AeA—ﬂM(MAﬂJW%+AZFﬂ$DWO : (14)
=2

The above derivation makes it possible to generalize our approach in Section [3]to the K-learner case.

B DETAILS ANALYSIS

To better understand why our cascaded framework works, we have to use the Lipschitz condition
of the transformer-based model. As discussed in [Kim et al.| (2021), the scaled dot-product self-
attention is Lipschitz if the input space is compact. In our case, the compact input space of the
time-series dataset can be written as : [—M, M|P*E*D where M is the upper bound of the whole
dataset and B, L, D represent respectively batch size, input length and hidden dimension. Most of
the variants of transformer including Informer and QS-Selector are still continuously differentiable,
so the Lipschitz condition applies. Assume that the Lipschitz constant of the cascaded models is K.

In the case of two learners, the teacher model and the student model can be simplified as follows:
Fr(T,X;) =Y |

15
Fs(S,X;) =Y (1
where Frr denotes the teacher model and F's denotes the student model. For simplicity, we assume
that the batch size is 3, y=0 and after several iterations the models are close to convergence so that
their gradients are a lot smaller than their parameters. Now we do one-step gradient descent on the
teacher model in Eq.(d) and use the new parameters to generate pseudo label for a specific sample
e; in the unlabeled dataset E. This process can be written as :

Fr(T',e;) = Fr(T + pit1 + pata + psts, e5) (16)

where t; = —nr %Z(T, X;) denotes the parameters update brought by sample X; . Since t; < 1
we can have the following approximation:

0
Fr(T',e;) = Fr(T,ej) + (pit1 + pata +p3t3)87FT(T, ej) . (17

Therefore, when we train student model on the generated pseudo-labeled dataset D®*®, the MSE
loss function can be written as :

12

Under review as a conference paper at ICLR 2023

1i(S.e;) = (Fs(S.e;) — Fr(T',¢;))*
=(Fs(S,e;) — Fr(T,e;)— (18)

0
(p1t1 + pata +p3t3)a7FT(Ta ej))Q ;

After omitting the second-order terms, we have:
1;(S,€5) =ljo + prlj1 + p2lj2 + psljs
2

0
lji - — 2t7,87TFT(T7 6]‘) (FS(S7 ej) - FT(Tv ej))

So the one-step gradient descend for student model in Eq.(3)) can be rewritten as :

0
S'=S - 7]S%lj(

=S+ gjo + p1gj1 + P2gj2 + P39z

S,e;)

0 (20)
st. gjo=— nS%le

0
95 =~ Nspglii

Now we have proven that the dataset-weights directly control the size of the corresponding update
of student model parameters.

C EXTRA EXPERIMENTAL RESULTS

C.1 SCINET AND REFORMER

In this section, we show the performance of the cascaded framework applied to Reformer Kitaev
et al.| (2020) and SCINet|Liu et al.[(2021), a CNN-based neural network for time-series forecasting.
The results are summarized in table[5] As we can see, the usage of the cascaded framework helps the
two models to have 13% of improvement. This proves the scalability of the cascaded framework on
convolutional neural networks and that data-reweighting does not affect the sparse attention mecha-
nism within the Transformer-based models. We also notice that the student SCINet model performs
slightly better than the teacher model. Nevertheless, since the self-study rate is set to 0.2, the two
models have a very similar improvement compared to the baseline model.

C.2 DATASET-WEIGHT GENERATOR

We have evaluated the Cas-Informer with different dataset-weight generator. Due to limited time, we
could only test normal-distribution-based dataset-weight generator on three datasets, among which
the Exchange dataset (financial) records the daily exchange rates of eight different countries ranging
from 1990 to 2016. As we can see in tabld6] the Cas-Informer with Fourier dataset-weight generator
perform better on almost all settings except the Exchange dataset. The results confirm the statement
about financial datasets in section 3.2 of the paper.

C.3 HYPERPARAMETERS

The structure of the time-series forecasting model within our cascaded framework is the same as the
original setting in Informer|Zhou et al.|(2021)), Query Selector Klimek et al.|(2021)), Reformer Kitaev
et al.| (2020) and SCINet|Liu et al.| (2021)). By default, the input length of the encoder is set to 96 and
the input length of the decoder is set to 48. We use the Adam optimizer to train for 10 epochs with an
initial learning rate of 0.0001 which is halved every 4 epochs. The dataset-weights are also trained
by the Adam optimizer with an initial learning rate of 0.0002. Due to GPU memory limitations, we
adopt a batch size of 32 and a hidden dimension of 512. Unless otherwise specified, the self-study

13

Under review as a conference paper at ICLR 2023

Table 5: Multivariate time-series forecasting results on ETT dataset with SCINet and Reformer.

Methods || Cas-SCINet \ SCINet I Cas-Reformer \ Reformer
Role I Student \ Teacher \ Baseline I Student \ Teacher \ Baseline
Metric || MSE MAE | MSE MAE | MSE MAE || MSE MAE | MSE MAE | MSE MAE

24 || 0311 0357 | 0305 0350 | 0332 0375 || 0.845 0713 | 0.862 0.733 | 0.991 0.754
S| 48 || 0360 0392 | 0367 0398 | 0408 0430 || 1.123 0.835 | 1.158 0.840 | 1313 0.906
E | 168 || 0428 0433 | 0434 0436 | 0471 0468 | 1703 1.082 | 1.672 1075 | 1824 1138
= |33 || 0706 0578 | 0711 0583 | 0738 0.601 || 1916 1193 | 1.937 1215 | 2117 1.280
720 || 0717 0.584 | 0722 0589 | 0761 0.628 || 2.163 1512 | 2156 1501 | 2415 1520
24 || 0.186 0289 | 0.189 0292 | 0223 0315 || 1403 1567 | 1387 1549 | 1531 1613
& | 48 || 0287 0354 | 0292 0358 | 0563 0546 || 1.650 1.687 | 1.678 1707 | 1.871 1.735
E | 168 || 0502 0489 | 0519 0494 | 0586 0543 || 4254 1513 | 4289 1.545 | 4660 1846
D | 336 || 0.604 0.541 | 0.621 0558 | 0702 0603 || 3271 1.245 | 3338 1274 | 4028 1.688
720 || 1384 0775 | 1376 0.768 | 1493 0879 || 4946 1.827 | 4991 13882 | 5381 2015
24 || 0238 0301 | 0242 0302 | 0277 0329 || 0.668 0591 | 0.652 0576 | 0.724 0.607
2| 48 || 0384 0403 | 0380 0399 | 0414 0416 || 0923 0618 | 0937 0.623 | 1.098 0777
£ 9 || 0336 0355 | 0343 0366 | 0.375 0401 || 1364 0882 | 1371 0890 | 1433 0945
5| 288 || 0502 0526 | 0513 0535 | 0582 0556 || 1.615 0965 | 1.648 0982 | 1.820 1.094
672 || 0735 0.658 | 0757 0.675 | 0892 0727 || 1904 1.198 | 1.838 1172 | 2.187 1.232
Count || 24 \ 6 I 0 \ 20 \ 10 \ 0

Table 6: Experimental results on dataset-weight generator.

Methods || Cas-Informer(fourier) | Cas-Informer(normal) | Informer
Metric || MSE MAE | MSE MAE | MSE MAE
24 || 0.473 0.492 0.526 0.524 0.577 0.549
= | 48 0.620 0.586 0.664 0.609 0.685 0.625
E 168 || 0.877 0.714 0912 0.735 0.931 0.752
m | 336 || 0.957 0.725 1.077 0.821 1.128 0.873
720 1.035 0.805 1.133 0.857 1.215 0.896
24 || 0.633 0.638 0.735 0.673 0.720 0.665
& 48 1.146 0.875 1.418 0.988 1.457 1.001
E 168 1915 1.046 2.732 1.348 3.489 1.515
m | 336 || 2.318 1.167 2.611 1.290 2.723 1.340
720 || 2.479 1.336 3.124 1.422 3.467 1473
o | 96 || 0.834 0.747 0.816 0.741 0.856 0.758
21192 || 1.009 0.802 0.975 0.788 1.221 0.905
=2] 336 || 1.613 0.995 1.582 0.976 1.633 1.014
L% 720 || 2.275 1.302 2.298 1.312 2.496 1.352
Count || 22 | 6 | 0

rate v = 0.2 and the sigmoid temperature 7 = 5. The early stop algorithm is also adopted to
prevent the model from overfitting. We have implemented the cascaded framework in Python 3.8
with Pytorch 1.10 so that the recently released distributed data parallel package can be used.

14

	Introduction
	Related Work
	Teacher-Student Learning
	Reweighting Time-series

	Teacher-Student Learning Framework
	Optimization Algorithm
	Data-reweighting Generation

	Cascaded Teaching
	Experiment
	Datasets
	Experimental Details
	Results and Analyses
	Ablation Study
	Ablation Study for Dataset-weights
	Ablation Study for Teacher-student model

	Parameter Sensitivity
	Discussion

	Conclusions
	Ethics Statement
	Reproducibility Statement
	Optimization Algorithm of Cascaded Teaching
	Details analysis
	Extra experimental results
	SCINet and Reformer
	Dataset-weight generator
	Hyperparameters

