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A APPENDIX

B IMPLEMENTATION DETAILS

The EC speakers used to generate the EC datasets are directly trained on the COCO image features
from the codebase1 of Yao et al. (2022) for 2000 epochs. Training is performed on a P100 GPU, and
the sequence length limit is set to 15. Generating EC sequences of length 15, the speakers draw from
a vocabulary size of 4035 tokens. In the Visual Referring Expression (VRE) experiments, we adopt
the codebase of OFA2 Wang et al. (2022a) and mostly follow their default setup. Initially, we pre-train
the OFA model on the RefCOCO training set with EC annotations via continuous pretraining Wang
et al. (2022a). The pretraining data was prepared to align with OFA’s structure, as outlined on their
GitHub page. The pretraining process consists of 17 epochs and 492,000 updates. Subsequently, we
fine-tune the pre-trained model for 10 epochs and 18,500 updates. Pretraining was conducted on a
single NVIDIA A100 GPU for 2 days, while the finetuning phase required 2 NVIDIA A100 GPUs
and took 2 days to complete. For the Visual Question Answering (VQA) task, we again adopt the
OFA codebase and follow the default setup provided in both the continuous pretraining and VQA
finetuning and evaluation scripts. Continuous pretraining was executed on a single NVIDIA V100
GPU for 4 days, encompassing 960,000 updates, which corresponded to approximately 4 to 5 epochs.
Finetuning for 5 epochs required around 90 hours on 2 P100 GPUs. In the Visual Entailment (VE)
task, we utilize the pre-trained model that was obtained in the VRE task. We finetune this model on
the SNLI-VE dataset Xie et al. (2019) for 5 epochs and 20,500 updates. The fine-tuning process was
distributed across 4 NVIDIA A40 GPU workers and took approximately 15 hours to complete. For
the rest of the training process, we largely adhered to the OFA setup.

C ADDITIONAL EXPERIMENTS

C.1 PRETRAINING ON MULTIPLE TASKS

To further test the contribution of EC text, we perform experiments with alternative settings. In these
experiments, we combine the original natural language versions of the datasets utilized in the previous
experiments into a unified NL pretraining dataset, while also amalgamating their EC counterparts
into a consolidated EC dataset. Both of these datasets encompass samples from Visual Referring
Expression (RefCOCO), Image Captioning (MSCOCO), and Visual Question Answering (VQAv2,
1st half). In contrast to the previous experiment, where the OFA checkpoint was pretrained on an
abundance of natural language text, all models in this alternative setup begin pretraining from scratch.
In this paradigm, we compare OFA models produced from each pretraining dataset, i.e., a model
that is exclusively pretrained on NL samples with its counterpart pretrained solely on EC samples.
After pretraining, the best-performing checkpoints for each model variant (EC and NL) are finetuned
independently on the three downstream vision-language tasks (VRE, VQA, and VE). The baseline
is an OFA model with randomly initialized weights trained from scratch on each task, without any
pretraining. These experiments aim to elucidate the added value of EC text in comparison to models
trained without pretraining or those pretrained solely with NL data, thus offering a comprehensive
understanding of the role of emergent language in enhancing vision-language tasks.

The results presented in Table 2 highlight the potential of EC pretraining as a foundational or initial
model for training on diverse multimodal tasks. In the context of VRE, EC pretraining surpasses a
baseline model trained directly on visual grounding tasks without additional pretraining, achieving
an impressive accuracy gain of over 108%. Similarly, in VQA, we observe a noteworthy 11.5%
performance improvement on the test-dev set. We note, however, that there is a slight decline in
performance between the baseline model and the EC pre-trained model in the case of VE. This
discrepancy can be attributed to the categorical nature of VE, where the model aims to categorize
hypotheses into one of three classes: Entailment, Contradiction, or Neutral. As anticipated, NL
pretraining exhibited superior performance across all tasks. It is important to clarify that our objective
is not to establish EC as a replacement for NL pretraining, given that natural language inherently
possesses a higher degree of structure and organization compared to EC language. Instead, this

1
https://github.com/ysymyth/ec-nl/tree/master/ec-game

2
https://github.com/OFA-Sys/OFA
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Table 2: Base (No Pretraining) - Fine-tuning OFA on natural language RefCOCO+ (VRE), VQAv2
(VQA), and SNLI-VE (VE) train sets without pretraining. +EC Pretraining - Fine-tuning the EC
pre-trained model and +NL Pretraining - Fine-tuning the NL pre-trained model, both fine-tuned on
natural language RefCOCO+ (VRE), VQAv2 (VQA), and SNLI-VE (VE) train sets.

Base +EC +NL

VRE val 10.03 23.77 40.15
testA 13.88 28.89 45.90
testB 9.72 18.84 31.34

VQA val 49.33 50.61 56.66
test-dev 40.80 45.49 51.26

VE dev 78.31 77.00 80.09
test 78.60 77.07 80.21

work investigates whether emergent language offers any structural and semantic advantages that
can enhance vision-language understanding, especially in scenarios characterized by a scarcity of
natural language data. Overall, the findings indicate that EC pretraining can be valuable and could
offer substantial benefits in certain vision-language tasks (e.g., VRE) but may not be universally
superior to NL pretraining, which remains the upper bound in terms of performance across these tasks.
Future research in this area can build upon these results to further explore the potential of Emergent
Communication (EC) pretraining in vision-language models, e.g., design hybrid pretraining methods
that combine EC and NL pretraining, and explore improvements in EC fine-tuning strategies.

D UNIGRAM DISTRIBUTIONS

We conduct a comparative analysis of the unigram distributions between the corpus generated from
natural language captions of the entire RefCOCO training dataset and the corpora of EC text generated
from EC speakers producing text sequences of lengths 5, 15, and 25. The EC corpora were generated
from the first 10,000 samples of the RefCOCO training set. To obtain the unigram distribution for
both natural language and EC text, we utilize the nltk word tokenizer3 to tokenize each piece of text,
whether it was a natural language caption or a string of EC tokens. The unique tokens were then
counted and sorted to generate the respective unigram distributions for each corpus.

Figure 4 illustrates the unigram distributions derived from the RefCOCO dataset, showcasing the
contrasting characteristics of the natural language and EC text corpora. Additionally, Figure 5
presents the unigram distributions based on the NL-based VQAv2 training set questions and answers,
along with the EC distribution derived from the first 10,000 samples of the EC-based VQAv2 training
set. The analysis reveals that the natural language corpus encompasses a wide variety of tokens in
comparison to the EC corpora. Moreover, the EC text employs a greater number of unique tokens as
the sequence length becomes shorter. This observation suggests that the EC speakers are adept at
utilizing positional information to reuse tokens while maintaining their descriptive power. This is
further confirmed by observing that fewer tokens are used relatively more frequently with a sequence
length of 25 as compared to sequences of length 15.

E INVESTIGATING THE IMPORTANCE OF STRUCTURE IN EC LANGUAGE

As shown in 3, the model pre-trained on the original EC language improves downstream performance
more than the model pretrained on shuffled EC and random EC language in most of the test cases.
This points to the significance of structure and semantic grouding of EC in vision language pretraining.
In order to gain insights into the generalization capabilities and support of vision language pretraining
by EC language, we conduct an ablation analysis focusing on the significance of structure and
semantic grounding. For this purpose, we pre-train a cross-modal task agnostic OFA model on
three types of EC language: 1) ECorig: the original EC language generated by the referential game
speaker, 2) ECreordered: shuffled or reordered EC language (to assess the impact of structure), and 3)

3
https://www.nltk.org/api/nltk.tokenize.html
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(a) RefCOCO NL Unigram Distribution (b) RefCOCO EC (5) Unigram Distribution

(c) RefCOCO EC (15) Unigram Distribution (d) RefCOCO EC (25) Unigram Distribution

Figure 4: Unigram distributions and entropies for the RefCOCO dataset on NL and EC sequences.

Table 3: Ablation analysis of the significance of structure and semantic understanding in the EC
language. ECorig, ECreordered, ECrandom represents original EC language generated by speaker,
perturbed EC language by reshuffling, and random EC tokens, respectively.

Base ECorig ECreordered ECrandom

val 29.81 42.50 42.10 42.10
testA 31.49 47.68 46.91 49.16
testB 27.53 34.49 33.63 33.34

ECrandom: random EC language (to assess the influence of semantic grounding). Due to computational
constraints, and for all variations, we use 30k samples of the RefCOCO pretraining data instead
of the original 120k used in the main paper. The 30k samples from the initial EC annotations are
denoted as ECorig. We then shuffle the EC annotations to generate the pre-train data ECreordered.
Finally, we replace the original annotations with a sequence of random numbers of the same sequence
length and use this as the ECrandom pre-train data. After pretraining is complete on each of these
EC language variants, we finetune each resulting pre-trained model on 10k RefCOCO samples. As
shown in Table 3, the model pre-trained on the original EC language exhibited higher performance
on most evaluation splits compared to the models pre-trained on shuffled EC language and random
EC language. These findings underscore the importance of both structure and semantic grounding in
EC language for effective vision language pretraining.
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(a) VQAv2 NL Unigram Distribution (b) VQAv2 EC (5) Unigram Distribution

(c) VQAv2 EC (15) Unigram Distribution (d) VQAv2 EC (25) Unigram Distribution

Figure 5: Unigram distributions and entropies for the VQAv2 dataset on Natural Language and EC
sequences.

F QUALITATIVE EXAMPLES

We conduct an in-depth qualitative analysis to uncover potential patterns in the generated Emergent
Communication (EC) text. For this analysis, we train three EC speakers over 1000 epochs, utilizing
a vocabulary size of 4035 and sequence lengths of 5, 15, and 25. The speakers are trained using
COCO features from the EC game introduced by Yao et al. (2022). To generate EC text, we pass
the first 1000 unique images from the refCOCO training dataset through each speaker. To focus our
evaluations, we track the positions of EC text n-grams within the generated sequences. If more than 5
images produce the same n-gram in the same position of the text sequence, we group those images
together for manual observation. Specifically, we examine bigrams, trigrams, and 4-grams for EC
sequences of length 5, 15, and 25, respectively.

Figure 6 shows a few groupings found in text sequences of length 5. Notably, token 2430 is strongly
associated with broccoli, while token 222 is frequently utilized to describe food as a broader category
earlier in the sequence. In Figure 7, which presents examples with a sequence length of 15, we
observe that token 3293 exhibits a strong association with zebras. Figure 8 further illustrates how
the same tokens, when placed in different positions, convey similar yet more refined meanings. For
instance, token 309 corresponds to vehicles, but its count and position within the sequence determine
whether it refers to a truck or a motorbike. Furthermore, we observe that token 3355 appears in
numerous sequences, suggesting its potential role in providing spacing to indicate structural meaning.

Additionally, Figure 9 demonstrates a relationship between n-gram structure and overall sequence
structures. Notice that the 1599 1599 bigram is consistent throughout these sequences, except one is
in position 0 (1599 1599 x x x) and the other in position 1 (x 1599 1599 x x). This seems to indicate
that the n-gram structure is more important than the explicit place in the sentence, or that there is a
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larger structure that is not captured in this qualitative analysis. Some images in Fig. 9b are also in Fig.
9a indicating trigram (1599 1599 1599 x x). This could be an indicator of a hierarchical structure
in which a token can be repeated to increase the specificity of a particular feature. Additionally, we
observe instances where the same bigram appears in a different position of the sequence but describes
the same image. For example, image 50 in 9 can be seen in bigrams (1599 1599 x x x) and (x 1599
1599 x x), indicating that image 50 has the trigram (1599 1599 1599 x x). Similar to natural language,
due to context and semantic relationships between the words involved, a subsequence of words that
represents a fixed phrase with a specific meaning can describe the same image or convey the same
visual aspects, even if the position of that subsequence within the sentence is shifted.

(a) (b)

(c) (d)

Figure 6: EC sequences of length 25, with EC tokens relating to food. (a) The repeated 2430 token is
related to broccoli. (b) Token 222 is associated with the wider category of food. (c) Changing tokens
after 222 changes what kind of food is described. (d) Bigram 222 3967 is still associated with food,
but also people near to or eating it.
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(a) (b)

(c) (d)

Figure 7: EC sequences of length 5. Tokens denoting patterned animals, especially zebras. (a) Token
3293 strongly indicates zebras. (b) A different token in the trigram may indicate something that
distinguishes these zebras from other images. (c) The same trigram as (a) but in a different position.
Giraffes are also lightly associated with these tokens. (d) The trigram of (b) in position 1 is still
associated with zebras.
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(a) (b)

(c) (d)

Figure 8: EC sequences of length 25. (a) Token 309 is associated with vehicles. When in position 2,
it is associated with motorbikes. (b) Token 309 in different positions still indicates vehicles, but this
time denotes trucks. (c) Perhaps token 2512 denotes giraffes here and (d) token 1915 denotes a wider
class of animals. Note that token 3355 has consistently been used in (a)-(d) indicating that it could be
a structural filler or other indicator, for example, it could be a numeric indicator conveying whether
there are few or many instances of an object in the image.

(a) (b)

Figure 9: Images grouped with what seems to be a yellow, red, and green color palette, especially
food. (a) Bigram 1599 1599 in position 0 shows fruit and vegetables with these colors. b) When in
position 1, this bigram denotes a smaller set of images with a similar color scheme.
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G DISCUSSION

Limitations. It is important to acknowledge that our exploration of the benefits of EC pre-training
is not exhaustive of the wide range and variety of Vision Language tasks. Although we specifically
focused on VRE, VQA, and Visual Entailment, our findings revealed significant improvements
in learning and task generalization. Nonetheless, our proof-of-concept sets the stage for future
investigations into the advantages of EC pre-training across additional Vision Language tasks, such
as image-text retrieval (ITR), image-text matching (ITM), and Grounded Captioning (GC), among
others. One potential limitation of our approach is its current inability to generate EC text for various
modalities and scenarios beyond image description. While the explored referential game effectively
trains the EC speaker to describe images, the structure and semantics of the generated language
may be tailored predominantly toward literal image descriptions. Consequently, the substitution
of natural language (NL) text with EC text for certain datasets or tasks may pose challenges. This
limitation prompts further exploration into expanding the applicability of EC pre-training beyond
image description, ensuring its compatibility with a broader array of modalities and capturing diverse
linguistic aspects. In a broader context, our work underscores the potential of harnessing the strength
of EC tokens, which are more accessible in data-constrained settings, in conjunction with structured
and complex natural language corpora. This fusion enables improved and promising vision language
learning, yet it also highlights the need for continued research into optimizing the integration of EC
tokens with more complex and comprehensive natural language resources.

Broader Impact. Our work has several potential broader impacts. Firstly, the possibility of inte-
grating emergent language pre-training from Emergent Communication (EC) into Vision Language
(VL) models, paves the way for the development of more robust and generalizable VL models. This
could have a positive impact on various applications, such as image-text retrieval, visual search,
visual question answering, and image captioning, in addition to important implications for enabling
VL models to perform effectively in real-world settings where representative data is limited, thus
enhancing their practical utility. Secondly, our research contributes to advancing communication
between humans and machines. By investigating how agents learn to communicate in EC games and
establishing connections with vision language systems, we gain deeper insights into the cognitive
and computational mechanisms that underlie effective communication. This understanding can fuel
the development of more efficient and intuitive communication systems, benefiting both humans and
machines in various domains. Thirdly, our work contributes to the development of new artificial
intelligence (AI) technologies. Unraveling the ways in which EC can enhance VL models can lay
the foundation for the creation of AI systems that possess enhanced learning and comprehension
capabilities. This, in turn, contributes to the evolution of AI technologies that better understand and
interact with the world around them. We anticipate minimal foreseeable negative impact associated
with our work, as the nature of emergent language differs from natural languages. For instance, the
emergence of bias in data is less likely as the emergent language is generated by AI agents, in contrast
to natural languages that can exhibit inherent biases and prejudices. Consequently, our research
primarily focuses on the positive implications that emergent communication offers for advancing AI
technologies and facilitating effective human-machine communication.
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