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Figure 1: The detailed architecture of the PromptSR. (a) Dennoising Network (DN): an encoder-
decoder U-Net architecture. Each level consists of Ne (for the encoder, Enc) or Nd (for the decoder,
Dec) groups of ResNet and cross-attention (CA) blocks. (b) ResNet Block: comprises convolutional
layers, activation layers, and group normalization (GN). Cross-Attention (CA) Block: consists of a
CA module and a multi-layer perceptron (MLP). (d) Time Encoder (Enc): utilizes the positional
encoding proposed in Transformer (Vaswani et al., 2017) to encode the time step t. (e) Text Encoder
(Enc): employs a pre-trained model and freezes its weights.

1 PROMPTSR DETAILS

We provide a detailed description of the architecture and implementation of PromptSR.

1.1 ARCHITECTURE DETAIL

The architecture of the PromptSR is illustrated in Fig. 1. Given an input low-resolution (LR) image
x, it is first upsampled to the target high-resolution (HR) size RH×W×3 via bicubic interpolation.
Then, the LR image x is concatenated with the noise image yt∈RH×W×3 (t∈[1, T ]), where t is the
time step, and T is the total step. The time step t is encoded into the time embedding temb∈R1×C by
the time encoder, where C is the channel number. Concurrently, the text prompt c is encoded into the
text embeddings cemb∈RN×Ĉ by the text encoder, where N and Ĉ are the token number and channel
dimension of the text embedding. The denoising network (DN) predicts the noise ϵ∈RH×W×3 from
the LR image x, noisy image yt, time embedding temb, and text embedding cemb. The HR image
y∈RH×W×3 is generated using the predicted noise ϵ through several iterations.

Cross-Attention Module. To infuse degradation information from the text prompt into the DN,
we utilize the cross-attention (CA) module. Specifically, for the input feature X

′′

in∈RH′×W ′×C′

of the CA, we reshape it as Xr∈RH′W ′×C′
, where H ′×W ′ denotes spatial resolution, and C ′ is

1
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Table 1: Model size comparisons (×4). Params (Parameters), sampler, time step, and results
(PSNR/SSIM/LPIPS/DISTS) on LSDIR-Val are reported.

Method Params Sampler Time step PSNR SSIM LPIPS DISTS

Stable Diffusion (Rombach et al., 2022) 869.12M DDIM 50 19.91 0.4487 0.4489 0.2240
DiffBIR (Lin et al., 2024) 1,716.71M DDPM 50 22.63 0.5725 0.3104 0.1758
PromptSR (ours) 215.64M DDIM 50 22.44 0.6070 0.2810 0.1548

LR HR Bicubic w/o text prompt w/ text prompt

Figure 2: Visual comparison (×4) of text prompts. Applying (w/) the text prompt (i.e., [medium
blur, upsample, light noise, light compression, downsample]), as opposed to not using (w/o) the
prompt, enables the generation of more explicit images. Please zoom in for a better view.

the channel dimension. Then, we project Xr as a query (Q∈RH′W ′×C′
) matrix. Similarly, for the

text embedding cemb, encoded by the text encoder, we convert it into Key (K∈RN×C′
) and Value

(V∈RN×C′
) matrices. The cross-attention process can be formulated as:

Q = WQXr,K = WKcemb,V = WV cemb,

CA(Q,K,V) = Wm(SoftMax(QKT /
√
C) ·V),

(1)

where WQ∈RC′×C′
, WK∈RĈ×C′

, WV ∈RĈ×C′
, and Wm∈RC′×C′

are linear projections. Fi-
nally, we reshape the result of CA to obtain the output features X

′′

out∈RH′×W ′×C′
. Additionally,

we adopt the multi-head operation (Vaswani et al., 2017). Through CA, degradation priors from the
text prompt can be integrated into the DN. The priors guide the DN to predict noise from the LR
image better, thereby generating a high-quality HR image.

1.2 IMPLEMENTATION DETAILS

The DN in our PromptSR uses a 4-level encoder-decoder architecture, with a middle layer. For the
encoder, each level has Ne=2 sets of ResNet and CA blocks, while for the decoder, Nd=3. The
channel dimension C is set as 64. For the GN, the group number is 16. In the CA module, the
number of attention heads is set as 16. For the text encoder, the token number N is 77, and the
channel dimension Ĉ is set as 768. Moreover, to reduce the computational complexity, we only
apply CA blocks in levels 3 and 4 of the encoder and decoder, as well as in the middle layer.

2 MODEL SIZE ANALYSES

We analyze the model sizes of different diffusion-based methods, including Stable Diffusion (Rom-
bach et al., 2022), DiffBIR (Lin et al., 2024), and our PromptSR. We report the model size (i.e.,
Params), scheduler, timestep, and performance in Tab. 1. All metrics are calculated on the valida-
tion (Val) of LSDIR (Li et al., 2023) (×4). All models have the same time step (i.e., 50). Meanwhile,
for DiffBIR, we adopt the spaced DDPM sampler (Nichol & Dhariwal, 2021) as employed in the
original paper, while others use the DDIM sampler (Song et al., 2020), for fairness. Compared to
other methods, we can observe that our proposed PromptSR has a significantly lower parameter,
accounting for only 24.8% of Stable Diffusion and 12.6% of DiffBIR. Meanwhile, our proposed
PromptSR outperforms other diffusion methods on most metrics. For instance, on the LPIPS, our
approach achieves a reduction of 0.0294 compared to DiffBIR.

3 MORE VISUALIZATIONS ON TEXT PROMPT

We provide more visual comparisons related to the text prompt.

2
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LR [unchange] (%) [downsample] (!) LR [heavy noise] (%) [light noise] (!)

Figure 3: Visual comparison (×4) of different prompts. Template prompt: [light blur, unchange,
light noise, light compression, downsample], with underlined parts indicating substitutions. Left:
incorrect description vs. proper description. Right: over description vs. proper description.

3.1 TEXT PROMPT

We present the reconstruction results with (w/) and without (w/o) text prompts in Fig. 2. Text
prompts lead to clearer visual results. This improvement is attributed to the text prompt providing a
degradation prior, enabling better modeling of degradation.

3.2 DIFFERENT PROMPTS

We compare the recovery results using different prompts in Fig. 3 and also provide the complete
template prompt (also used in Fig. 5 of the main paper). It is evident that suitable prompts can
yield higher-quality results. For the image on the right, using the prompt [heavy noise] effectively
removes most of the noise but also leads to over-smoothing and loss of details. In contrast, reducing
the noise level specified in the prompt helps recover more realistic results. These findings further
demonstrate the effectiveness and flexibility of text prompts.

You are a helpful assistant that evaluates the quality of images in terms of blur, noise, compression, and resolution changes (downsample/upsample/unchange). 

You will be given standards for each quality level. The standards are listed as follows:

Blur Levels:

• Light blur: Slight loss of sharpness, minor blurring of fine details.
• Medium blur: Noticeable blurring, edges are soft, and details are blurred.

• Heavy blur: Significant blurring, image is very soft, and lacks sharpness.
Noise Levels:
• Light noise: Minor graininess or speckles, slightly noticeable in uniform areas.

• Medium noise: Visible graininess, speckles throughout the image, affecting clarity.
• Heavy noise: High level of graininess, significant speckling, severely affecting image quality.

Compression Levels:
• Light compression: Minor compression artifacts, slight blockiness or loss of detail.
• Medium compression: Noticeable compression artifacts, blockiness, and loss of detail.

• Heavy compression: Significant compression artifacts, severe blockiness, major loss of detail.
Resolution Changes:

• Downsample: Image resolution has been reduced, resulting in loss of detail.
• Upsample: Image resolution has been artificially increased, possibly causing blurriness or artifacts.
• Unchange: Image resolution remains the same.

Output Format:

Please evaluate the image and respond in the following fixed format:
[xxx] blur, [downsample/upsample/unchange], [xxx] noise, [xxx] compression, [downsample/upsample/unchange]
Replace [xxx] with the appropriate quality level (light, medium, heavy) for blur, noise, and compression, 

and choose the correct option for resolution changes.
Please strictly follow the USER's format; otherwise, the result will be invalid.

System

User

Please evaluate the image and respond in the fixed format. light blur, downsample, light noise, light compression, unchange

Image

Assistant

Figure 4: Example of prompt generation using MLLM. It includes (real-world) image, system mes-
sage, user message, and assistant response. The assistant response represents the generated prompt.

4 MORE DETAILS OF PROMPT IN REAL

In this section, we provide more detailed information on applying our designed prompts to real-
world images. We first introduce the specific configurations for generating prompts using multi-
modal large language models (MLLMs) (Liu et al., 2023; OpenAI, 2023; Ye et al., 2024; Wu et al.,
2024). Then, we provide more examples of prompts corresponding to real images from Real45.

3
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Table 2: More text prompts for real-world instances. The low-quality images are also provided.

Image Prompt Image Prompt

light blur, downsample, medium noise, light blur, downsample, light noise,
medium compression, downsample light compression, downsample

4.1 MLLM GENERATION DETAILS

We employ the advanced open-source multi-modal large language model, mPLUG-Owl3 (Ye et al.,
2024) (specifically, mPLUG-Owl3-7B), to generate prompts from given real-world images. Detailed
prompt settings are provided in Fig. 4. Furthermore, we optionally fine-tune the MLLM-generated
prompts 1-2 times based on the restoration results.

4.2 MORE TEXT PROMPT DETAILS

In Tab. 2, we present more prompts corresponding to real-world images. Through the prompts, the
method can better model the degradation, thereby reconstructing more realistic and clear images.
Complete text prompt files will be released alongside the code.

5 MORE VISUAL RESULTS

In Figs. 5 and 6, we provide more visual comparisons on both synthetic and real-world datasets.
Our proposed PromptSR, compared to other methods, handles challenging cases more effectively
and recovers images with more details. For instance, in the synthetic dataset, the first example
of Urban100, our model can restore sharper textures (lines), whereas other comparison methods
introduce undesirable artifacts. In the real-world dataset, the first instance of Real45, the recovery
results from other methods are inconsistent with reality. In contrast, our PromptSR can restore more
realistic and faithful outcomes. These results, supplementing the main paper, further demonstrate
the superiority of introducing text prompts into image SR.

6 LIMITATIONS AND FUTURE WORK

In this work, we introduce text prompts into image SR to provide degradation priors. Our prompts
are simple, flexible, and user-friendly. However, our prompts employ the tag-style format, which di-
verges from natural expression. Furthermore, to simplify the representation, we utilize three binning
categories (i.e., ‘light’, ‘medium’, and ‘heavy’), leading to a coarse control granularity.

In future work, we plan to explore text prompt forms that align with natural expressions. This
requires the model to extract key information from redundant descriptions for restoration. Addi-
tionally, while general descriptions of the overall image content are not significantly beneficial for
image SR, more specific descriptions of details (such as facial features) may be effective.
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Urban100

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Urban100

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Urban100

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Manga109

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Manga109

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

LSDIR-Val

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

LSDIR-Val

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Figure 5: Visual comparison (×4) on Urban100 (Huang et al., 2015), Manga109 (Matsui et al.,
2017), and LSDIR-Val (Li et al., 2023) datasets. Please zoom in for a better view.
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DIV2L-Val

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

DIV2L-Val

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Real45

LR DAN Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Real45

LR DAN Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Real45

LR DAN Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Real45

LR DAN Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Real45

LR DAN Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Figure 6: Visual comparison (×4) on DIV2K-Val (Timofte et al., 2017) and Real45 datasets (col-
lected from the internet). Please zoom in for a better view.
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