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A  DATASET DETAILS

We follow the exact experimental protocol of Du et al.|(2024). The ID datasets are CIFAR-100 and
ImageNet-100, which we briefly describe below:

CIFAR-100 (Krizhevsky et al.,|2009) contains 50’000 training images and 10’000 testing images
belonging to 100 classes.

ImageNet-100 is a subset of the full ImageNet (Deng et al.,|2009) dataset. We take the 100 classes
sampled by Du et al.|(2024) for a total of 129’860 training samples and 5’000 test samples.
These classes are: n01498041, n01514859, n01582220, n01608432, n01616318, n01687978, n01776313, n01806567,
n01833805, n01882714, n01910747, n01944390, n01985128, n02007558, n02071294, n02085620, n02114855, n02123045,
n02128385, n02129165, n02129604, n02165456, n02190166, n02219486, n02226429, n02279972, n02317335, n02326432,
n02342885, n02363005, n02391049, n02395406, n02403003, n02422699, n02442845, n02444819, n02480855, n02510455,
n02640242, n02672831, n02687172, n02701002, n02730930, n02769748, n02782093, n02787622, n02793495, n02799071,
n02802426, n02814860, n02840245, n02906734, n02948072, n02980441, n02999410, n03014705, n03028079, n03032252,
n03125729, n03160309, n03179701, n03220513, n03249569, n03291819, n03384352, n03388043, n03450230, n03481172,
n03594734, n03594945, n03627232, n03642806, n03649909, n03661043, n03676483, n03724870, n03733281, n03759954,
n03761084, n03773504, n03804744, n03916031, n03938244, n04004767, n04026417, n04090263, n04133789, n04153751,
104296562, n04330267, n04371774, n04404412, n04465501, n04485082, n04507155, n04536866, n04579432, n04606251,
n07714990, n07745940.

For CIFAR-100, we use the test sets of five different datasets as OOD:

SVHN (Netzer et al.,[2011) containing 10’000 images of house numbers.

Places365 (Zhou et al., 2017) is a dataset of large scenes, where we use the 10°000 random images
sampled and provided by |Sun et al.[(2022); Tao et al.| (2023)).

Lsun (Yu et al.,2015) is a large-scale dataset of scenes and objects. We use the subset of 10’000
images provided by (Sun et al.|[2022; Tao et al., 2023).

iSun (Xu et al.; 2015) contains images of natural scenes, where we use the subset of 10’000 images
provided by Sun et al.|(2022)); Tao et al.[(2023).

Textures (Cimpoi et al., 2014) has 5’640 images of patterns and textures.

For ImageNet-100, we use four datasets where the classes of the test sets do not overlap with the
full Imagenet, as provided by Huang & Li| (2021):

iNaturalist (Van Horn et al.,|2018) has images of plants and animals. We use a 10’000 image
subset of 110 plant classes not present in ImageNet (Du et al.| [2024).

SUN (Xiao et al.,|2010) contains images of natural scenes, where we use a 10’000 image subset of
50 natural objects not present in Imagenet (Du et al., [2024).

Places (Zhou et al.,|2017) is a dataset of large scenes, where we use 10’000 images from 50 cate-
gories that are not present in Imagenet (Du et al.| 2024)).

Textures (Cimpoi et al.,[2014) has 5’640 images of patterns and textures.

B ToOY EXAMPLE

We show how a cVPN works on a toy example in Fig. [6]

C FURTHER ABLATIONS

Effect of 5. We ablate S with CIFAR100 as the ID. For 5 € [0.5, 1, 1.5, 2, 2.5], the AUCs are 95.3,
97.5, 97.7, 97.8, and 98.3, respectively, showcasing the robustness of NCIS to the parameter. The
corresponding classification accuracies are 78.82, 79.22, 79.26, 78.62, and 78.63.
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Figure 6: The class-specific representations learned by the cVPN on toy data with three classes.
Depending on the conditioning, the cVPN transforms the input data such that the current class is
transformed into a representation with an invariant (the y-axis). The background color indicates the
distance to the nearest training data point from the current class in the original space. Images with
a white-shaded background result from rotation layers, and images with a gray background result
from the conditional coupling layers.

D NEAR-OOD

Near-OOD experiments have largely been ignored when evaluating outlier synthesis meth-
ods. We compare against the strongest publicly available baseline on CIFAR100:CIFAR10 and
ImageNet100:SSB-Hard. From Tab.[5] we find NCIS to outperform the official Dream-OOD check-
points in both cases, demonstrating its effectiveness also in these challenging scenarios.

CIFAR10 SSB-HARD
ResNet34  ConvNeXt | ResNet34
Dream-OOD 78.7 - 83.9

NCIS (ours) 80.5+0.3 91.6+0.1 85.2+0.1

Table 5: Comparison on Near-OOD in AUC (7).
E CoOMPARISON TO BOOD

We compare to concurrent work BOOD (Liao et al.} 2025)) in Tab. @] and Tab.[7] We find the methods
to achieve similar results on CIFAR100, and NCIS to outperform BOOD on ImageNet-100.
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SVHN PLACES365 LsuN ISUN TEXTURES Average
Methods FPR95) AUCt  FPR95|  AUCtH FPR95) AUCTH FPR95,  AUCT  FPR95,  AUCT FPR95) AUCTH Acc
BOOD 542 98.43 40.55 90.76 2.06 99.25 0.22 99.91 5.1 98.74 10.67 97.42 78.03

NCIS (ours) 1443435 96.76+0s8 8.72+0.5 9771402 21.72+31 9539+05 142405 99.56+01 7.9+05 97.96+03 10.84+08 97.48+0.2 78.86+0.5

Table 6: Comparing NCIS to BOOD on CIFAR-100.

INATURALIST PLACES SuN TEXTURES Average
Methods  “ppros|  AUCT  FPR9S,  AUCT  FPR9S,  AUCT  FPR9S, AUCT FPR9S,  AUCT Ace
BOOD 1833 96.74 3333 94.08 37.92 93.52 51.88 85.41 3537 92.44 87.92

NCIS (ours) 20.7+02 96.56+02 34.66+0.4 94.07+02 35434108 94.13102 44.83+158 88.5+09 33.89+06 93.32+02 87.24+01

Table 7: Comparing NCIS to BOOD on IMAGENET-100.

16



	Dataset Details
	Toy example
	Further Ablations
	Near-OOD
	Comparison to BOOD

