A Ciritical Look at the Consistency of Causal
Estimation with Deep Latent Variable Models:
Supplementary Material

A Analytical estimate of p(y|do(t)) for linear-Gaussian data

In this section, we derive an analytical estimate of the parameters of the p(y|do(t)) distribution for
the linear-Gaussian data, including the ones that weren’t provided in the original paper. It assumes
that we know the parametric form of the generating process. The approach is slightly different from
the original paper, which utilized higher-level properties of the structural model in their derivation.
We will first derive the asymptotic, infinite data covariance matrix of the observed variables expressed
using the data generating parameters cy, co, 01, etc., after which we can derive expressions for the
parameters using observable covariances. The formulas can then be used as asymptotically correct

estimates with finite data as well.

We start by finding out a form for the joint distribution, including z:

p(z,z,t,y) = p(2)p(z[2)p(t|z)p(ylz, 1)
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This is a jointly Gaussian distribution. We can find the covariance matrix by looking at the exponent
and rearranging terms:
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Inverting this, we get C, and the covariance matrix C, of the marginal distribution p(x, ¢, ) is got
by dropping the row and columns corresponding to z, since p(z, x, t,y) is jointly Gaussian:
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We then have a system of 10 equations, where each of the matrix cells corresponds to an asymptotic,
infinite-data covariance. The equations of interest to us are

cica = Cov(xy,22), cicp = Cov(xy,t), cacy = Cov(wa,t), cf + o = Var(t)
calcieyt +¢y2) = Cov(ma,y), cileyt + cicy. + cyroi® = Cov(t,y)
cfcyf + 2cicyrcy, + cyt20t2 + cyz2 + Uy2 = Var(y)
These can be solved to get
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where earlier expressions can be plugged in to later ones (especially 05 doesn’t simplify much). The
quantities ¢y, ¢, and o are enough to characterize p(y|do(t)), since
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In practice, we can use the asymptotically correct equations as formulas for estimation with finite
data. The difference is that we use sample covariances and variances, and the parameter estimates are
naturally correct only with infinite data.

B Proof of Proposition 1: The 1D linear CEVAE is consistent with
linear-Gaussian data

In section [A] we showed that the causal effect p(y|do(t)) is identifiable from linear-Gaussian data,
and presented an asymptotically correct, analytical method for estimation. Here we consider the 1D
linear CEVAE, which estimates the conditional distributions linearly and has a latent dimension of
one, thus being parameterized in the same way as the data generating process. We show that it is
guaranteed to estimate the correct causal effect as well, assuming that we find the global optimum of
the ELBO with infinite data. The proof relies on three facts:

1. As shown in Sec[A] the parameters of the data generating process required for identifying
the causal effect match one-to-one with observed covariances.



2. The CEVAE estimation model is defined so that the parameters match exactly with the data
generating parameters and the prior is correctly specified as well.

3. The variational approximation to the posterior distribution can correctly represent the true
posterior in this case.

Proof. We denote py(-) as the distribution induced by the VAE, e.g. po(z,z,t,y) =
po(x1|2)po(22]2)po (t|2)po(ylz,t)p(2), Where p(z) is the zero mean, unit variance prior of the
VAE.

Since the joint distribution pg(z, x, t, y) induced by the model is jointly Gaussian with mean zero, we
know from properties of multivariate normal distributions that py(z|x, ¢, y) is Gaussian as well with
a mean that is a linear function of x1, x2, t and y with zero bias and constant variance. Thus, as we
set our variational approximation gy (2|, t,y) to be similarly a Gaussian with mean being a linear
function of the observed variables and estimate the variance as one shared parameter, it can represent
the true posterior py(z|z, t,y) with the right choice of parameters ¢. Thus, the global optimum of the
ELBO also equals the global optimum of the marginal log-likelihood. In the limit of infinite data,
maximizing the sum of marginal log-likelihoods becomes equivalent to maximizing

x,t,
/p(x,uy) log pg(,t,y)dz = /p(m,t,y) log (Mﬁ(%h@/)) drdtdy

= —KL[p(x,t,y)||pe(z,t,y)] + /p(x,t,y) log p(z, t,y)dzdtdy (10)

where p(x,t,y) is the true distribution of the data. Thus, since the parameter space of the linear VAE
includes the true distribution, at the globally optimal (6,¢) combination the KL divergence goes to
zero and pg(z, t,y) = p(x,t,y), i.e., the marginal distribution of our model is the true distribution.
Because the VAE parameterization was defined in the exact same way as the generative model, we
can then go through the exact same steps as we did in Sec[A] and notice that the estimate of p(y|do(t))
has to be the one we get from the true distribution. Thus, the model estimates p(y|do(t)) correctly.

C Proof of Proposition 2: We can get an infinite ELBO with copied proxies

In this section, we prove that we can get an infinite ELBO by using the latent space solely to
reconstruct the proxies for linear-Gaussian data where the proxies are copied at least once. The proof
assumes a linear CEVAE estimation model with a latent dimension of at least two, but the result is
valid for a neural network parameterized CEVAE as well assuming that it can represent the same
conditional distributions as the linear CEVAE. Given the universal approximation capabilities of
neural networks, this is not a very radical assumption to make. The central idea in the proof is that we
find a certain path in the parameter space which we then show to lead to an infinite evidence lower
bound. It is constructed by mapping each value of x to a corresponding position in the latent space,
after which we let the encoder and decoder variances go to zero, forcing the reconstruction to become
perfect.

Proof. Recall that the ELBO for CEVAE can be written in the form
L(0,¢) = Z [Eqd)(z|xi7ti,yi)[logpg(xi\z) +log pe(t'|2) + log py (3|2, t')] —
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Let us now consider the scenario where we are trying to estimate the causal effect from a data
set containing /N copies of the original two proxies. We restrict the analysis to the part of the
parameter space where the variational approximation depends only on the proxies and both proxies
are reconstructed using only one of the dimensions:
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The proxy distribution in the decoder is set to pg({z;}|2) = N (z;|v:z, s7)", where +; and s; are
shared parameters for x; and all its copies, denoted by the set {x;} and N is the number of copies
[{x;}|. Note that we use 7 and s to highlight that these are parameters of CEVAE, not the data
generating distribution, where we used ¢ and o. Let’s focus on the proxy reconstruction term and
the KL divergence terms for the first latent dimension - proxy copy group pair, z; and {z;}. The
reconstruction term for a single observation is
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where the exponentiation by N is due to the /N identical copies that are reconstructed using the same
parameters. Due to the diagonal assumptions in the prior and variational approximation, the KL
divergence breaks into two parts:

—KL[gy(z|{z1}, {z2}, t, y)||p(21)]
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where the term relevant for parameters regarding z; and z; is
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Bringing the two terms together and restricting the parameter space further so that y;7,, = 1 and
4
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Let’s now consider the two scenarios where N = 1 and N = 2 we let s — 0.

N=1 The sum of the relevant, non-constant terms in the limit approaches minus infinity:
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Thus, with no copies this approach clearly doesn’t maximize the ELBO.

N=2 The sum approaches infinity in the limit:
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Although we only focused on a single observation in the ELBO, the final expression is not actually
dependent on the values of x1, so the ELBO will go to infinity for all observations with this
parameterization. We can do the exact same thing for the second group of proxies {z2} and the
second latent variable zo. We conclude that while exactly this approach might not be the fastest way
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Figure 1: The ELBO and its parts for the linear-Gaussian data with exact proxies. The estimation
model was the full, NN parameterized CEVAE. The data generating process was the same as in the
main experiment, but without additional noise on the copies. The sample size was set to 1000, batch
size was 200 and learning rate was 0.0001.

to increase the ELBO during training, it is clearly possible to get an infinite ELBO by using the latent
space solely to reconstruct the proxies as accurately as possible.

In practice, the model could then follow a similar path as a result of gradient descent during training.
Figure|l|shows the ELBO and its parts for a full, neural network parameterized CEVAE with copied
proxies. While ¢ and y reconstruction terms in the ELBO converge very early, the = reconstruction
term keeps improving long after that. The negative KL divergence term gets smaller, but it is not
enough to counter the increase in = reconstruction quality.

Intuitively, the reason that the final expression doesn’t depend on the values of observed z is that
the latent space is able to represent the proxies perfectly, i.e., each x; is mapped to a corresponding
latent representation through the ~y,, parameter. We restricted ~;v,, = 1 because if the latent
representation of the proxy was scaled down or up by -,,, we need to do the opposite scaling
v = i in reconstruction.

Note that if the latent dimension is larger than two, we won’t improve the ELBO by using them
to reconstruct the treatment ¢ and effect y, as shown in Sec[D] Thus, the py(t|z) and py(y|z,t)
reconstruction terms may only improve if the proxies, through the latent representation, are useful for
predicting y and ¢.

D Proof of Proposition 3: Posterior collapse in the 1D linear CEVAE with
no proxies

Here we show analytically that if the proxy reconstruction term is set to zero (essentially, we don’t
have any proxies), then a set of solutions where py(y|do(t)) = p(y|t) are global maxima of the
ELBO with linear-Gaussian data. These solutions correspond to situations where the latent space is
not used in the reconstruction of ¢ or ¥, or either of them. In the proof, we assume that the estimation
model is the CEVAE with a one-dimensional latent space and linearly parameterized conditionals.
However, the result applies to a CEVAE with neural network parameterization as well if we assume
that it can represent the same conditionals as the linear CEVAE.

Proof. Let’s assume that we have maximized the ELBO so that g4 (2|, t, y) = pg(z|t,y) for whatever
6 that can maximize it. Then, with infinite data, according to Eq we get that p(t, y) = pe(t,y).
Let us use the notation ~y and s to signify the CEVAE parameters that correspond to the parameters c
and o in the data generating model. In a similar way as in Sec[A]we can then show that the inverse of
the covariance matrix of py(z,t,y) is then
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Inverting and marginalizing w.r.t. 2, we then get
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We have the equations
Var(t) = 77 + s?
Var(y) = %Q’Yth + 2yt Yy + ’Yyt28t2 + ’yyZQ + sy2
Cov(t, y) = v e + Ve Vye + Yye5t”

This group of equations has many solutions, but two obvious groups of solutions stand out:

Group 1. v,. =0, s, = Var(y) — Cov(t,y) and ,; = CS,:I((tt;’)

This corresponds to the solution where z doesn’t have a direct causal effect on y, and thus there is no
confounding and CEVAE doesn’t use z in reconstruction of y. We can also show that pg(y|do(t)) =
p(ylt), by first calculating py(y|do(t)):

po(yldo(t)) = / po(yl2 t)p(z)dz

= po(ylz,t) = po(ylt)
= N bet. ) = Nl o, V() — o, ) es)
vty Var(t) ’
Here the second equality is true because y is not dependent on z. The result corresponds to the

conditional distribution formula for bivariate Gaussians: p(y|t) = N (y| Cf,zg(tg) t, Var(y) — Cov(t,y)).

Group 2. v, = 0,57 = Var(t),~7, + s = Var(y) — Cov(t,y) and ~,; = C;’,‘;f(tt)y)

This corresponds to the solution where z doesn’t have a direct causal effect on ¢, and thus again there
is no confounding. Again, we can calculate pg(y|do(t)):

po(yldo(t)) = /pe(ylzat)p(Z)dz = /N(yh/yzz+'Yyttvs§)N(z‘O71)dZ

Cov(t,y)

= Nyt v;. + s2) = N(yl Var(h

t, Var(y) — Cov(t,y)) (26)
The third equality was obtained with standard integration. This also corresponds to the conditional
distribution formula for bivariate Gaussians, pg(y|do(t)) = p(y|t).

Other solutions to the group of equations are possible in principle, but in practice, the training usually
converges to a solution similar to these ones, as witnessed in the repeated proxy experiment when loss
scaling was set to zero. To take a closer look at these solutions, Fig. [2] visualizes the dependence of y,
t, and z for the trained models. For all of the models, y is somewhat dependent on the z (nonzero
values of v, ), although not as much as it is on ¢. The treatment ¢, on the contrary, is almost not
dependent at all on z, implying that the models correspond to solution group 2. In models 2 and 7,
however, z does affect the treatment ¢ a small amount as well, and these probably don’t match that
well with the analytical solutions explained above.

Note that while the proof applies strictly speaking only to the 1D linear CEVAE, the result is true
for a neural-network parameterized CEVAE as well if it is able to represent the same conditional
distributions. The solution is a global optimum with both parameterizations since already py(t,y) =
p(t,y), and thus it’s not possible to improve the ELBO according to Eq
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Figure 2: Visualizations of the latent space use of the ten models trained with proxy loss scaling equal
to zero for the data with repeated proxies. (a) Means of py(t|z) distributions with 10000 samples
of z from the prior of CEVAE. Aside from models 2 and 7, the mean is almost not dependent on
z at all. (b) Corresponding means of py(y|z,t) distributions with 10000 samples of z with ¢t = 0.
Clearly, y is somewhat dependent on z in all of the models. (c) The Ly norms of the z weight
vectors of the py(y|z,t) predictors. (The py(y|z, t) predictors were linear and the latent spaces were
10-dimensional in this experiment.) Although y is dependent on z in all of the models, the z weight
vectors 7, are much smaller than ~,;, which was around 1.24 for all models.

E Experiment details

E.1 Computing equipment and time taken to run experiments

The experiments were performed with two computers: A desktop computer containing an Intel i5-
6500 processor and an Nvidia GTX 970 graphics card, and a laptop containing an AMD A12-9720P
processor. Most of the experiments IE.8|in this section took at most a single night to run with the
computing equipment, although the binary data experiment took approximately an entire day. The
basic Linear-Gaussian and binary experiments were conducted with the laptop, while the others were
done with the desktop computer. The graphics card was used for the proxy MNIST data set, while
the processor of the desktop was used for the rest.

The code for running the experiments is provided in the following github page: https://github!
com/severi-rissanen/critical_look_causal_dlvms,

E.2 Linear-Gaussian data

Data generating parameters The generating parameters were sampled with the following process:
First, all of the standard deviations o were generated from a Gamma(l,5) distribution. Then, the
structural coefficients ¢ were got by first sampling from a Gamma(0.3,4) distribution, multiplying
with the corresponding o and adding the result to o/2, and uniformly randomly flipping to a negative
value. This resulted in the ratio = being not too close to zero while keeping the absolute values of o
and c roughly in the scale of 1. Too low a ratio for proxy, for instance, would mean that the proxy
would be effectively very uninformative, and could cause even the analytical methods to fail. The
generated parameters for the main experiment were ¢; = 1.03, ¢ = 1.47, ¢y, = 0.71, ¢y = —0.62,
0z, = 0.65, 05, = 0.96, 0y = 1.25 and oy = 0.48.

Estimation models The default setup for the full, neural network parameterized CEVAE was so
that each conditional distribution was represented with a three-layer MLP with a layer width of
30, using ELU activations. The (standard) assumption in the parameterization was that the outputs
are normally distributed with a diagonal covariance for each network in the encoder and decoder.
Thus, the final layers had twice the amount of heads than the output dimension, one for each mean
and one for each standard deviation. There were four networks: The encoder, the proxy generation
network (pg(x|z)), the t generation network (py(t|z)) and the y generation network (py(y|z,t)). The
dimension of the latent space was 10 for the default model. In the linear versions of CEVAE, the
conditional distributions were defined with simple linear layers, and the standard deviations were
separate, shared parameters used for all inputs.
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Figure 3: The squared expected values of the posterior approximations for the full 10D CEVAE with
linear-Gaussian data, averaged over their respective data sets. Each of the models was trained on one
of the linear-Gaussian data sets of size 20000.

Training The Adam optimizer was used for all models in this work. The neural network-based
models were trained with 300 epochs, as that provided good loss function convergence for all data
sizes. For the linear models, we used 500 epochs. The learning rates were annealed exponentially
from 0.01 to 0.001. The batch size was 200. 10 data sets were sampled for each data size, and the
models were trained once for each data set. The results from training to them provide the box plots in
the results.

Posterior collapse Figure [3| visualizes the posterior collapse phenomenon for the 10 models trained
with a data size of 20000. It shows the squared expected values E[gs(z|x, t,y)]? for each of the 10
dimensions, averaged over the data set (in other words, the variances of the encoder means for the
data set). We see that all of the models use only one of the latent dimensions, while all the unused
dimensions in the posterior approximation fall back to the mean of the prior.

Failed 2D estimation In the linear, 2D CEVAE experiment with failed estimation, we tried to
initialize the model so that the parameters included aspects of the ”correct” parameters, but were also
sufficiently different to lead the model to incorrect estimation after training. The chosen initialization
was also not itself a minimum of the loss function. Figure Bh shows the initialization. We tried
to be very careful with the training by increasing the batch size to 1000, setting the learning rate
to 0.001 and training until the model appeared to converge. In Fig[5h-c we plot the losses and
estimates for the c,; coefficients as the training progressed. While the custom initialization results in
an indistinguishable loss, the resulting causal effect is clearly wrong.

Experiment with 10D linear CEVAE with an attempt to avoid posterior collapse To take a
deeper dive into the effect of posterior collapse on causal effect estimation with CEVAE, we designed
an experiment with the purpose of maximizing disentanglement in the latent space of CEVAE. Before,
a 2D linear CEVAE was somewhat prone to not posterior collapse completely, so we tried increasing
the latent dimensionality to ten. We also annealed the KL divergence term from a low value to the
regular one during training to promote disentanglement.

Figure da shows the results for a sample of of size 2000. The subpanel shows the scaling of the
KL divergence term. We trained a 10D linear CEVAE twenty times, and a 1D linear CEVAE for
comparison. The ten-dimensional model doesn’t estimate the causal effect correctly, and instead, the
estimates converge towards random values. The one-dimensional model, on the other hand, works
correctly and settles on the correct value soon after the KL divergence term is returned to normal.
From panel b we see that the ten-dimensional models indeed do use more than one dimension in
reconstruction, similar to the situation with the failed 2D linear CEVAE in the main text. Importantly,
the loss function at the end of training for the correct, one-dimensional model is indistinguishable
from the ones of failed, higher-dimensional models. Thus, it’s plausible that all of the models ended
up in a global minimum or in a state very close to being one, and the model is unidentifiable with
respect to causal effect estimates.
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