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ABSTRACT

Risk-sensitive reinforcement learning (RL) aims to optimize policies that balance
the expected reward and risk. In this paper, we present a novel risk-sensitive RL
framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective
under both linear and general function approximations, enriched by human feed-
back. These new formulations provide a principled way to guarantee safety in
each decision making step throughout the control process. Moreover, integrat-
ing human feedback into risk-sensitive RL framework bridges the gap between
algorithmic decision-making and human participation, allowing us to also guaran-
tee safety for human-in-the-loop systems. We propose provably sample-efficient
algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
Furthermore, we establish a matching lower bound to corroborate the optimality
of our algorithms in a linear context.

1 INTRODUCTION

Reinforcement learning (RL) (Russell, 2010; Sutton & Barto, 2018) is a general sequential decision-
making framework for creating intelligent agents that interact with and learn from an unknown
environment. RL has made ground-breaking achievements in many important application areas, e.g.,
games (Mnih et al., 2015; Silver et al., 2017), finance (Hull, 2003) and autonomous driving (Sallab
et al., 2017). Despite the practical success, existing RL formulation focuses mostly on maximizing
the expected cumulative reward in a Markov Decision Process (MDP) under unknown transition
kernels. This risk-neutral criterion, however, is not suitable for real-world tasks that require tight risk
control, such as automatic carrier control (Isele et al., 2018; Wen et al., 2020), financial investment
(Wang et al., 2021; Filippi et al., 2020) and clinical treatment planning (Coronato et al., 2020). To
address this limitation, risk-sensitive RL has emerged as a promising research area, which aims to
incorporate risk considerations into the RL framework.

A rich body of works have considered various risk measures into episodic MDPs with unknown
transition kernels to tackle risk-sensitive tasks. Among different risk measures, the Conditional
Value-at-Risk (CVaR) measure has received an increasing attention in RL, e.g., Chow et al. (2015);
Du et al. (2023); Rockafellar et al. (2000); Stanko & Macek (2019); Bastani et al. (2022); Wang et al.
(2023a). CVaR is a popular coherent risk measure (Rockafellar et al., 2000), which can be viewed
as the expectation of the worst α-percent of a random variable for a given risk level α P p0, 1s. It
plays an important role to avoid catastrophic outcomes in financial risk controlling (Filippi et al.,
2020), safety-critical motion planning (Hakobyan et al., 2019), and robust decision making (Chow
et al., 2015)

However, existing CVaR-based RL works (Bastani et al., 2022; Wang et al., 2023a; Du et al., 2023;
Xu et al., 2023) mainly focus on the tabular MDP, where the state and action spaces are finite, and
the complexity bounds scale polynomially in the sizes of state and action spaces. As a result, the
application of tabular MDPs can be limited, since in practical problems, the state and action spaces
are often large or even infinite.
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To extend the risk-sensitive RL theory and handle large state space, in this paper, we study Iterated
CVaR RL with both linear and general function approximations in episodic MDPs (ICVaR-RL with
linear and general function approximations). One key distinction of our work from existing function
approximation results (Jin et al., 2020; Zhou et al., 2021a; Fei et al., 2021) is the Iterated CVaR
objective. Iterated CVaR (Chu & Zhang, 2014; Du et al., 2023) is an important variant of CVaR,
which focuses on optimizing the worst α-percent performance at each step, and allows the agent
to tightly control the risk throughout the decision process. In this paper, we tackle the ICVaR-RL
with function approximations by two novel sample-efficient algorithms, i.e., ICVaR-L (detailed in
Section 4.1) and ICVaR-G (detailed in Section 4.2)

We further investigate ICVaR-RL with human feedback and present a provably efficient algorithm
ICVaR-HF with general function approximation. Our exploration is motivated by the rapid develop-
ment of Large Language Models (LLMs) such as ChatGPT. These models, as demonstrated in vari-
ous studies (Glaese et al., 2022; Ouyang et al., 2022; Lee et al., 2023; Gulcehre et al., 2023), operate
in diverse conversational landscapes where precisely defining reward signals is challenging. This
challenges the conventional RL paradigm, underscoring the crucial role of infusing human feedback
(Christiano et al., 2017; Stiennon et al., 2020; Wu et al., 2021; Ouyang et al., 2022). Furthermore,
the risk control in intelligent systems such as ChatGPT is significant for preventing the generation
of harmful or offensive content (Zhuo et al., 2023; Qi et al., 2023). This critical imperative under-
scores the need of approaches that are inherently risk-sensitive, especially in the intersection of large
language models and RLHF. Our work infuses risk sensitivity into RLHF paradigms and formalizes
the first risk-sensitive RLHF structure for further theoretical understanding of risk-sensitive RLHF.

However, the Iterated CVaR objective imposes significant technical challenges in the theoretical
analysis of the function approximation and human feedback setting. (i) Since the Iterated CVaR
measure is a quantile expectation on the distorted distribution, it destroys the linearity of the risk-
neutral Bellman equation and makes it hard to estimate the true value function. Therefore, existing
risk-neutral RL algorithms for function approximation fail in ICVaR-RL and new techniques are
needed to handle this nonlinearity (See Section 4.1). (ii) In our function approximation setting, one
cannot calculate the CVaR operator and estimate the transition by tranditional sample-mean tech-
nique efficiently, since the size of state space can be very large or even infinite. To address these dif-
ficulties, we develop novel CVaR approximation and parameter estimation methods in Section 4.1.
(iii) The standard regret analysis For risk-neutral RL with human feedback is not suitable for our
risk-sensitive setting. For example, since the preference-based human feedback is a comparison of
the cumulative rewards of two trajectories, it is natural to apply this feedback to the risk-neutral RL
(to maximize the cumulative rewards), while it can be non-trivial to apply this feedback to a risk-
sensitive setting since the regret decomposition process for risk-neutral RLHF fails in analyzing
the risk-sensitive goal. Moreover, previous online reward MLE algorithms focus on a finite reward
function set (Wang et al., 2023b), while we are dealing with an infinite reward function set.

In this paper, we present provable efficient algorithms for ICVaR-RL with function approximation
and human feedback, and develop novel technical tools to address the challenges in Section 4 and
5. Our contribution can be summarized as follows.

(i) We develop a provably efficient (both computationally and statistically) algorithm ICVaR-
L for ICVaR-RL with linear function approximation, which achieves the regret upper bound
rOp
a

α´pH`1qpd2H4 ` dH6qKq, where α is the risk level, d is the dimension of state-action fea-
tures, H is the length of each episode, and K is the number of episodes. Moreover, we con-
struct a hard-to-learn instance for ICVaR-RL with linear function approximation, and establish
an Ωp

?
α´pH´1qd2Kq regret lower bound. This shows that algorithm ICVaR-L achieves a nearly

minimax-optimal dependency on d and K, and the factor
?
α´H in our regret bound is unavoidable

in general.

(ii) For ICVaR-RL with general function approximation, we propose algorithm ICVaR-G. We prove
that ICVaR-G achieves a regret bound of rOp

a

α´pH`1qDPH4Kq based on a new elliptical potential
lemma. Here DP is a dimensional parameter that depends on the eluder dimension and covering
number of probability set (see Section 4.2 for the details).

(iii) We further extend ICVaR-RL to encompass Reinforcement Learning with Human Feedback
(RLHF), incorporating general function approximation for both transition probabilities and reward
modeling. We develop the first provably sample-efficient algorithm ICVaR-HF for risk-sensitive
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RLHF with novel discretization of infinite reward function set and regret decomposition method that
achieves a regret bound of rOp

?
KH3α´pH`1qp

?
HDP `

?
m´1DRqq, where DR is a dimensional

parameter for reward function set, andm is the positive lower bound for the gradient of link function.

2 RELATED WORKS

Risk-sensitive RL with CVaR Measure There are two types of CVaR measures, i.e., the static
and dynamic (iterated) CVaR measures. Boda et al. (2006); Chow et al. (2015); Ott (2010); Yu
et al. (2018); Stanko & Macek (2019) study the static CVaR measure, which considers the CVaR of
cumulative reward in tabular MDPs with known transition kernels. Bastani et al. (2022); Wang et al.
(2023a) investigate the static CVaR RL with unknown transition kernels. On the other hand, Du
et al. (2023) propose Iterated CVaR RL (ICVaR-RL), an episodic risk-sensitive RL formulation with
unknown transition kernels and the Iterated CVaR measure, and studies both regret minimization
and best policy identification in tabular MDPs. In addition, Xu et al. (2023) investigate a general
iterated risk measure (including Iterated CVaR) in tabular MDPs. In contrast, we study Iterated
CVaR RL with linear and general function approximations.

RL with Function Approximation For risk-neutral RL, Yang & Wang (2020); Jin et al. (2020);
He et al. (2022); Ayoub et al. (2020); Zhou et al. (2021a;b); Zhao et al. (2023); Agarwal et al. (2022)
study linear function approximation in two types, i.e., linear MDPs and linear mixture MDPs. He
et al. (2022); Agarwal et al. (2022) and Zhou et al. (2021a) present nearly minimax optimal al-
gorithms for Linear MDP and linear mixture MDP, respectively. Ayoub et al. (2020); Wang et al.
(2020) study risk-neutral RL with general function approximation, which assumes that transition
probabilities belong to a given function class. They establish sublinear regret bounds dependent on
the eluder dimension of the given function class. Fei et al. (2021) consider the first risk-sensitive
RL with function approximation under the entropic risk measure, and Lam et al. (2023) study RL
with the iterated coherent risk measure with non-linear function approximation under a simulator
assumption. Compared to Fei et al. (2021) and Lam et al. (2023), we investigate the function ap-
proximation for RL with Iterated CVaR measure without the simulator assumption.

RL with Human Feedback Christiano et al. (2017) firstly propose the deep reinforcement learn-
ing models that are guided by human feedback. Then, there are many empirical works concentrating
on the framework when the reward is parameterized as a neural network (Ouyang et al., 2022; Stien-
non et al., 2020; Wu et al., 2021; Ibarz et al., 2018; Lee et al., 2023; Gulcehre et al., 2023). Recently,
Zhu et al. (2023); Zhan et al. (2023b;a) develop the theory of preference-based RLHF in the offline
setting and present the Maximum Likelihood Estimation (MLE) for reward functions. Wang et al.
(2023b) present the first online reward MLE algorithm in the risk-neutral RLHF for finite reward
function set. Compared to their results, we formalize the first risk-sensitive RLHF problem, and
present theoretical analysis for ICVaR-RL with general function approximation for infinite transi-
tion and reward function sets and comparison-based human feedback.

3 PRELIMINARIES

3.1 EPISODIC MARKOV DECISION PROCESS (MDP)

We consider an episodic MDP parameterized by a tuple M “ pS,A,K,H, tPhuHh“1, trhuHh“1q,
where S and A represent the state space and action space respectively, K is the number of episodes,
and H is the length of each episode. For step h , Ph : S ˆ A Ñ ∆pSq is the transition kernel.

At the beginning of episode k, an initial state sk,1 is chosen by the environment. At each step h P

rHs, the agent observes the state sk,h, and chooses an action ak,h :“ πk
hpsk,hq, where πk

h : S Ñ A
is a mapping from the state space to action space. For step h, Ph : S ˆ A Ñ ∆pSq is the transition
kernel which is unknown to the agent, and rh : S ˆ A Ñ r0, 1s is the reward function which is
deterministic and known to the agent.1 Then, the MDP transitions to a next state sk,h`1 that is
drawn from the transition kernel Php¨ | sk,h, ak,hq. This episode will terminate at step H ` 1, and
the agent will advance to the next episode. This process is repeated K episodes. The objective of
the agent is to determine an optimal policy πk so as to maximize its performance (specified below).

1This assumption is commonly considered in previous works Du et al. (2023); Fei et al. (2021); Jin et al.
(2020); Zhou et al. (2021a); Modi et al. (2020).
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3.2 ITERATED CVAR RL
First, we give the definition of the Conditional Value-at-Risk (CVaR) operator which is firstly intro-
duced in Artzner (1997). For a random variable X with probability measure P and given risk level
α P p0, 1s:

CVaRα
P pXq :“ sup

xPR

"

x´
1

α
E
“

px´Xq`
‰

*

, (1)

which can be viewed as the expectation of the α-worst-percent of the random variable X . In this
paper, we apply Iterated CVaR as the risk-sensitive criterion (similar to Du et al. (2023)).The MDPs
with Iterated CVaR measure The Iterated CVaR MDP aims to maximize the objective Jpπq which
can be expressed as follows:

Jpπq “ r1ps1, a1q ` CVaRα
s2„P1p¨|s1,a1q

´

r2ps2, a2q ` CVaRα
s3„P2p¨|s2,a2q

´

r3ps3, a3q

`

´

¨ ¨ ¨CVaRα
sH„PH´1p¨|sH´1,aH´1q prHpsH , aHqq

¯¯¯

,
(2)

where psh, ah :“ πhpshqqHh“1 is the trajectory generated by policy π “ tπh : S Ñ Au and initial
state s1. Maximizing this objective means finding the optimal policy to maximize the cumulative
rewards obtained when transitioning to the worst α-portion states at each step.

To evaluate the performance of RL algorithms, we adopt the regret minimization task. Consider the
value function V π

h : S Ñ R and Q-value function Qπ
h : S ˆ A Ñ R under the Iterated CVaR

measure as the cumulative reward obtained when transitioning to the worst α-portion states (i.e.,
with the lowest α-portion values) at step h, h` 1, ¨ ¨ ¨ , H

$

’

&

’

%

Qπ
hps, aq “ rhps, aq ` CVaRα

s1„Php¨|s,aqpV π
h`1ps1qq

V π
h psq “ Qπ

hps, πhpsqq

V π
H`1psq “ 0,@s P S

(3)

For simplicity, we use C to denote the CVaR operator:

rCα
P pV qsps, aq :“ CVaRα

s1„Pp¨|s,aqpV ps1qq “ sup
xPR

"

x´
1

α
rPpx´ V q`sps, aq

*

, (4)

where rPpx ´ V q`sps, aq “
ř

s1PS Pps1 | s, aqpx ´ V q`ps1q. Let π˚ be the optimal policy which
gives the optimal value function V π˚

h psq “ maxπ V
π
h psq for any s P S. Prior work Chu & Zhang

(2014) shows that π˚ always exists. In the regret minimization task, the agent aims to minimize the
cumulative regret for all K episodes, which is defined as

RegretpKq :“
K
ÿ

k“1

´

V π˚

1 psk,1q ´ V πk

1 psk,1q

¯

, (5)

where πk is the policy taken by the agent in episode k, and V π˚

1 psk,1q ´ V πk

1 psk,1q represents the
sub-optimality of πk. Notice that when α “ 1, the CVaR operator becomes the expectation operator,
and Iterated CVaR RL degenerates to classic risk-neutral RL.

3.3 LINEAR AND GENERAL FUNCTION APPROXIMATION

Assumption 1 (Linear function approximation Ayoub et al. (2020); Fei et al. (2021); Zhou et al.
(2021a)). In the given episodic MDP M, the transition kernel is a linear mixture of a feature basis
ϕ : S ˆ S ˆ A Ñ Rd, i.e., for any step h P rHs, there exists a vector θh P Rd with }θh}2 ď

?
d

such that
Phps1 | s, aq “

@

θh, ϕps1, s, aq
D

(6)
holds for any ps1, s, aq P S ˆ S ˆ A. Moreover, the agent has access to the feature basis ϕ.

In this paper, we assume that the given feature basis ϕ satisfying }ψf ps, aq}2 ď 1 where ψf ps, aq :“
ř

s1PS ϕps1, s, aqfps1q for any bounded function f : S Ñ r0, 1s and ps, aq P S ˆ A.2 A episodic
MDP with this type of linear function approximation is also called a linear mixture MDP.

In addition to the above linear mixture model, we also consider a general function approximation
scenario, which is proposed by Ayoub et al. (2020) and also considered in Fei et al. (2021).

2This assumption is also considered in Zhou et al. (2021a;b); Ayoub et al. (2020); Fei et al. (2021).
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Assumption 2 (General function approximation). In the given episodic MDP M, the transition
kernels tPhuHh“1 Ă P where P is a function class of transition kernels with the form P : S ˆ A Ñ

∆pSq. In addition, the agent has access to such function class P .

Denote the bounded function set BpS, r0, Hsq with form f : S Ñ r0, Hs. With the given candidate
set P , we define a function class Z

Z :“ tzPps, a, V q “
ÿ

s1PS
Pps1 | s, aqV ps1q : P P Pu, (7)

where zP is a function with domain S ˆAˆBpS, r0, Hsq. For simplicity, we denote rPV sps, aq :“
ř

s1PS Pps1 | s, aqV ps1q for function V : S Ñ R.

We measure the efficiency of RL algorithms under Assumption 2 using the eluder dimension of
Z and covering number of P (similar to previous works Wang et al. (2020); Ayoub et al. (2020);
Fei et al. (2021)). The formal definitions of eluder dimension and covering number is detailed in
Appendix H.1

4 ICVAR-RL WITH FUNCTION APPROXIMATION

4.1 ICVAR-RL WITH LINEAR FUNCTION APPROXIMATION

In this section, we propose ICVaR-L (Algorithm 1), an optimistic value-iteration algorithm designed
for ICVaR-RL with linear function approximation. ICVaR-L is inspired by the algorithm ICVaR-
RM proposed in Du et al. (2023) for tabular MDPs, and incorporates two novel techniques: an
ε-approximation of the CVaR operator and a new ridge regression with CVaR-adapted features for
estimating the transition parameter θh.

Algorithm 1 presents the pseudo-code of ICVaR-L. ICVaR-L performs optimistic value iteration in
Lines 3-9, where the key component is to calculate the optimistic Q-value function pQk,h in Line 6
with an approximated CVaR operator and an exploration bonus term. Notice that directly calculating
the CVaR operator rCα

Ph
pV qsps, aq “ supxPr0,Hs

␣

x´ 1
α

@

θh, ψpx´V q` ps, aq
D(

is computationally
inefficient. To maintain computational efficiency, we introduce a novel approximation of the CVaR
operator:

rCα,Nε

θ pV qsps, aq :“ sup
xPNε

"

x´
1

α

@

θ, ψpx´V q` ps, aq
D

*

, (8)

where ε is an accuracy parameter, Nε is a discrete ε-net of r0, Hs, i.e., Nε :“ tnε : n P rtH{εusu.
Cα,Nε

θ takes a supremum over the discrete finite set Nε instead of a continuous interval r0, Hs,
which can be computed efficiently. Notably, this approximation guarantees that the error between
the approximated CVaR operator and the true CVaR operator is at most 2ε (shown in Lemma 1 in
Appendix D.1).

We execute πk to play episode k in Line 11, which is greedy with respect to the optimistic Q-value
function. After that, we calculate the transition parameter estimator pθk`1,h in Lines 12-14 by a new
ridge regression:

pθk`1,h Ðargmin
θ1PRd

λ}θ1}22̀

k
ÿ

i“1

´

pxi,h´ pVi,h`1q`psi,h`1q´

A

θ1, ψ
pxi,h´ pVi,h`1q` psi,h, ai,hq

E¯2

. (9)

Note that we consider tψ
pxi,h´ pVi,h`1q` uki“1 as the regression features, which are different from

tψ
pVi,h`1

uki“1 used in previous risk-neutral linear mixture MDP works (Zhou et al., 2021a;b). The
specific value of xk,h is determined in Line 12. Intuitively, the agent will explore the direction of the
maximum norm of ψ

px´ pVk,h`1q` psk,h, ak,hq for every x P Nε, such that every possible direction is
eventually well explored.

Computation Efficiency The efficient approximation technique and novel ridge regression en-
ables us to effectively handle risk-sensitive RL problems with CVaR-type measures while main-
taining computational efficiency. Moreover, the space complexity and computation complexity of
ICVaR-L are Opd2H ` |Nε||A|HKq and Opd2|Nε||A|H2K2q, respectively. Please refer to Ap-
pendix E for more detailed discussions.

We state the regret guarantee for Algorithm 1 as follows.
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Algorithm 1 ICVaR-L
Require: risk level α P p0, 1s, approximation accuracy ε ą 0, regularization parameter λ ą 0,

bonus multiplier pβ.
1: Initialize pΛ1,h Ð λI, pθ1,h Ð 0, pVk,H`1p¨q Ð 0 for any k P rKs and h P rHs.
2: for episode k “ 1, ...,K do
3: for step h “ H, ..., 1 do
4: // Optimistic value iteration
5: Bk,hp¨, ¨q “

pβ
α supxPNε

}ψ
px´ pVk,h`1q` p¨, ¨q}

pΛ´1
k,h

6: pQk,hp¨, ¨q “ rhp¨, ¨q ` rCα,Nε

pθk,h
ppVk,h`1qsp¨, ¨q ` 2ε`Bk,hp¨, ¨q

7: pVk,hp¨q Ð min
␣

maxaPA pQk,hp¨, aq, H
(

8: πk
hp¨q Ð argmaxaPA pQk,hp¨, aq

9: end for
10: for step h “ 1, ¨ ¨ ¨ , H do
11: Observe the current state sk,h, and take the action ak,h “ πk

hpsk,hq

12: Calculate xk,h Ð argmaxxPNε }ψ
px´ pVk,h`1q` psk,h, ak,hq}

pΛ´1
k,h

13: pΛk`1,h Ð pΛk,h ` ψ
pxk,h´ pVk,h`1q` psk,h, ak,hqψ

pxk,h´ pVk,h`1q` psk,h, ak,hqJ

14: pθk`1,h Ð pΛ´1
k,h

řk
i“1 ψpxi,h´ pVi,h`1q` psi,h, ai,hqpxi,h ´ pVi,h`1q`psi,h`1q // Solution to

ridge regression
15: end for
16: end for

Theorem 1. Suppose Assumption 1 holds, and for given δ P p0, 1s, set λ “ H2, ε “

dH
a

αH´3{K, and the bonus multiplier pβ “ H
b

d log
`

H`KH3

δ

˘

`
?
λ. Then, with probabil-

ity at least 1 ´ 2δ, the regret of ICVaR-L (Algorithm 1) satisfies

RegretpKq ď 4dH2

c

K

αH`1
` 2pβ

c

KH

αH`1

c

8dH logpKq ` 4H3 log
4 log2K ` 8

δ
. (10)

Comparison to Tabular ICVaR-RL Theorem 1 states that ICVaR-L enjoys a regret bound
rOp
a

α´pH`1qpd2H4 ` dH6qKq. Intuitively, the exponential term of α is due to the inherent hard-
ness of the learning in risk MDPs, and the term d expresses the complexity of the environment of
MDPs. In comparison to the regret bound rOp

?
α´pH`1qS2AH3Kq for tabular ICVaR-RL in Du

et al. (2023), our result has the same order of dependence on α andK as the tabular setting, but does
not depend on S, which, in our setting, can be extremely large or even infinite. The detailed proof
of this theorem is given in Appendix D.

To bound the regret of Algorithm 1, we develop several novel analytical tools. (i) We present a novel
lemma which shows that the error of approximating rCα

Ph
pV qsps, aq by rCα,Nε

Ph
V qsps, aq is at most

2ε (Lemma 1 in Appendix D.1). By this lemma, we have a computationally efficient method to cal-
culate an ε-approximation of the CVaR operator, which contributes to the computational efficiency
of Algorithm 1. (ii) We establish a novel concentration argument in Lemma 2 in Appendix D.2,
which exhibits that the transition parameter θh lies in an ellipsoid centered at the estimator pθk,h.
Then, we can bound the deviation between the transition parameter θh and the estimator for the
CVaR operator pθk,h. This result is formally present in Lemma 3 in Appendix D.2.

Moreover, we construct a hard-to-learn MDP instance for ICVaR-RL with linear function approxi-
mation, and establish a regret lower bound ErRegretpKqs ě Ωpd

?
α´H`1Kq. The formal theorem

(Theorem 4) and proof are detailed in Appendix F due to space limit. We can see that ICVaR-L
achieves a nearly minimax optimal with respect to factors d and K, and the factor

?
α´H in our

regret upper bound is unavoidable in general.

4.2 ICVAR-RL WITH GENERAL FUNCTION APPROXIMATION

In this section, we present our results for Iterated CVaR RL with general function approximation
defined in Section 3.3. Specifically, we propose algorithm ICVaR-G (Algorithm 3). In each episode,
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ICVaR-G (i) estimates the confidence set of the transition kernels by constructing a set centered at
the empirical mean with radius pγ, and (ii) choose the policy with the highest possible ICVaR value in
this confidence set of the transition kernels. The pseudo-code and detailed description of ICVaR-G
presented in Appendix G due to space limit), and establish the following performance guarantee.
Theorem 2. Suppose Assumption 2 holds and for some positive constant δ P p0, 1s, we set the esti-
mation radius pγ :“ 4H2p2 logp

2H¨NCpP,}¨}8,1,1{Kq

δ q ` 1 `
a

logp5K2{δqq. Then, with probability
at least 1 ´ 2δ, the regret of ICVaR-G (Algorithm 3) satisfies

RegretpKq ď

c

4KH

αH`1

c

2H ` 2dEpZqH3 ` 8pγdEpZqH logpKq `H3 log
4 log2K ` 8

δ
, (11)

where dEpZq :“ dimEpZ, 1{
?
Kq is the eluder dimension of Z , and NCpP, } ¨ }8,1, 1{Kq is the

1{K-covering number of function class P under the norm } ¨ }8,1.3 By setting the dimensional pa-
rameter DP “ dEpZq logpNCpP, } ¨ }8, 1{Kqq, we have RegretpKq ď rOp

a

α´pH`1qDPH4Kq.

The dominating term of the regret bound in Theorem 2 is rOp
a

α´pH`1qDPH4Kq, which enjoys
the same order of α, H and K as the result of ICVaR-L in Theorem 1. Moreover, in the case
where Assumption 1 holds (i.e., linear function approximation), we have dEpZq “ rOpdq and
logpNCpP, } ¨ }8,1, 1{Kqq “ rOpdq. This means that we can recover the rOp

?
α´pH´1qd2H4Kq

bound in Theorem 1. The main analytical novelty of Theorem 2 includes a novel elliptical potential
lemma for a more fine-grained analysis of regret summation. We begin with bounding the deviation
term supP1P pPk,h

rCα
P1
pVk,h`1sps, aq ´ rCα

Ph

pVk,h`1sps, aq ď 1
αgk,hps, aq, where gk,hps, aq is defined

as

gk,hps, aq :“ sup
P1P pPk,h

zP1

´

s,a,pxk,hps, aq´ pVk,h`1q`
¯

´ inf
P1P pPk,h

zP1

´

s,a,pxk,hps, aq´ pVk,h`1q`
¯

(12)

Intuitively, gk,hps, aq can be interpreted as the diameter of pPk,h. Then, our new elliptical po-
tential lemma (Lemma 9 in Appendix H.3) provides a more refined result by demonstrating
ř

k

ř

h g
2
k,hpsk,h, ak,hq “ OplogpKqq in terms of K. This result is tighter than existing result

ř

k

ř

h gk,hpsk,h, ak,hq “ Op
?
Kq in previous works Russo & Van Roy (2014); Ayoub et al. (2020);

Fei et al. (2021). With the refined elliptical potential lemma, we can then perform a more fine-
grained analysis of regret summation similar to the proof of Theorem 1. The detailed proof of
Theorem 2 is deferred to Appendix H.

5 ICVAR-RL WITH HUMAN FEEDBACK

We further extend our results to investigate risk-sensitive RL in the human feedback (RLHF) setting.
In this setting, the ground truth reward functions are unknown and the agent cannot observe numer-
ical reward signals, but only receives comparison feedback. Specifically, the agent provides two
trajectories to a human expert, and the expert judges which trajectory is better. Below we introduce
the formal definition of comparison feedback, following previous risk-neutral RLHF works (Wang
et al., 2023b; Zhan et al., 2023a;b). First, we assume that there is an underlying reward function
which guides the feedback of human.
Assumption 3 (Underlying reward (Christiano et al., 2017)). There is a unknown underlying re-
ward r˚ P R for some known infinite function set R :“ tr : T Ñ r0, Hsu. Every reward
r consists of H reward functions, i.e., r “ trh : S ˆ A Ñ r0, 1suHh“1, and satisfies that
for every trajectory τ “ ps1, a1, ¨ ¨ ¨ , sH , aHq P T , we have rpτq :“

řH
h“1 rhpsh, ahq. For

a fixed trajectory τ0 “ ps0,1, a0,1, ¨ ¨ ¨ , s0,H , a0,Hq, we define a regularized reward rτ0pτq :“
řH

h“1 rhpsh, ahq ´ rhps0,h, a0,hq based on benchmark τ0.

This underlying reward assumption is a common assumption for comparison feedback and widely
used in Christiano et al. (2017); Zhu et al. (2023); Zhan et al. (2023a;b); Wang et al. (2023b).
Following Wang et al. (2023b), we assume that the human’s preference is drawn from a Bernoulli
distribution parameterized by a general link function σ.
Assumption 4 (Comparison oracle Wang et al. (2023b)). A comparison oracle takes in two trajec-
tories τ1, τ2 and returns

o „ Berpσpr˚pτ1q ´ r˚pτ2qqq,

3For any P,P1
P P , }P ´ P1

}8,1 :“ supps,aqPSˆA
ř

s1PS

ˇ

ˇPps1
| s, aq ´ P1

ps1
| s, aq

ˇ

ˇ.
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where σp¨q is a known link function, e.g., sigmoid function. Here o is the human preference over
pτ1, τ2q. The output o “ 1 indicates τ1 ą τ2, and o “ 0 indicates τ2 ą τ1. Moreover, we assume
that the link function σ satisfies the following properties:

• Completeness: σp0q “ 1
2 , and for any x P r´H,Hs, we have σpxq ` σp´xq “ 1.

• Regularity: For any x P r´H,Hs, we have σ1pxq ě m for some constant m ą 0.

Remark The Bradley-Terry-Luce (BTL) model Bradley & Terry (1952), a famous RLHF model, is
exactly the case when the link function σpxq is chosen as the sigmoid function 1{p1`expp´xqq. The
completeness assumption is based on the common knowledge that the consistency of the comparison
between two trajectories should be upheld regardless of their given order. Thus, since Prτ1 ą τ2s “

σpr˚pτ1q ´ r˚pτ2qq “ 1 ´ Prτ2 ą τ1s “ 1 ´ σpr˚pτ2q ´ r˚pτ1qq, we have σpr˚pτ1q ´ r˚pτ2qq `

σpr˚pτ2q´r˚pτ1qq “ 1. The regularity assumption is common in the bandit literature (Filippi et al.,
2010; Li et al., 2017) and necessary for the existence of optimal policy (Wang et al., 2023b).

Here we consider the general function approximation setting defined in Section 3.3. For given
reward functions rτ0 and possible transition kernel set P :“ tPhuHh“1, we define the optimistic
value function rV P

h recursively as follows.
$

’

’

’

&

’

’

’

%

rQP
h ps, a; rτ0q “ rhps, aq ´ rhps0,h, a0,hq ` sup

P1PPh

Cα
s1„P1p¨|s,aqprV P

h`1ps1; rτ0qq

rV P
h ps; rτ0q “ max

aPA
rQP
h ps, a; rτ0q

rV P
H`1ps; rτ0q “ 0,@s P S

(13)

Inspired by Wang et al. (2020); Ayoub et al. (2020); Fei et al. (2021), we develop our risk-sensitive
algorithm ICVaR-HF. As shown in Algorithm 2, in Line 1, we choose a benchmark trajectory τ0 by
executing an arbitrary policy. In every episode, we select an estimated reward prk to maximize the
optimistic value function rV

pPk
1 psk,1; rτ0q in Line 4. We calculate the optimistic value and Q-value

functions pQk,h, pVh by value iteration, and determine the policy πk in Lines 5- 8. In Line 9, we
execute the policy πk and generate the trajectory τk, and in Line 10, we feed trajectories pτk, τ0q

to the comparison oracle. In Line 11, we adopt MLE to update the confidence reward function set
pRk`1, where we use the following log-likelihood function (which is also considered in Zhu et al.
(2023); Zhan et al. (2023a;b); Wang et al. (2023b)):

Lkprq :“
ÿ

iďk

log prσpoi, rτ0pτiqqq , rσpoi, rτ0pτiqq :“ oi ¨ σprτ0pτiqq ` p1 ´ oiq ¨ σp´rτ0pτiqq (14)

In Lines 12- 15, we apply the transition estimation. pPk,h to estimate the transition kernel Ph in
Line 13 by a novel distance function Distk,h : P ˆ P Ñ Rě0, and select a confidence set pPk,h in
Line 14, where Ph belongs to pPk,h with high probability (as detailed in Lemma 6 in Appendix H.2).

The construction of distance function Distk,h : P ˆ P Ñ Rě0 is inspired by previous risk-neutral
works Ayoub et al. (2020); Fei et al. (2021). Recall the definition of function class Z “ tzP : P P Pu

in Eq. (7). Let X :“ SˆAˆBpS, r0, Hsq be the domain of zP. We use the functions in Z to measure
the difference between two probability kernels in P . Specifically, for all ps, aq P SˆA, let xk,hps, aq

maximize the diameter of pPk,h by function zPps, a, px´ pVk,h`1q`q:

xk,hps, aq :“argmax
xPr0,Hs

#

sup
P1P pPk,h

zP1

´

s, a, px´ pVk,h`1q`
¯

´ inf
P1P pPk,h

zP1

´

s, a, px´ pVk,h`1q`
¯

+

. (15)

Denote Xk,h :“ psk,h, ak,h, pxk,hpsk,h, ak,hq ´ pVk,h`1q`q P X . Then, we can define the distance
functions Distk,hpP,P1q :“ pzP pXk,hq ´ zP1 pXk,hqq

2 for P,P1 P P . Equipped with this distance
function, we can estimate Ph by pPk,h :“ argminP1PP

řk´1
i“1 Disti,hpP1, δk,hq, where δk,hpsk,h`1 |

s, aq “ 1 and δk,hps1 | s, aq “ 0 for any s1 ‰ sk,h`1. That is, pPk,h is the one with the lowest
gap to the sequence tδi,hu

k´1
i“1 which contains the information of history trajectories. In addition,

pPk,h is the confidence set centered at pPk,h with radius pγ. The theoretical guarantee for ICVaR-HF
is presented below.

8
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Algorithm 2 ICVaR-HF
1: Execute an arbitrary policy to collect trajectory τ0 “ ps0,1, a0,1, ¨ ¨ ¨ , s0,H , a0,Hq.
2: for k “ 1 ¨ ¨ ¨K do
3: Receive the initial state sk,1
4: Choose the estimated reward prk Ð argmaxrP pRk

rV
pPk

1 psk,1; rτ0q. // Choose the estimated
reward prk

5: for h “ H, ¨ ¨ ¨ , 1 do
6: pQk,hp¨, ¨q Ð prkhp¨, ¨q ´ prkhps0,h, a0,hq ` supP1PPh

rCα
P1 ppVh`1qsp¨, ¨q

7: pVhp¨q Ð maxaPA pQk,hp¨, aq, πk
hp¨q “ argmaxaPA pQk,hp¨, aq

8: end for
9: Execute the policy πk :“ tπk

huHh“1. In every step h, receive state sk,h and execute action
ak,h “ πk,hpsk,hq. Then collect the trajectory τk “ psk,1, ak,1, sk,2, ak,2, ¨ ¨ ¨ , sk,H , ak,Hq.

10: Compare two trajectories τk, τ0 and collect observation ok from human feedback.
11: Update the reward confidence set pRk`1 Ð tr P R : Lkprq ą maxr1PR Lkpr1q ´ pβRu.
12: for h “ 1, ¨ ¨ ¨ , H do
13: pPk`1,h Ð argminP1PP

řk
i“1 Disti,hpP1, δk,hq // Estimate the transition kernel Ph

14: pPk`1,h “

!

P1 P P :
řk

i“1 Disti,hpP1, pPi,hq ď pγ2
)

// Construct the confidence set
15: end for
16: end for

Theorem 3. For some positive constant δ P p0, 1s, we set the estimation radius pβR “ c logpK ¨

NBpR, } ¨ }8, 1{Kq{δq and pγ “ 4H2
´

2 log
´

2H¨NCpP,}¨}8,1,1{Kq

δ

¯

` 1 `
a

logp5K2{δq

¯

for
some constant c. Denote Then with probability at least 1 ´ 4δ, the regret of Algorithm 2 satisfies

RegretpKq ď rO
´?

KH3α´H´1
´

a

HDP `
a

m´1DR

¯¯

, (16)

where the dimension parametersDp :“ dEpZq logpNCpP, }¨}8,1, 1{Kq detailed in Theorem 2, and
DR :“ dEpRq logpNBpR, }¨}8, 1{Kqq. Here dEpRq :“ dimEpR, 1{

?
Kq is the eluder dimension

of R, and NBpR, } ¨ }8, 1{Kq is the 1{K-bracketing number of R under norm } ¨ }8. 4

The full proof is presented in Appendix I. Notice that the regret bound for Algorithm 2 is sublinear
to K, making ICVaR-HF the first provably efficient algorithm for risk-sensitive RLHF. The first
term of the regret is similar to the result in Theorem 2 for ICVaR-RL with general function approx-
imation, which is the cost of learning the transition estimation. The second term is cost of learning
the unknown reward functions, which requires our novel regret decomposition method to bridge
the gap of the dislocation of the risk-sensitive value function and cumulative reward served for hu-
man feedback comparison oracle. Moreover, we apply the discretization method to R to get the
logpNBpR, } ¨ }8, 1{Kqq term (instead of the logp|R|q term in Wang et al. (2023b)), which remains
finite even when R is an infinite reward function set.

6 CONCLUSION AND FUTURE WORKS

In this paper, we investigate the risk-sensitive RL with an ICVaR objective, i.e., ICVaR-RL, with
linear and general function approximations and human feedback. We propose two provably sample
efficient algorithms, ICVaR-L and ICVaR-G for function approximation ICVaR-RL, by developing
novel techniques including an efficient approximation of the CVaR operator, a new ridge regression
with CVaR-adapted regression features, and a refined elliptical potential lemma. We also develop
the first provably efficient risk-sensitive RLHF algorithm ICVaR-HF with general function approx-
imation, and develop novel theoretical techniques for regret decomposition of risk-sensitive RLHF
and the reward MLE for infinite reward set. This paper leaves several interesting directions for fu-
ture works, e.g., further closing the gap between the upper and lower regret bound for ICVaR-RL
with function approximation on α and H , and extending the risk-sensitive RLHF problem to more
risk measures and more human feedback settings.

4The formal definition of bracketing number is detailed in Definition 4 in Appendix I.1, which is a common
discretization for function class in MLE analysis (Geer, 2000; Liu et al., 2023).
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Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
generalized linear case. Advances in neural information processing systems, 23, 2010.

10

https://openreview.net/forum?id=Yn0xg-kHNW-


Published as a conference paper at ICLR 2024

Sara A Geer. Empirical Processes in M-estimation, volume 6. Cambridge university press, 2000.

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Mari-
beth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham,
Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth
Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Soňa
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A NOTATIONS

In this appendix, we present the basic notations used in this paper.

For a positive integer n, rns :“ t1, 2, ¨ ¨ ¨ , nu. For a non-zero real number r P Rzt0u, the sign
operator sgnprq :“ r{|r|. For a d-dimension vector x P Rd and a positive definite matrix Λ P

Rdˆd, }x}Λ :“
?
xJΛx be the norm of vectors in Rd under a positive matrix Λ. The operator

pxq` :“ maxtx, 0u. For two positive sequences tAnu, tBnu, An “ OpBnq if there exists a positive
constant c such that An ď cBn for any n ě 1, and An “ ΩpBnq if there exists c ą 0 satisfying
0 ď cBn ď An for any n ě 1. rOp¨q further suppresses the polylogarithmic factors in Op¨q.

Measurable space and σ-algebra. To discuss the performance of the algorithm on any MDP
instance, we should establish the formal definition of the probability space considered in the
problem. Since the stochasticity in the MDP is due to the transition, we define the probabil-
ity space as Ω “ pS ˆ AqKH and the probability measure as the gather of transition proba-
bilities and the policy obtained from the algorithms. Thus, we work on the probability space
pΩ,F ,Pq, where F is the product σ-algebra generated by the discrete σ-algebras underlying S
and A. To analyze the random variable on step h in episode k, we inductively define Fk,h as
follows. First let F1,h :“ σps1,1, a1,1, ¨ ¨ ¨ , s1,h, a1,hq for any h P rHs. Then set Fk,h :“
σpFk´1,H , sk,1, ak,1, ¨ ¨ ¨ , sk,h, ak,hq for any k P rKs and h P rHs.

B THE OBJECTIVE OF ICVAR-RL

The fourmulation investigated in this paper is iterated CVaR MDP, which is also studied by Hardy
& Wirch (2004); Osogami (2011); Chu & Zhang (2014); Du et al. (2023). The Iterated CVaR MDP
aims to maximize the objective Jpπq which can be expressed as follows:

Jpπq “ r1ps1, a1q ` CVaRα
s2„P1p¨|s1,a1q

´

r2ps2, a2q ` CVaRα
s3„P2p¨|s2,a2q

´

r3ps3, a3q

`

´

¨ ¨ ¨CVaRα
sH„PH´1p¨|sH´1,aH´1q prHpsH , aHqq

¯¯¯

,
(17)

where ah “ πhpshq for h P rHs and s1 is the initial state. Maximizing this objective means finding
the optimal policy to maximize the cumulative rewards obtained when transitioning to the worst
α-portion states at each step. With this objective, we consider the regret minimization setting to
evaluate the efficiency of our RL algorithms.

Application Intuitively, the ICVaR-RL concerns the worst α-portion situations at each step. This
formulation is most suitable for safety-critical applications where there is a fatal failure probability
that leads to catastrophic states at each decision stage. Our goal is to find a policy that guarantees
safety even when disaster might happen at each transition. For example, consider the financial
dynamic investment (Devolder & Lebègue, 2017), where one needs design a risk-sensitive dynamic
investment strategy. There is a small probability, at each time during execution, that the investor
encouters a catastrophic states. In order to guarantee safety at each step, Devolder & Lebègue
(2017) studies iterated CVaR measure under a Black–Scholes–Merton market.
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C NUMERICAL EXPERIMENTS FOR ALGORITHM 1

In this section, we evaluate the empirical performance of ICVaR-L (Algorithm 1). Since there
is no other prior comparable efficient algorithms for ICVaR-RL with function approximation, we
compare our algorithm with the ICVaR-VI algorithm Du et al. (2023) which is designed for ICVaR-
RL in Tabular MDPs, and the LSVI algorithm Zhou et al. (2021b) for risk-neutral RL in linear
mixture MDPs. These two baselines are the closest comparable algorithms to ICVaR-L in ICVaR-
RL with linear function approximation. The empirical performance is evaluated with respect to the
cumulative regret defined in Eq. 5.

C.1 EXPERIMENT ENVIRONMENT

In our experiments, we consider a risk MDP with states space S “ ts0, s1, s2, sdisu Y S1 Y S2

and action space A “ ta˚u Y Asub. The agent will start at the initial state s0. In this state, the
agent will not receive reward. Then with action a˚, the agent will transfer to a conservative state
s1, i.e. Prs1 | s0, a

˚s “ 1. Otherwise, the agent will transfer to an aggressive state s2 with action
asub P Asub, i.e., Prs2 | s0, asubs “ 1. With any action a P A, the agent will receive no reward
in state s0, rps1, aq “ 0.5 in state s1, and rps2, aq “ 1 in state s2. The conservative state s1 is
associated with S1. The agent at s1 will transfer into s P S1 with equal probability by action a˚.
With sub-optimal action asub P Asub, the agent will not move in state s1, i.e. Prs1 | s1, asubs “ 1.
In s P S1, the agent will receive reward rps, aq “ 0.6 and transfer back to s1 with Prs1 | s, as “ 1
for any a P A.

The aggressive state s2 is associate with S2 and disaster state sdis. For any s P S2, we still have
rps, aq “ 1 for any a P A. However, the disaster state satisfies rpsdis, aq “ 0 for any a P A. With
probability 0.5, the state s2 and s P S2 will transfer to sdis, i.e. Prsdis | s2, as “ Prsdis | s, as “

0.5. Otherwise the agent will stay in ts2u Y S2.

In this MDP, the agent will receive a higher expected cumulative reward if it chooses asub at initial
state to reach the aggressive state s2. However, it is not a risk-sensitive choice. This is because with
small α, the Iterated CVaR MDP prefer the conservative choice a˚ which gives stable return, where
the aggressive choice may lead to a disaster state.

C.2 NUMERICAL RESULTS

We evaluate the cumulative ICVaR-type regret defined in Eq. 5 for algorithms ICVaR-L, ICVaR-VI
(Du et al., 2023) and LSVI(Zhou et al., 2021b), where ICVaR-L is our Algorithm 1 for ICVaR-RL
with linear function approximation, ICVaR-VI is the algorithm for ICVaR-RL in tabular MDPs (Du
et al., 2023), and LSVI is the risk-neutral RL for MDP with linear function approximation (Zhou
et al., 2021b).

In our experiment, we set A “ 2, H “ 6 and α P t0.15, 0.30u. We explore MDPs with different
sizes of state space and dimensions, denoted by pS, dq. We set pS, dq “ p20, 2q and pS, dq “ p40, 4q

to represent small and large MDPs, respectively, with d as the feature dimension in Assumption 1.
For each case, we conduct 10 independent runs and report the average regret across runs with 95%
confidence intervals. The results are presented in Figures 1 and 2
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(a) S “ 20, d “ 2, α “ 0.15
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(b) S “ 20, d “ 2, α “ 0.30

Figure 1: Cumulative regret for the case S “ 20 and d “ 2.
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(a) S “ 40, d “ 4, α “ 0.15
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Figure 2: Cumulative regret for the case S “ 40 and d “ 4.

As depicted in Figures 1 and 2, ICVaR-L consistently exhibits a sublinear regret with respect to
the number of episodes, validating our theoretical result in Theorem 1. Notably, for each α P

t0.15, 0.30u, the regret of ICVaR-L is significantly lower than those of other algorithms.

Comparing ICVaR-L with the tabular algorithm ICVaR-VI, our algorithm demonstrates faster learn-
ing of the optimal risk-sensitive policy, highlighting its efficiency in adopting linear function approx-
imation. Furthermore, LSVI exhibits a nearly linear regret with the number of episodes, indicating
its struggle to learn the optimal risk-sensitive policy.

These experimental evidences demonstrate the efficiency of ICVaR-L in risk-sensitive linear RL
scenarios, providing empirical supports for its theoretical advancements.

D PROOF OF THEOREM 1: REGRET UPPER BOUND FOR ALGORITHM 1

In this section, we present the complete proof of Theorem 1.

First, we give an overview of the proof. In Appendix D.1, we bound the approximation error of
CVaR operator from taking the supremum in finite set Nε instead of interval r0, Hs in Eq. 8. We
propose Lemma 1 which bounds the error of approximating rCα

P pV qsps, aq by rCα,Nε

P pV qsps, aq. In
Appendix D.2, we establish the concentration argument with respect to our estimated parameter pθk,h
and the true parameter θh for step h. Lemma 2 shows that }θh´pθk,h}

pΛk,h
ď pβ with high probability,
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Figure 3: Illustrating example for Lemma 1.

and Lemma 3 upper bounds the deviation term based on the concentration of pθk,h. In Appendix D.3,
Lemma 4 implies that our calculation of functions pQk,h and pVk,h is optimistic. Finally, we apply
regret decomposition method and bound the regret of Algorithm 1 in Appendix D.4.

D.1 ERROR OF CVAR APPROXIMATION

Below we show that the error of approximating the CVaR operator by the technique of taking supre-
mum on the discrete set Nε is small.
Lemma 1. Assume the transition kernel P is parameterized by transition parameter θ, i.e. Pps1 |

s, aq “ xθ, ϕps1, s, aqy for any ps1, s, aq P S ˆ S ˆ A. We denote

rCα
θ pV qsps, aq :“ rCα

P pV qsps, aq, rCα,Nε

θ pV qsps, aq :“ rCα,Nε

P pV qsps, aq. (18)

For a given constant ε ą 0 and fixed a value function V : S Ñ r0, Hs, we have
ˇ

ˇ

ˇ
rCα,Nε

θ pV qsps, aq ´ rCα
θ pV qsps, aq

ˇ

ˇ

ˇ
ď 2ε. (19)

Proof. First, we denote rCα,x
θ pV qsps, aq :“ x´ 1

α rPpx´V q`sps, aq. Let x˚ :“ VaRα
P pV q P r0, Hs.

Then, we have rCα
θ pV qsps, aq “ rCα,x˚

θ pV qsps, aq by propterties of CVaR operator (Rockafellar
et al., 2000).

If x˚ P Nε, we have rCα,Nε

θ pV qsps, aq “ rCα
θ pV qsps, aq. It suffices to consider x˚ R Nε. Suppose

x˚ P pmε, pm` 1qεq for some positive integer m P rtH{εus.

By the property of CVaR operator, we have

rCα,Nε

θ pV qsps, aq “ max
!

rCα,mε
θ pV qsps, aq, rCα,pm`1qε

θ pV qsps, aq

)

(20)

Then, we assume S0 :“ ts1 P S : V ps1q ď mεu, S1 :“ ts1 P S : mε ă V ps1q ă x˚u. Denote s˚ as
V ps˚q “ x˚. Noticing that x˚ “ VaRα

P pV q, we have:
ÿ

s1PS′YS1

Pps1 | s, aq ă α,
ÿ

s1PS′YS1Yts˚u

Pps1 | s, aq ě α. (21)

We give Figure 3 where we sort the successor states s1 P S by V ps1q in ascending order, and the red
virtual line denotes the α-quantile line. The black virtual line denotes the value ofmε, x˚, pm`1qε,
and the sets of states S0, S1 are marked on the figure.

By the Figure 3, we can write the exact form of rCα,mε
θ sps, aq and rCα,x˚

θ sps, aq as

rCα,mε
θ sps, aq “ mε´

1

α

ÿ

s1PS0

Pps1|s, aqpmε´ V ps1qq`, (22)
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rCα,x˚

θ sps, aq “ x˚ ´
1

α

ÿ

s1PS0`S1

Pps1|s, aqpx˚ ´ V ps1qq`, (23)

respectively.

Then, we have

rCα,x˚

θ sps, aq ´ rCα,mε
θ sps, aq

ďx˚ ´mε`
1

α

˜

ÿ

s1PS0

Pps1 | s, aqpx˚ ´mεq `
ÿ

s1PS1

Pps1 | s, aqpx˚ ´ V ps1qq

¸

ďε`
1

α

ÿ

s1PS0YS1

Pps1 | s, aqpx˚ ´mεq

ď2ε,

(24)

where the first inequality holds by triangle inequality, and the second inequality holds by the defini-
tion of S1, and the last one holds by the definition of α.

Thus
ˇ

ˇ

ˇ
rCα,Nε

θ pV qsps, aq ´ rCα
θ pV qsps, aq

ˇ

ˇ

ˇ

“rCα,x˚

θ pV qsps, aq ´ max
!

rCα,mε
θ pV qsps, aq, rCα,pm`1qε

θ pV qsps, aq

)

ď

ˇ

ˇ

ˇ
rCα,x˚

θ sps, aq ´ rCα,mε
θ sps, aq

ˇ

ˇ

ˇ
ď 2ε,

(25)

where equality holds since rCα
θ pV qsps, aq ě rCα,Nε

θ pV qsps, aq by definition.

D.2 CONCETRATION ARGUMENT

We show that our estimated parameter pθk,h is a proper estimation of the true parameter θh for all
episodes k and steps h. In fact, we can prove that pθk,h falls in an ellipsoid centered at θh with high
probability. In order to define the bonus term, we define a function Xk,hp¨, ¨q that chooses the ideal
x based on given state-action pair ps, aq by

Xk,hps, aq :“ arg max
xPNε

}ψ
px´ pVk,h`1q` ps, aq}

pΛ´1
k,h
. (26)

Then, we denote ψk,hps, aq as the maximum norm of }ψ
px´ pVk,h`1q` ps, aq}

pΛ´1
k,h

for x P Nε with a

given state-action pair ps, aq P S ˆ A:

ψk,hps, aq :“ ψ
pXk,hps,aq´ pVk,h`1q` ps, aq. (27)

Lemma 2 (Concentration on θ). For δ P p0, 1q, we have that with probability at least 1 ´ δ{H ,

}θh ´ pθk,h}
pΛk,h

ď pβ “ H

d

d log

ˆ

H `KH3

δ

˙

`
?
λ (28)

holds for any k P rKs and h P rHs.

Proof. First, we fixed an h P rHs. Let Ak “ ψk,hpsk,h, ak,hq and ηk :“ xθh, ψk,hpsk,h, ak,hqy ´

pxk,h ´ pVk,h`1q`psk,h`1q. We have Ak is Fk,h measurable, ηk is Fk,h`1 measurable. And tηkuk
is a martingale difference sequence and H-sub-Gaussian. We have

θh´pθk,h “pΛ´1
k,h

˜

k´1
ÿ

i“1

ψi,hpsi,h, ai,hq

´

xθh, ψi,hpsi,h, ai,hqy ´ pxi,h ´ pVi,h`1q`psi,h`1q

¯

` λθh

¸

“pΛ´1
k,h

k´1
ÿ

i“1

Aiηi ` λpΛ´1
k,hθh.

(29)
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Then, we can write

}θh ´ pθk,h}
pΛk,h

ď

›

›

›

›

›

k´1
ÿ

i“1

Aiηi

›

›

›

›

›

pΛ´1
k,h

` λ}θh}
pΛ´1
k,h

ď

›

›

›

›

›

k´1
ÿ

i“1

Aiηi

›

›

›

›

›

pΛ´1
k,h

`
?
λ, (30)

where first inequality is due to Eq. 29 and triangle inequality, and the second one comes from
pΛk,h ľ λI .

By Lemma 17 (Theorem 2 in Abbasi-yadkori et al. (2011)), we have that with probability at least
1 ´ δ{H2,

}θh ´ pθk,h}
pΛk,h

ď H

d

d log

ˆ

H2 `KH4

δ

˙

`
?
λ (31)

Thus, by uniform bound, we have the above inequality holds for any h P rHs with probability at
least 1 ´ δ{H .

Combined with the concentration argument above, we can bound the deviation term of θh and pθk,h
with respect to the CVaR operator.

Lemma 3. For δ P p0, 1q, any k P rKs and any h P rHs, we have that with probability at least
1 ´ δ{H , the following holds:

ˇ

ˇ

ˇ
rCα,Nε

pθk,h
ppVk,hqsps, aq ´ rCα,Nε

θh
ppVk,hqsps, aq

ˇ

ˇ

ˇ
ď

pβ

α
}ψk,hps, aq}

pΛ´1
k,h
. (32)

Proof. Apply the same definition of rCα,x
θ pV qsps, aq :“ x ´ 1

α rPpx ´ V q`sps, aq, we can write
rCα,Nε

θ pV qsps, aq “ supxPNε
rCα,x

θ pV qsps, aq. We have
ˇ

ˇ

ˇ
rCα,Nε

θh
ppVk,h`1qsps, aq ´ rCα,Nε

pθk,h
ppVk,h`1qsps, aq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

sup
yPNε

rCα,y
θh

ppVk,h`1qsps, aq ´ sup
xPNε

rCα,x
pθk,h

ppVk,h`1qsps, aq

ˇ

ˇ

ˇ

ˇ

ď sup
yPNε

ˇ

ˇ

ˇ
rCα,y

θh
ppVk,h`1qsps, aq ´ rCα,y

pθk,h
ppVk,h`1qsps, aq

ˇ

ˇ

ˇ

“ sup
yPNε

ˇ

ˇ

ˇ

ˇ

y ´
1

α
xθh, ψpy´ pVk,h`1q` ps, aqy ´ y `

1

α
xpθk,h, ψpy´ pVk,h`1q` ps, aqy

ˇ

ˇ

ˇ

ˇ

ď
1

α
}pθk,h ´ θh}

pΛk,h
sup
yPNε

}ψ
py´ pVk,h`1qq ps, aq}

pΛ´1
k,h
,

(33)

where the first inequality holds by the property of supremum, and the second inequality holds by
triangle inequality. Recall the definition of Xk,hps, aq and ψk,h in Eq. 26 and 27. By Lemma 2, we
have that with probability at least 1 ´ δ{H ,

ˇ

ˇ

ˇ
rCα,Nε

θh
ppVk,h`1qsps, aq ´ rCα,Nε

pθk,h
ppVk,h`1qsps, aq

ˇ

ˇ

ˇ
ď

1

α
pβ}ψk,hps, aq}

pΛ´1
k,h
. (34)

D.3 OPTIMISM

We use upper confidence bound-based value iteration as in Jin et al. (2020); Zhou et al. (2021a) to
calculate the optimistic value and Q-value functions pVk,h, pQk,h, and construct the policy πk in a
greedy manner. Then, we prove the optimism of pVk,h below.

Lemma 4 (Optimism). For δ P p0, 1s, s P S, and any k P rKs, h P rHs, with probability at least
1 ´ δ, we have

pVk,hpsq ě V ˚
h psq. (35)
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Proof. We prove this argument by induction in h. For h “ H`1, we have pVk,H`1psq “ V ˚
H`1psq “

0 for any k P rKs and s P S. For h P rHs, assume that with probability at least 1 ´ pH ´ hqδ{H ,
pVk,h`1psq ě V ˚

h`1psq for any k P rKs and s P S. Consider the case of h. For any k P rKs and
ps, aq P S ˆ A, we have that with probability at least 1 ´ δ{H ,

pQk,hps, aq ´Q˚
hps, aq

“rCα,Nε

pθk,h
ppVk,h`1qsps, aq ` 2ε`

pβ

α
sup
xPNε

}ψ
px´ pVk,h`1q` ps, aq}

pΛ´1
k,h

´ rCα
θh

pV ˚
h`1qsps, aq

“rCα,Nε

pθk,h
ppVk,h`1qsps, aq ´ rCα,Nε

θh
ppVk,h`1qsps, aq ` 2ε`

pβ

α
}ψk,hps, aq}

pΛ´1
k,h

` rCα,Nε

θh
ppVk,h`1qsps, aq ´ rCα

θh
ppVk,h`1qsps, aq ` rCα

θh
ppVk,h`1qsps, aq ´ rCα

θh
pV ˚

h`1qsps, aq

ěrCα
θh

ppVk,h`1qsps, aq ´ rCα
θh

pV ˚
h`1qsps, aq

(36)
where the inequality comes from Lemma 1 and Lemma 3 which show that

rCα,Nε

θh
ppVk,h`1qsps, aq ´ rCα

θh
ppVk,h`1qsps, aq ě ´2ε (37)

and

rCα,Nε

pθk,h
ppVk,h`1qsps, aq ´ rCα,Nε

θh
ppVk,h`1qsps, aq ě ´

pβ

α
}ψk,hps, aq}

pΛ´1
k,h
. (38)

Since pVk,h`1ps1q ě V ˚
h`1ps1q for any s1 P S and k P rKs with probability at least 1´ pH ´ hqδ{H .

Then by union bound, we have pQk,hps, aq ě Q˚
hps, aq holds for any k P rKs and ps, aq P S ˆ A

with probability at least 1 ´ pH ` 1 ´ hqδ{H . Take the supremum on the left and right side for
a P A, we have pVk,hpsq ě V ˚

h psq for any k P rKs and s P S with high probability. This implies the
case of h. By induction, we finish the proof.

D.4 REGRET SUMMATION

In this section, we provide the proof of the main theorem. Here we follow the definitions in Du et al.
(2023).

For a fixed risk level α P p0, 1s, value function V : S Ñ R, and a transition distribution Pp¨ :
s, aq P ∆pSq, we denote the conditional probability of transitioning to s1 from ps, aq conditioning
on transitioning to the α-portion tail states s1 as Qα,V

P ps1 | s, aq. QP
α,V ps1 | s, aq is a distorted

transition distribution of P based on the lowest α-portion values of V ps1q, i.e.,

CVaRα
s1„Pp¨|s,aqpV ps1qq “

ÿ

s1PS
Qα,V

P ps1 | s, aqV ps1q. (39)

Moreover, let rQα,V
P f sps, aq :“

ř

s1PS Qα,V
P ps1 | s, aqfps1q for real valued function f : S Ñ R.

Then, we consider the visitation probability of the trajectories. Let tπkuKk“1 be the polices produced
by ICVaR-L in the Let wk,hps, aq denote the probability of visiting ps, aq at step h of episode k, i.e.
the probability of visiting ps, aq under the transition probability of the MDP Pip¨ | ¨, ¨q with policy

πk
i at step i “ 1, 2, ¨ ¨ ¨ , h ´ 1, starting with state sk,1 initially. Similarly, we use wCVaR,α,V πk

k,h

to denote the conditional probability of visiting ps, aq at step h of episode k conditioning on the

distorted transition probability Qα,V πk

i`1

Pi
p¨ | ¨, ¨q and policy πk

i at step i “ 1, 2, . . . , h´ 1.

Equipped with these notations, now we present our proof of the main theorem for ICVaR-RL with
linear function approximation.
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Proof of Theorem 1. First we perform the regret decomposition. The following holds with proba-
bility at least 1 ´ δ:

pVk,1psk,1q ´ V πk

1 psk,1q

“rCα,Nε

pθk,1
ppVk,2qspsk,1, ak,1q ` 2ε`Bk,1psk,1, ak,1q ´ rCα

θ1pV πk

2 qspsk,1, ak,1q

“ rCα,Nε

pθk,1
ppVk,2qspsk,1, ak,1q ´ rCα,Nε

θ1
ppVk,2qspsk,1, ak,1q

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

I1

` rCα,Nε

θ1
ppVk,2qspsk,1, ak,1q ´ rCα

θ1ppVk,2qspsk,1, ak,1q
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

I2

` rCα
θ1ppVk,2qspsk,1, ak,1q ´ rCα

θ1pV πk

2 qspsk,1, ak,1q
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

I3

`2ε`Bk,1psk,1, ak,1q

ď2p2ε`Bk,1psk,1, ak,1qq ` rQα,V πk

2

P1
ppVk,2 ´ V πk

2 qspsk,1, ak,1q

(40)

where the inequality holds by applying Lemma 3,1, and 20 to bound I1, I2, and I3 respectively. By
recursively apply the same method of Eq. 40 to pVk,h ´ V πk

h for h “ 2, 3, ¨ ¨ ¨ , H , we have that with
probability at least 1 ´ δ,

pVk,1psk,1q ´ V πk

1 psk,1q

ď2p2ε`Bk,1psk,1, ak,1qq `
ÿ

s2PS
Qα,V πk

2

P1
ps2|sk,1, ak,1qppVk,2ps2q ´ V πk

2 ps2qq

ď2
H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aqp2ε`Bk,hps, aqq

ď
4Hε

αH´1
`

2pβ

α

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aqbk,hps, aq

(41)

where we denote bk,hps, aq :“ }ψk,hps, aq}
pΛ´1
k,h

“ αBk,hps, aq{pβ, then b2k,hps, aq ď H . The first
inequality is exactly Eq. 40, the second inequality holds by recursively apply the same method of
Eq.40 to pVk,h ´ V πk

h for h “ 2, 3, ¨ ¨ ¨ , H , and the last inequality holds by wCVaR,α,V
k,h ps, aq ď

α´pH´1q by Lemma 21. Then, we have that with probability at least 1 ´ δ,

RegretpKq “

K
ÿ

k“1

V π˚

1 psk,1q ´ V πk

1 ps1q

ď
4HKε

αH´1
`

2pβ

α

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aqbk,hps, aq

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

I

(42)

We can bound term I by similar approach in Du et al. (2023). By Cauchy inequality, we have

I ď

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aqb2k,hps, aq

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aq

“

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aqb2k,hps, aq
?
KH

(43)
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where the equality holds due to
ř

ps,aq w
CVaR,α,V πk

k,h ps, aq “ 1 by definition. By Lemma 21, we
have

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

w
CVaR,α,V πk

h

k,h ps, aqb2k,hps, aq

ď

g

f

f

e

1

αH´1

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wk,hps, aqb2k,hps, aq

“

g

f

f

e

1

αH´1

K
ÿ

k“1

E
psh,ahq„dπk

sk,1

«

H
ÿ

h“1

b2k,hpsh, ahq

ff

,

(44)

where dπ
k

sk,1
denotes the distribution of ps, aq pair playing the MDP with initial state sk,1 and policy

πk. Let Gk :“ Fk,H , where Fk,H is defined in Appendix A. We have πk is Gk´1 measurable.

Set Tk :“
b

řH
h“1 b

2
k,hpsk,h, ak,hq, we have |Tk|2 ď H3, and Tk is Gk measurable. According to

Lemma 19, we have the following holds with probability 1 ´ δ.

K
ÿ

k“1

E
psh,ahq„dπk

sk,1

«

H
ÿ

h“1

b2k,hpsh, ahq

ff

ď 8
K
ÿ

k“1

H
ÿ

h“1

b2k,hpsk,h, ak,hq ` 4H3 log
4 log2K ` 8

δ
(45)

Notice that we can apply the elliptical potential lemma (Lemma 18) to the first term on the right hand
side. Thus we can bound term I in Eq. 42 with high probability. Combine the arguments above, we
have that with probability at least 1 ´ 2δ,

RegretpKq ď
4HKε

αH´1
`

2pβ

α

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

w
CV aR,α,V πk

h

k,h ps, aqb2k,hps, aq
?
KH

ď
4HKε

αH´1
`

2pβ
?
αH`1

g

f

f

e

K
ÿ

k“1

E
psh,ahq„dπk

sk,1

«

H
ÿ

h“1

b2k,hpsh, ahq

ff

?
KH

ď
4HKε

αH´1
`

2pβ
?
αH`1

g

f

f

e8
K
ÿ

k“1

H
ÿ

h“1

b2k,hpsk,h, ak,hq ` 4H3 log
4 log2K ` 8

δ

?
KH

ď
4dH

?
K

?
αH`1

`
2pβ

?
αH`1

c

8dH logpKq ` 4H3 log
4 log2K ` 8

δ

?
KH

(46)
where the first inequality is due to Eq. 42 and Eq. 43, the second inequality is due to Eq. 44, the
third inequality holds by Eq. 45, and the last inequality holds by ε “ dH

a

αH´3{K and elliptical
potential lemma (Lemma 18).

E SPACE AND COMPUTATION COMPLEXITIES OF ALGORITHM 1

In this section, we discuss the space and computation complexities of Algorithm 1. We consider
the setting of ICVaR-RL with linear function approximation, where the size of S can be extremely
large and even infinite. We will show that the space and computation complexities of Algorithm 1
are only polynomial in d,H,K and |A|. Noticing that ε “ dH

a

αH´3{K is given by Theorem 1,
we have |Nε| “ tH{εu ď

a

K{pαH´3d2q ` 1 is also polynomial in d,H,K. We will include the
size of Nε into the complexities of Algorithm 1.

E.1 SPACE COMPLEXITY

Though in episode k P rKs, we calculate the optimistic Q-value function pQk,hps, aq for every
ps, aq-pair in Line 6 of Algorithm 1, we only need to calculate the Q-value and value functions
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for the observed states tsk,huHh“1 to produce the exploration policies tπk
huHh“1 in episode k, and

calculate the estimator pθk`1,h for any h P rHs in episode k. Thus we need to store the covariance
matrix pΛk,h, regression features ψ

px´ pVk,h`1q` psk,h, aq for any x P Nε, a P A and value pxk,h ´

pVk,h`1q`psk,h`1q. The total space complexity is Opd2H ` |Nε||A|HKq.

E.2 COMPUTATION COMPLEXITY

By the above argument, we only need to calculate the optimistic value and Q-value functions for the
observed states tsk,huHh“1 in episode k. We show that the total complexity is Opd2|Nε||A|H2K2q

by analyzing the specific steps of Algorithm 1 in two parts.

E.2.1 CALCULATION OF THE OPTIMISTIC VALUE AND Q-VALUE FUNCTIONS

We discuss the complexities of calculating optimistic value iteration steps (Lines 3-9) in this section.

First, we need to calculate pQk,hpsk,h, aq for every action a P A to produce the exploration pol-
icy πk

hpsk,hq at step h in episode k. In Line 6, calculating the approximated CVaR operator
rCα,Nε

pθk,h

pVk,h`1sps, aq “ supxPNε
tx´ 1

αxpθk,h, ψpx´ pVk,h`1q` ps, aqu costs Opd|Nε|q operations. Cal-

culating ψ
px´ pVk,h`1q` ps, aq costs OpKHq operations since the number of non-zero elements of

pVk,h`1p¨q is at mostKH . Computing the bonus termBk,hps, aq needsOpd2|Nε|q operations. Thus,
calculating pQk,hpsk,h, aq for any h P rHs needs Opd2|Nε||A|H2Kq operations.

Since we have pQk,hpsk,h, aq, we can calculate pVk,hpsk,hq by Op|A|q operations in Line 7, and
πk
hpsk,hq by Op|A|q operations in Line 8. In all, computing the optimistic functions will cost
Opd2|Nε||A|H2K2q operations.

E.2.2 CALCULATION OF THE PARAMETER ESTIMATORS

At step h of episode k, we choose the specific value xk,h in Line 12, which needs Opd2|Nε|q

operations. Then, Line 13 takes Opd2q operations to calculate the covariance matrix pΛk`1,h. In
Line 14, we can store the prefix sum

řk
i“1 ψpxi,h´ pVi,h`1q` psi,h, ai,hqpxi,h ´ pVi,h`1q`psi,h`1q and

calculate pθk`1,h with Opd2q operations. Thus the total complexity for calculating the parameter
estimators is Opd2|Nε|HKq.

F REGRET LOWER BOUND FOR ICVAR-RL WITH LINEAR FUNCTION
APPROXIMATION

In this section, we present the brief introduction to the idea of the lower bound instance and the
complete proof of Theorem 4. The formal theorem for regret lower bound in ICVaR-RL with linear
function approximation is presented below.
Theorem 4. Let H ě 2, d ě 2, and an interger n P rH ´ 1s. Then, for any algorithm, there exists
an instance of Iterated CVaR RL under Assumption 1, such that the expected regret is lower bounded
as follows:

ErRegretpKqs ě Ω

˜

dpH ´ nq

c

K

αn

¸

. (47)

First we briefly explain the the key idea of constructing the hard instance. Consider the action space
as A “ t´1, 1ud´1 and a parameter set U “ t´∆,∆ud´1, where ∆ is a small constant. The
instance contains n` 3 states with n regular states s1, ¨ ¨ ¨ , sn and three absorbing states x1, x2, x3.
Moreover, we uniformly choose a vector µ from U . Set θh “ p1, µJq for any h P rHs. Then, we
can generate the transition probabilities and reward function shown in Figure 4 by properly define
the feature mapping.

Intuitively, the structure of the instance in Firgure 4 is combined with a chain of regular states
s1 Ñ s2 Ñ ¨ ¨ ¨ Ñ sn and a hard-to-learn bandit state sn Ñ tx2, x3u (inspired by the construction
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Figure 4: A hard-to-learn instance for Theorem 4.

for tabular MDP in Du et al. (2023)). With probability of α, the agent can move from si to si`1

for i P rn ´ 1s. Since we consider the worst-α-portion case under the Iterated CVaR criterion, the
CVaR-type value function of si only depends on the state si`1 for i P rn´ 1s. At state sn, there is a
linear-type hard-to-learn bandit (inspired by the construction for the lower bound instance of linear
bandits (Lattimore & Szepesvári, 2020)). By construction, the absorbing state x2 is better than x3.
Hence, the best policy at sn is a˚

n “ sgnpµq :“ psgnpµ1q, ¨ ¨ ¨ , sgnpµd´1qqJ. As a result, the agent
needs to learn the positive and negative signs of every element of µ by reaching sn and pull the
bandit.

Proof of Theorem 4. We define the hard-to-learn instance (shown in Figure 4), which is inspired
by the lower-bound instances constructed in Du et al. (2023); Zhou et al. (2021a); Lattimore &
Szepesvári (2020). For given integers d,H,K, n P rH ´ 1s and risk level α P p0, 1s, consider the
action space as A “ t´1, 1ud´1 and a parameter set U “ t´∆,∆ud´1, where ∆ is a constant to be
determined. The instance contains n` 3 states with n regular states s1, ¨ ¨ ¨ , sn and three absorbing
states x1, x2, x3. Moreover, we uniformly choose a µ from U .

Then, we introduce the reward function of this instance. For any step h P rHs, the reward function
rhpsi, aq “ 0 for any regular state si with i P rns and action a P A. The reward functions of
absorbing states are rhpx1, aq “ 1, rhpx2, aq “ 0.8, and rhpx3, aq “ 0.2 for any step h P rHs and
action a P A.

For the transition kernels, set θh “ p1, µJqJ for any h P rHs. For any i P rn´ 1s and action a P A,
let ϕpsi`1, si, aq “ pα, 0, ¨ ¨ ¨ , 0qJ and ϕpx1, si, aq “ p1 ´ α, 0, ¨ ¨ ¨ , 0qJ. Then the transition
probabilities at regular state si are Pipsi`1 | si, aq “ α and Pipx1 | si, aq “ 1 ´ α since we will
only reach si at step h “ i. For any action an P A, let ϕpx2, sn, anq “ p1´α`pd´1q∆, aJ

n qJ and
ϕpx3, sn, anq “ pα´pd´1q∆, aJ

n qJ. Then, we have Phpx2 | sn, anq “ 1´α`pd´1q∆`xµ, any

and Phpx3 | sn, anq “ α´ pd´1q∆´ xµ, any for any h P rHs. For the absorbing states xi with i P

t1, 2, 3u, let ϕpxi, xi, aq “ p1, 0, ¨ ¨ ¨ , 0qJ and ϕps, xi, aq “ 0 for s ‰ xi. Thus Phpxi | xi, aq “ 1
for i P t1, 2, 3u and any a P A, h P rHs.

In this instance, we have

V π˚

1 ps1q “
H ´ n

α
p0.2pα ´ 2pd´ 1q∆q ` 0.8p2pd´ 1q∆qq (48)

V π
1 ps1q “

H ´ n

α
p0.2pα ´ pd´ 1q∆ ` xµ, πnpsnqy ` 0.8ppd´ 1q∆ ´ xµ, πnpsnqyqq (49)

Thus we have

V π˚

1 ps1q ´ V π
1 ps1q “

1.2pH ´ nq∆

α

d´1
ÿ

i“1

p1 ´ Ipµ, πnpsnq, iqq , (50)
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where Ipµ, πnpsnq, iq “ 1psgnpµiq “ sgnpπnpsnqiqq. Then if Algorithm produces policy π “

pπkqkPrKs in K episodes, we have

RegretpKq “
1.2pH ´ nq∆

α

d´1
ÿ

i“1

˜

K
ÿ

k“1

1 ´ Ipµ, πk
npsnq, iq

¸

(51)

Since we uniformly choose µ from U , we have

ErRegretpKqs “
1.2pH ´ nq∆

α

d´1
ÿ

i“1

1

|U |

ÿ

µPU
Eµ

«˜

K
ÿ

k“1

1 ´ Ipµ, πk
npsnq, iq

¸ff

. (52)

Denote Eµ be the conditional expectation on the fixed µ P U . For fixed i P rd ´ 1s, we denote
µpiq :“ pµ1, ¨ ¨ ¨ , µi´1,´µi, µi`1, ¨ ¨ ¨ , µd´1q which differs from µ at its i-th coordinate.

Assume Npµ,π, iq :“
řK

k“1p1 ´ Ipµ, πk
npsnq, iqq. By Pinsker’s inequality (Exercise 14.4 and

Eq.12, 14 in Lattimore & Szepesvári (2020)), we have the following lemma.

Lemma 5. For fixed i P rd´ 1s, we have

EµrNpµ,π, iqs ´ EµpiqrNpµ,π, iqs ě ´
K
?
2

b

KLpPµ||Pµpiqq, (53)

where Pµ denotes the joint distribution over all possible reward sequences of length K under the
MDP parameterized by µ.

Denote µpiq :“ pµ1, ¨ ¨ ¨ , µi´1,´µi, µi`1, ¨ ¨ ¨ , µd´1q which differs from µ at its i-th coordinate.
Let wpsnq be the probability to reach sn in each episode. By construction, we have wpsnq “ αn´1.
Denote Berppq as the Bernoulli distribution with parameter P . Let Berµ :“ Berpα ´ pd ´ 1q∆ ´

xµ, πk
npsnqyq. By definition of KL divergence, we have KLpBerpaq||Berpbqq ď 2pa´ bq2{a

EµrKLpBerµ ||Berµpiqqs ď Eµ

„

2xµ´ µpiq, πk
npsnqy2

xµ, πk
npsnqy ` α ´ pd´ 1q∆

ȷ

ď
8∆2

α ´ 2pd´ 1q∆
(54)

Let ∆ “ c
b

1
αn´2K where c is a small constant such that 2pd´ 1q∆ ă α{2. Then, we have

KLpPµ||Pµpiqq “

K
ÿ

k“1

wpsnqEµ

“

KL
`

Berµ ||Berµpiq

˘‰

ď 16αn´2K∆2. (55)

Combined with above equations, we can bound the expectation of the regret as:

ErRegretpKqs “
1.2pH ´ nq∆

α

1

2d´1

ÿ

µPU

d´1
ÿ

i“1

EµrNpµ,π, iqs

“
1.2pH ´ nq∆

α

1

2d

ÿ

µPU

d´1
ÿ

i“1

EµrNpµ,π, iqs ` EµpiqrNpµpiq,π, iqs

“
1.2pH ´ nq∆

α

1

2d

ÿ

µPU

d´1
ÿ

i“1

K ` EµrNpµ,π, iqs ´ EµpiqrNpµ,π, iqs

ě
1.2pH ´ nq∆

α

1

2d

ÿ

µPU

d´1
ÿ

i“1

K ´ 2
?
2K∆

?
αn´2K

“
0.6pH ´ nq∆

α
pd´ 1qpK ´ 2

?
2K∆

?
αn´2Kq,

(56)

where the inequality holds by Lemma 5 and Eq. 55. Since ∆ “ c
b

1
αn´2K , we have

ErRegretpKqs ě Ω

˜

dpH ´ nq

c

K

αn

¸

. (57)
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G ALGORITHM FOR ICVAR-RL WITH GENERAL FUNCTION
APPROXIMATION: ICVAR-G

Overall, in each episode, the algorithm first calculates pPk,h to estimate the transition kernel Ph by a
least square problem in Line 11 and selects a confidence set pPk,h in Line 12, such that Ph is likely
to belong to pPk,h with high probability (as detailed in Lemma 6 in Appendix H.2). Subsequently,
the algorithm calculates the optimistic value functions in Line 5, 6 based on the selected set pPk,h

and chooses the exploration policy πk using a greedy approach in Line 7.

Algorithm 3 ICVaR-G
Require: estimation radius pγ.

1: Initialize pVk,H`1 “ 0 for any k P rKs.
2: for episode k “ 1, ...,K do
3: for step h “ H, ..., 1 do
4: // Optimistic value iteration
5: pQk,hp¨, ¨q “ rhp¨, ¨q ` supP1P pPk,h

rCα
P1 ppVk,h`1qsp¨, ¨q

6: pVk,hp¨q Ð min
␣

maxaPA pQk,hp¨, aq, H
(

7: πk
hp¨q Ð argmaxaPA pQk,hp¨, aq

8: end for
9: for horizon h “ 1, ¨ ¨ ¨ , H do

10: Observe state sk,h, play with policy πk
h, ak,h Ð πk

hpsk,hq.
11: pPk`1,h Ð argmin

P1PP

řk
i“1 Disti,hpP1, δk,hq // Estimate the transition kernel Ph

12: pPk`1,h Ð

!

P1 P P :
řk

i“1 Disti,hpP1, pPi,hq ď pγ2
)

// Construct the confidence set
13: end for
14: end for

H PROOF OF THEOREM 2: REGRET UPPER BOUND FOR ALGORITHM 3

In this section, we present the full proof of Theorem 2 for ICVaR-RL with general function approx-
imation under Assumption 2. The proof consists of two parts. In Appendix H.2, we establish the
concentration argument which shows Ph P pPk,h with high probability in Lemma 6. With the con-
centration argument, we can prove the optimism of pQk,h and pVk,h in Lemma 7, and further bound
the deviation term for general setting in Lemma 8. In Appendix H.3, we present our novel elliptical
potential lemma in Lemma 9, and prove Theorem 2 by regret decomposition and regret summation.

H.1 DEFINITION OF ELUDER DIMENSION AND COVERING NUMBER

To introduce the eluder dimension, we first define the concept of ε-independence.
Definition 1 (ε-dependence Russo & Van Roy (2013)). For ε ą 0 and function class Z whose
elements are with domain X , an element x P X is ε-dependent on the set Xn :“ tx1, x2, ¨ ¨ ¨ , xnu Ă

X with respect to Z , if any pair of functions z, z1 P Z with
b

řn
i“1 pzpxiq ´ z1pxiqq

2
ď ε satisfies

zpxq ´ z1pxq ď ε. Otherwise, x is ε-independent on Xn if it does not satisfy the condition.
Definition 2 (Eluder dimension Russo & Van Roy (2013)). For any ε ą 0, and a function class
Z whose elements are in domain X , the Eluder dimension dimEpZ, εq is defined as the length of
the longest possible sequence of elements in X such that for some ε1 ě ε, every element is ε1-
independent of its predecessors.

Next we give the formal definition of the covering number. It is a widely used definition (Ayoub
et al., 2020; Jin et al., 2020; Fei et al., 2021).
Definition 3 (Covering Number). For the function set F with norm }¨} and a given positive constatn
ε ą 0, we can define the ε-net of F as Fε such that for any f P F , we have f 1 P Fε satisfying
}f ´ f 1} ď ε. The ε-covering number NCpF , } ¨ }, εq is the minimum size of the ε-net of F .
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H.2 CONCENTRATION ARGUMENT

In this section, we apply the techniques firstly proposed by Russo & Van Roy (2013) and also used
in Ayoub et al. (2020); Fei et al. (2021) to establish the concentration argument, which shows that
Ph is belong to our confidence set pPk,h with high probability.

Lemma 6. We have that for δ P p0, 1s, with probability at least 1 ´ δ, Ph P pPk,h holds for any
k P rKs and h P rHs.

Proof. Firstly we fix h P rHs. By definition of Disti,hp¨, ¨q and the delta distribution δk,h, we have

pPk,h “ argmin
P1PP

k´1
ÿ

i“1

´

pxi,h ´ pVi,h`1q`psi,h`1q ´ rP1pxi,h ´ pVi,h`1q`spsi,h, ai,hq

¯2

, (58)

and pPk,h “

!

P1 P P :
řk´1

i“1 Disti,hpP1, pPk,hq ď pγ2
)

. Let Xk,h “ psk,h, ak,h, pxk,h ´ pVk,h`1q`q

and Yk,h “ pxi,h ´ pVi,h`1q`psi,h`1q. Then, we have that Xk,h is Fk,h measurable and Yk,h is
Fk,h`1 measurable. Note that tYk,h ´ zPh

pXkquk is H-sub-gaussian conditioning on tFk,huk, and
E rYk,h ´ zPh

pXk,hq | Fk,hs “ 0.

Moreover, by definition of pPk,h and function class Z , we have

z
pPk,h

“ argmin
zP1 PZ

k´1
ÿ

i“1

pYi,h ´ zP1 pXi,hqq
2
. (59)

Let Zk,hpγq “

"

zP1 P Z :
řk´1

i“1

´

zP1 pXi,hq ´ z
pPk,h

pXi,hq

¯2

ď γ2
*

. By Lemma 22, for any α ą

0, with probability at least 1 ´ δ{H , for all k P rKs, we have zPh
P Zk,hpγkq. Here

γk “ βkp
δ

H
,
H

K
q “ 8H2 logp2H ¨N

ˆ

Z, } ¨ }8,
H

K

˙

{δq ` 4
k

K
pH2 `H2

a

logp4kpk ` 1q{δqq,

(60)
where βk is defined by Eq. 121 in Lemma 22, and NCpP, } ¨ }8,1, 1{Kq is the covering num-
ber of Z with norm } ¨ }8 and covering radius H{K. Since zPh

P Zk,hpγkq, we have Ph P
"

P1 P P :
řk´1

i“1

´

zP1 pXiq ´ z
pPk,h

pXiq

¯2

ď γ2k

*

.

Moreover, we have

}zP ´ zP1 }8 “ sup
ps,a,V qPSˆAˆB

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS
Pps1 | s, aqV ps1q ´

ÿ

s1PS
P1ps1 | s, aqV ps1q

ˇ

ˇ

ˇ

ˇ

ˇ

ďH sup
ps,a,V qPSˆAˆB

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS
Pps1 | s, aq ´

ÿ

s1PS
P1ps1 | s, aq

ˇ

ˇ

ˇ

ˇ

ˇ

ďH sup
ps,a,V qPSˆAˆB

ÿ

s1PS

ˇ

ˇPps1 | s, aq ´ P1ps1 | s, aq
ˇ

ˇ

“H}P ´ P1}8,1,

(61)

where the first inequality holds by V ps1q P r0, Hs for any s1 P S, the second inequality holds by
the triangle inequality, and the third equality is due to the definition of nor } ¨ }8,1. Thus we have
NCpZ, } ¨ }8, H{Kq ď NCpP, } ¨ }8,1, 1{Kq. Since

pγ “ 4H2

ˆ

2 log

ˆ

2H ¨NCpP, } ¨ }8,1, 1{Kq

δ

˙

` 1 `
a

logp5K2{δq

˙

ě γk, (62)

we have Ph P pPk,h for any k P rKs with probability at least 1 ´ δ{H .

Finally, by union bound, we have Ph P pPk,h holds for any pk, hq P rKs ˆ rHs with probability at
least 1 ´ δ.
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With the concentration property in Lemma 6, we can easily show the construction of pVk,h and pQk,h

is optimistic in Algorithm 3.
Lemma 7 (Optimism). If the event in Lemma 6 happens, we have

pVk,hpsq ě V ˚
h psq, @s P S. (63)

Proof. Since the event in Lemma 6 happens, we have Ph P pPk,h holds for any k and h. Thus by the
definition of pQk,h in Algorithm 3,

pQk,hps, aq “ rhps, aq ` sup
PP pPk,h

rCα
P
pVk,h`1sps, aq ě rhps, aq ` rCα

Ph
pVk,h`1sps, aq. (64)

By similar argument of induction in Lemma 4, we can easily get the result.

The following lemma upper bounds the deviation term by gk,hps, aq{α.
Lemma 8. If the event in Lemma 6 happens,

0 ď sup
P1P pPk,h

rCα
P1
pVk,h`1sps, aq ´ rCα

Ph
pVk,h`1sps, aq ď

1

α
gk,hps, aq (65)

Proof. The left side holds trivially by the result of Lemma 6. We only need to prove the right side.

sup
P1P pPk,h

rCα
P1
pVk,h`1sps, aq ´ rCα

Ph
pVk,h`1sps, aq

“ sup
xPr0,Hs

#

x´
1

α
inf

P1P pPk,h

rP1px´ pVk,h`1q`sps, aq

+

´ sup
xPr0,Hs

"

x´
1

α
rPhpx´ pVk,h`1q`sps, aq

*

ď
1

α
sup

xPr0,Hs

#

´ inf
P1P pPk,h

rP1px´ pVk,h`1q`sps, aq ` rPhpx´ pVk,h`1q`sps, aq

+

ď
1

α
sup

xPr0,Hs

#

sup
PP pPk,h

rPpx´ pVk,h`1q`sps, aq ´ inf
PP pPk,h

rPpx´ pVk,h`1q`sps, aq

+

“
1

α
sup

P1P pPk,h

rP1pxk,hps, aq ´ pVk,h`1q`sps, aq ´ inf
P1P pPk,h

rP1pxk,hps, aq ´ pVk,h`1q`sps, aq

“
1

α
gk,hps, aq,

(66)
where the first inequality holds by the property of supremum, and the second inequality holds by
holds by Ph P pPk,h under the event happens in Lemma 6, and the rest equalities are due to the
definition of xk,hps, aq in Eq. 15 and gk,hps, aq in Eq. 12.

H.3 REGRET SUMMATION

In this section, we firstly propose a refined elliptical potential lemma for ICVaR-RL with general
function approximation. Then, we apply the similar methods in the proof of linear setting to get the
regret upper bound.

Noticing that Russo & Van Roy (2014) presents a similar elliptical potential lemma (Lemma 5
in Russo & Van Roy (2014)) used in Ayoub et al. (2020); Fei et al. (2021) which shows that
řK

k“1

řH
h“1 gk,hpsk,h, ak,hq “ Op

?
Kq with respect to the term of K. Inspired by this version

of elliptical potential lemma, our Lemma 9 is a refined version which gives a sharper result.
Lemma 9 (Elliptical potential lemma for general function approximation). We provide the elliptical
potential lemma for general function approximation. We have

K
ÿ

k“1

H
ÿ

h“1

g2k,hpsk,h, ak,hq ď H ` dimEpZ, 1{
?
KqH3 ` 4pγ dimEpZ, 1{

?
KqHplogpKq ` 1q (67)
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Proof. Our proof is inspired by the proof framework of Lemma 5 in Russo & Van Roy
(2014). First we recall the definition of Xk,h P X in the proof of Lemma 6, i.e, Xk,h :“

psk,h, ak,h, pxk,hpsk,h, ak,hq ´ pVk,h`1q`q. For simplicity, let Gk,h :“ gk,hpsk,h, ak,hq “

supP1P pPk,h
zP1 pXk,hq´infP1P pPk,h

zP1 pXk,hq. Then for fixed h P rHs, we know gk,hpsk,h, ak,hq ď H

since 0 ď zPpXk,hq ď H for any probability kernel P P P . Then, we can reorder the sequence
pG1,h, ¨ ¨ ¨ , GK,hq Ñ pGj1,h, ¨ ¨ ¨ , GjK ,hq such that Gj1,h ě Gj2,h ě ¨ ¨ ¨GjK ,h. Then, we have

K
ÿ

k“1

G2
k,h “

K
ÿ

k“1

G2
jk,h

“

m
ÿ

k“1

G2
jk,h

¨1tGjk,h ě K´1{2u`

K
ÿ

k“m`1

G2
jk,h

¨1tGjk,h ă K´1{2u (68)

for some m P rKs. Since the second term is less than 1 trivially, we only consider the first term.
Then, we fix t P rms and let s “ Gjt,h and we have

K
ÿ

i“1

1pGi,h ě sq ě t (69)

By Lemma 23, we have

t ď

K
ÿ

i“1

1pGi,h ě sq ď dimEpZ, sq
ˆ

4pγ

s2
` 1

˙

. (70)

For simplicity, we denote dEpZq :“ dimEpZ,K´1{2q. Since t P rms, we have Gjt,h “

s ě K´1{2, which implies dimEpZ, sq ď dEpZq. By Eq. 70, we have s “ Gjt,h ď
a

p4pγdEpZqq{pt´ dEpZqq. Notice that this property holds for every fixed t P rms. Combined
with Gk,h ď H , we have

K
ÿ

k“1

G2
k,h ď1 `

m
ÿ

k“1

G2
ik,h

¨ 1tGjk,h ě K´1{2u

ď1 ` dEpZqH2 `

K
ÿ

k“dEpZq`1

4pγdEpZq

k ´ dEpZq

ď1 ` dEpZqH2 ` 4pγdEpZqplogpKq ` 1q,

(71)

where the first inequality is due to Eq. 68, the second inequality holds by Gjt,h ď
a

p4pγdEpZqq{pt´ dEpZqq for any t P rms and Gk,h ď H , and the last inequality is due to the
property of harmonic series. Sum over Eq. 71 for h P rHs, we get the result.

Combined by this refined elliptical potential lemma, we can prove the main theorem of ICVaR-RL
with general function approximation.

Proof of Theorem 2. This proof is similar to the proof of Theorem 1 with tiny adaption. Firstly, by
standard regret decomposition method, we have that with probability at least 1 ´ δ, the event in
Lemma 6 happens and

pVk,1psk,1q ´ V πk

1 psk,1q “ sup
P1P pPk,h

rCα
P1 ppVk,2qspsk,1, ak,1q ´ rCα

P1
pV πk

2 qspsk,1, ak,1q

“ sup
P1P pPk,h

rCα
P1 ppVk,2qspsk,1, ak,1q ´ rCα

P1
ppVk,2qspsk,1, ak,1q

` rCα
P1

ppVk,2qspsk,1, ak,1q ´ rCα
P1

pV πk

2 qspsk,1, ak,1q

ď
1

α
gk,1psk,1, ak,1q ` rQα,V πk

2

P1
ppVk,2 ´ V πk

2 qspsk,1, ak,1q,

where the inequality holds by Lemma 8 and Lemma 20. Here Qα,V
P is defined above in Eq.39. Next

we use the techniques of the proof in Section D.4 to bound the regret. Specifically, we have

pVk,1psk,1q ´ V πk

1 psk,1q ď
1

α

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aqgk,hps, aq. (72)
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This implies that the regret of the algorithm satisfies

RegretpKq “

K
ÿ

k“1

V ˚
1 psk,1q ´ V πk

1 psk,1q ď

K
ÿ

k“1

pVk,1psk,1q ´ V πk

1 psk,1q

ď
1

α

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aqgk,hps, aq

(73)

with probability at least 1´2δ. Here wCVaR,α,V πk

k,h is defined in Appendix D.4. By Cauchy inequal-
ity, we have

RegretpKq

ď
1

α

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aqg2k,hps, aq

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aq

“
1

α

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wCVaR,α,V πk

k,h ps, aqg2k,hps, aq
?
KH,

(74)

where the equality holds due to
ř

ps,aq w
CVaR,α,V πk

k,h ps, aq “ 1 by definition. By Lemma 21, we
have

RegretpKq ď

?
KH

α

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

w
CVaR,α,V πk

h

k,h ps, aqg2k,hps, aq

ď

?
KH

α

g

f

f

e

1

αH´1

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

wk,hps, aqg2k,hps, aq

“

?
KH

α

g

f

f

e

1

αH´1

K
ÿ

k“1

E
psh,ahq„dπk

sk,1

«

H
ÿ

h“1

g2k,hpsh, ahq

ff

,

(75)

where dπ
k

sk,1
denotes the distribution of ps, aq pair playing the MDP with initial state sk,1 and policy

πk. Since
b

řH
h“1 g

2
k,hpsk,h, ak,hq ď

?
H3, by Lemma 19, we have

K
ÿ

k“1

E
psh,ahq„dπk

sk,1

«

H
ÿ

h“1

g2k,hpsh, ahq

ff

ď 8
K
ÿ

k“1

H
ÿ

h“1

g2k,hpsk,h, ak,hq ` 4H3 log
4 log2K ` 8

δ
.

(76)
Apply Lemma 9 to

řK
k“1

řH
h“1 g

2
k,hpsk,h, ak,hq, we can bound the regret with probability at least

1 ´ 2δ

RegertpKq ď

c

KH

αH`1

g

f

f

e8
K
ÿ

k“1

H
ÿ

h“1

g2k,hpsk,h, ak,hq ` 4H3 log
4 log2K ` 8

δ

ď

c

4KH

αH`1

c

2H ` 2dEpZqH3 ` 8pγdEpZqHplogpKq ` 1q `H3 log
4 log2K ` 8

δ
,

(77)
where dEpZq “ dEpZ, 1{

?
Kq, the first inequality holds by Eq. 75, 76, and the second inequality

holds by Lemma 9.

I PROOF OF THEOREM 3: REGRET UPPER BOUND FOR ALGORITHM 2

In this section, we present the proof of Theorem 3. First we give some notations used in this section.
We denote V π

h psh; rq presents the value function for MDP with transition kernels tPhuHh“1 and
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reward function r. Thus we define π˚ :“ argmaxπ V
π
1 ps1; r

˚q, the regret can be write as

RegretpKq “

K
ÿ

k“1

V π˚

1 psk,1; r
˚q ´ V πk

1 psk,1; r
˚q. (78)

Overall, we bound the reward estimation error in Appendix I.1 and apply the regret decomposition
method to bound the regret summation in Appendix J.

I.1 REWARD ESTIMATION ERROR

Definition 4 (Bracketing number, Geer (2000); Liu et al. (2023)). Given a function set F , let l and
r be two functions belonging to F . Suppose that l ď r. The interval rl, rs denotes the set of all
functions f P F satisfying l ď f ď r pointwisely. rl, rs is referred to as an ε-bracket set if the norm
}r ´ l} ď ε according to a given norm } ¨ }. Then the minimum number of the ε-bracket sets needed
to cover F is defined as the bracketing number NBpF , } ¨ }, εq, where } ¨ } represents the chosen
norm. And we denote Fε :“ tr : rl, rs is a member of the minimum ε-brackets covering u as the
ε-bracketing covering of F .

In this section, we denote R1{K as the 1{K-bracketing of R with norm } ¨ }8 and the bracketing
number is NBpR, } ¨ }8, 1{Kq. Then for every r P R, there exists a r such that rpτq ´ rpτq ď ϵ
and rpτq ě rpτq for every τ P T .

Then we present the reward concentration in the following lemma.

Lemma 10. For δ P p0, 1q and some constant c ą 0, with probability at least 1 ´ δ, we have

max
rPR,kPrKs

k
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

ď c logpK ¨NBpR, } ¨ }8, 1{Kq{δq. (79)

Proof. The proof of this lemma is inspired by Lemma D.1 in Wang et al. (2023b). Notice that Wang
et al. (2023b) only deal with the setting when R is a finite set, and in our problem the reward function
set R might be infinite. We expand the proof to infinite situations inspired by Liu et al. (2023;
2022) which present the MLE analysis to transition probabilities and including the discretization
techniques such as ϵ-bracketing number in partially observed MDPs (POMDPs).

First we denote dπk
sk,1

as the distribution of trajectory when the agent starts with the initial state sk,1
and executes the policy πk. And we use T to represent the set of all possible trajectories. For every
r P R1{K , we have

Epτi,oiq„d
πi
si,1

,i“1,¨¨¨ ,k

«

exp

˜

k
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

¸ff

“Epτi,oiq„d
πi
si,1

,i“1,¨¨¨ ,k

«

exp

˜

k´1
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

¸

¨ Epτk,okq„d
πk
sk,1

„

rσpok, rpτkq ´ rpτ0qq

rσpok, r˚pτkq ´ r˚pτ0qq

ȷ

ff

“Epτi,oiq„d
πi
si,1

,i“1,¨¨¨ ,k

«

exp

˜

k´1
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

¸

¨
ÿ

τPT
Pπk

rτ sEo

„

rσpo, rpτq ´ rpτ0qq

rσpo, r˚pτq ´ r˚pτ0qq
| τ

ȷ

ff

,

(80)
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where Pπrτ s denotes the probability of generating trajectory τ by executing the policy π. If we fix
some τ P T , we have

Eo

„

rσpo, rpτq ´ rpτ0qq

rσpo, r˚pτq ´ r˚pτ0qq
| τ

ȷ

ff

“σpr˚pτq ´ r˚pτ0qq
rσp1, rpτq ´ rpτ0qq

rσp1, r˚pτq ´ r˚pτ0qq
` p1 ´ σpr˚pτq ´ r˚pτ0qqq

rσp0, rpτq ´ rpτ0qq

rσp0, r˚pτq ´ r˚pτ0qq

“σpr˚pτq ´ r˚pτ0qq
σprpτq ´ rpτ0qq

σpr˚pτq ´ r˚pτ0qq
` p1 ´ σpr˚pτq ´ r˚pτ0qqq

σprpτ0q ´ rpτqq

σpr˚pτ0q ´ r˚pτqq

“σprpτq ´ rpτ0qq ` σprpτ0q ´ rpτqq “ 1,
(81)

where the first equality comes from the orcale of human feedback defined in Assumption 4, the
second equality comes from the definition of rσ in Eq. 14, and the third and forth equalities are due
to the completeness of link function σ in Assumption 4. Thus we have

Epτi,oiq„d
πi
si,1

,i“1,¨¨¨ ,k

«

exp

˜

k
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

¸ff

ď 1. (82)

Thus, by Markov’s inequality, we have

P

«

k
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

ą logp1{δq

ff

ď δ. (83)

Taking a union bound for all r P R1{K and k P rKs, for some constant c ą 0, we have

P

«

max
rPR1{K ,kPrKs

k
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

ą c logpNBpR, } ¨ }8, 1{Kq

ff

ď δ. (84)

Since we have for every r P R, there exists r P R1{K , rpτq ď rpτq and rpτq ´ rpτq ď 1{K for
every τ P 1{K, we have

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq
ě

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq
,@i P rKs (85)

Then we have

max
rPR1{K

k
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

ě max
rPR

k
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

, (86)

which implies

P

«

max
rPR,kPrKs

k
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

ą c logpNBpR, } ¨ }8, 1{Kq

ff

ď δ. (87)

This inequality instantly gives the result.

Lemma 11. For pβR “ c logpKNBpR, } ¨ }8, 1{Kq{δq and positive constant δ P p0, 1s, we have
r˚ P pRk for every k P rKs holds with probability at least 1 ´ δ.

Proof. Recall the definition of pRk and log likelihood function Lkprq. By lemma 10 conditional on
event ΞR, we have the following holds for every k P rKs

max
rPR

k
ÿ

i“1

log

ˆ

rσpoi, rpτiq ´ rpτ0qq

rσpoi, r˚pτiq ´ r˚pτ0qq

˙

“ max
rPR

Lkprq ´ Lkpr˚q ď pβR (88)

Then we have r˚ P pRk.
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Lemma 12. For constant δ P p0, 1s, we have the following inequality holds with probablity at least
1 ´ δ for every k P rKs

k´1
ÿ

i“1

ˇ

ˇ

prkτ0pτiq ´ r˚
τ0pτiq

ˇ

ˇ

2
ď p4 ` 12pβRq{m` 1, (89)

where m is the positive lower bound of the gradient of link function σ.

Proof. The proof of this lemma is inspired by the proof of Proposition 14 in Liu et al. (2022) which
develops the analytic tools for transition probabilities’ MLE in POMDPs. In our works, we develop
the techniques for reward MLE.

By Lemma 15 in Liu et al. (2022) and the inquality log x ě 1 ´ x, we have with probability at least
1 ´ δ, the following inequality holds for every r P R1{K .
k´1
ÿ

i“1

˜

1 ´ Eo

«
d

ropo, rτ0pτiqq

ropo, r˚
τ0pτiqq

ff¸

ď ´
1

2

k´1
ÿ

i“1

log

ˆ

rσpoi, rτ0pτiqq

rσpoi, r˚
τ0pτiqq

˙

` logpNBpR, } ¨ }8, 1{Kq{δq.

(90)
By algebra, we have

k´1
ÿ

i“1

˜

1 ´ Eo

«
d

ropo, rτ0pτiqq

ropo, r˚
τ0pτiqq

ff¸

ě
1

8

k´1
ÿ

i“1

ˇ

ˇσprτ0pτiqq ´ σpr˚
τ0pτiqq

ˇ

ˇ

2
´

1

2
. (91)

Recall the regularity assumption of link function σ, we have σpxq1 ě m ą 0. Thus we have
k´1
ÿ

i“1

ˇ

ˇrτ0pτiq ´ r˚
τ0pτiq

ˇ

ˇ

2
ďm´1

k´1
ÿ

i“1

ˇ

ˇσprτ0pτiqq ´ σpr˚
τ0pτiqq

ˇ

ˇ

2

ďm´1p4 ` 4pβR ` 8 logpNBpR, } ¨ }8, 1{Kq{δqq

ďp4 ` 12pβRq{m.

(92)

Moreover, for every prk, there exists a r P R1{K such that rpτq ´ rpτq ď 1{K for every τ P 1{K.
Thus we have

k´1
ÿ

i“1

ˇ

ˇ

prkτ0pτiq ´ r˚
τ0pτiq

ˇ

ˇ

2
ď p4 ` 12pβRq{m` 1 (93)

This implies the conclusion.

Inspired by the study of the relation between eluder dimension and sample complexity in Russo
& Van Roy (2013), we derive the following lemma which is similar to Proposition 3 in Russo &
Van Roy (2013).
Lemma 13. For all k P rKs and ϵ ą 0, we have

k
ÿ

i“1

1ppriτ0pτiq ´ r˚
τ0pτiq ą ϵq ď

˜

p4 ` 12pβRq{m` 1

ϵ2
` 1

¸

dimEpR, ϵq, (94)

Proof. This proof is inspired by the proof of Proposition 3 in Russo & Van Roy (2013). We denote
wi :“ priτ0pτq ´ r˚

τ0pτq. If wt ą ϵ for some fix t P rks, then we have prtτ0pτtq ´ r˚
τ0pτtq ą ϵ. If τt is

ϵ-dependent on a subsequence pτi1 , ¨ ¨ ¨ , τilq of pτ1, ¨ ¨ ¨ , τt´1q, then we have
l
ÿ

j“1

pprtτ0pτij q ´ r˚
τ0pτij qq2 ą ϵ2 (95)

Therefore, if τt is ϵ-dependent on L disjoint subsequences of pτ1, ¨ ¨ ¨ , τt´1q, we have

Lϵ2 ă

t´1
ÿ

i“1

pprtτ0pτiq ´ r˚
τ0pτiqq2 ď p4 ` 12pβRq{m` 1. (96)

Then we know that L ă
p4`12pβRq{m`1

ϵ2 . Denote d :“ dimEpR, ϵq. We want to prove the following
claim:
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Claim For any t P rks, there is some τj in sequence pτ1, ¨ ¨ ¨ , τtq that is ϵ-dependent on at least
t{d´ 1 disjoint subsequences of pτ1, ¨ ¨ ¨ , τj´1q.

For an integer L with Ld ` 1 ď t ď Ld ` d, we will construct L disjoint subsequences
A1, A2, ¨ ¨ ¨ , AL. First let Ai “ pτiq, i “ 1, ¨ ¨ ¨ , L. If τL`1 is ϵ-dependent on A1, ¨ ¨ ¨ , AL, we
have done. Otherwise select a subsequence Ai such that τL`1 is ϵ-independent with respect to Ai.
Then add τL`1 into Ai. Repeat this process for τj with j ą L ` 1 until τj is ϵ-dependent on each
subsequence or j “ t. If τj is ϵ-dependent onA1, ¨ ¨ ¨ , AL, then we get the result. If j “ t ě Ld`1,
then

řL
i“1 |Ai| “ t ´ 1 ě Ld. Since every element in Ai is ϵ-independent of its predecessors by

construction, we have |Ai| ď d for every i P rLs by the definition of eluder dimension. Thus
|Ai| “ d for i P rLs. Thus τt cannot be ϵ-independent with respect to any Ai by the definition of
eluder dimension. Then we have τt must be ϵ-dependent on each subsequence, which proves our
claim.

Take pτi1 , ¨ ¨ ¨ , τitq as a subsequence consisting of elements τij satisfying wij ą ϵ. Then each
τij is ϵ-dependent on Lj disjoint subsequences of pτ1, ¨ ¨ ¨ , τij´1q. By above argument, we know
Lj ă OpβR{ϵ2q. Equip with the claim above, there exist a j P rts such that τij is ϵ-dependent on at
least t{d ´ 1 disjoint subsequences of pτi1 , ¨ ¨ ¨ , τij´1

q. This shows that t{d ´ 1 ă OpβR{ϵ2q Then
we have

t “

k
ÿ

i“1

1pwi ą ϵq ď p
p4 ` 12pβRq{m` 1

ϵ2
` 1qd, (97)

which implies the result.

Lemma 14. For δ P p0, 1s, the error of the reward estimation can be bounded as follows with
probability at least 1 ´ δ.

K
ÿ

k“1

`

rkτ0pτkq ´ r˚
τ0pτkq

˘2
ď 1 ` dEpRqH2 ` dEpRqpp4 ` 12pβRq{m` 1qplogpKq ` 1q (98)

Proof. This proof is very similar to the proof of Lemma 9. Let wk :“ prkτ0pτkq ´ r˚
τ0pτkq and

dEpRq “ dimEpR, 1{
?
Kq. Then we need to bound

řK
k“1 w

2
k. First we can reorder the sequence

pw1, ¨ ¨ ¨ , wKq Ñ pwi1 , ¨ ¨ ¨ , wiK q such that wi1 ě wi2 ě ¨ ¨ ¨ ě wiK . Then we have
K
ÿ

k“1

w2
k “

K
ÿ

k“1

w2
ik
1pwik ě K´1{2q `

K
ÿ

k“1

w2
ik
1pwik ă K´1{2q ď

L
ÿ

k“1

w2
ik

` 1, (99)

where L P rKs satisfying that wiL ě K´1{2 ą wiL`1
. Fix some t P rLs and denote w̄ “ wit ě

K´1{2, we have
K
ÿ

k“1

1pwik ě w̄q ě t. (100)

By Lemma 13 we have

t ď dimEpR, w̄qppp4 ` 12pβRq{m` 1q{w̄2 ` 1q. (101)

Since w̄ ě K´1{2, we have dimEpR, w̄q ď dimEpR, 1{
?
Kq “ dEpRq. Moreover, with Eq. 101,

we have
w̄ ď

b

dEpRqpp4 ` 12pβRq{m` 1q{pt´ dEpRqq (102)

Since t P rLs is chosen arbitrary, we have wit ď

b

dEpRqpp4 ` 12pβRq{m` 1q{pt´ dEpRqq for
every t P rLs. By definition, wk ď H for every k P rKs. Therefore,

K
ÿ

k“1

w2
k ď

L
ÿ

k“1

w2
ik

` 1

ď1 ` dEpRqH2 `

L
ÿ

t“dEpRq`1

dEpRqpp4 ` 12pβRq{m` 1q

t´ dEpRq

ď1 ` dEpRqH2 ` dEpRqpp4 ` 12pβRq{m` 1qplogpKq ` 1q.

(103)
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J REGRET SUMMATION

Lemma 15. With probability at least 1 ´ 2δ for given constant δ P p0, 1s, we have pVk,1psk,1q ě

V π˚

1 psk,1; r
˚
τ0q for every k P rKs and h P rHs.

Proof. By the chosen of selected estimated reward prk, we have

pVk,1psk,1q “ max
rP pRk

rV
xPk

1 psk,1; rτ0q. (104)

Since we have Ph P pPk,h with probability at least 1 ´ δ by Lemma 6 and r˚ P pRk with probability
at least 1 ´ δ by Lemma 11, we have

V π˚

1 psk,1; r
˚
τ0q “ rV

tPhu
H
h“1

1 psk,1; r
˚
τ0q ď max

rP pRk

rV
xPk

1 psk,1; rτ0q “ pVk,1psk,1q, (105)

where the second equality is due to the definition of rV in Eq. 13.

Lemma 16. Given a positive constant δ P p0, 1s. With probability at least 1 ´ δ, we have the
following inequality holds for every k P rKs.

pVk,1psk,1q ´ V πk
1 psk,1; r

˚
τ0q

ď

H
ÿ

h“1

ÿ

psh,ahqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h psh, ahq

¨

ˆ

pprkhpsh, ahq ´ prkhps0,h, a0,hqq ´ pr˚
hpsh, ahq ´ r˚

hps0,h, a0,hqq `
1

α
gk,hpsh, ahq

˙

(106)

Proof. By similar regret decomposition method in the proof of Theorem 2 in Appendix H.3

pVk,1psk,1q ´ V πk
1 psk,1; r

˚
τ0q

“pprk1 psk,1, ak,1q ´ prk1 ps0,1, a0,1qq ´ pr˚
1 psk,1, ak,1q ´ r˚

1 ps0,1, a0,1qq

` sup
P1P pPk,1

”

Cα
P1 ppVk,2q

ı

psk,1, ak,1q ´ Cα
s1„P1p¨|sk,1,ak,1qpV πk

2 ps1; r˚
τ0qq

“pprk1 psk,1, ak,1q ´ prk1 ps0,1, a0,1qq ´ pr˚
1 psk,1, ak,1q ´ r˚

1 ps0,1, a0,1qq

` sup
P1P pPk,1

”

Cα
P1 ppVk,2q

ı

psk,1, ak,1q ´

”

Cα
P1

ppVk,2q

ı

psk,1, ak,1q

` Cα
s1„P1p¨|sk,1,ak,1qppVk,2ps1qq ´ Cα

s1„P1p¨|sk,1,ak,1qpV πk
2 ps1; r˚

τ0qq

ďpprk1 psk,1, ak,1q ´ prk1 ps0,1, a0,1qq ´ pr˚
1 psk,1, ak,1q ´ r˚

1 ps0,1, a0,1qq

` gk,1psk,1, ak,1q ` Q
α,V πk

2 p¨;r˚
τ0

q

s2„P1p¨|sk,1,ak,1q
ppVk,2ps2q ´ V πk

2 ps2; r
˚
τ0qq,

(107)

where the inequality is due to Lemma 20. Let s1 :“ sk,1, we can write

pVk,1psk,1q ´ V πk
1 psk,1; r

˚
τ0q

ďpprk1 psk,1, ak,1q ´ prk1 ps0,1, a0,1qq ´ pr˚
1 psk,1, ak,1q ´ r˚

1 ps0,1, a0,1qq

` gk,1psk,1, ak,1q ` Q
α,V πk

2 p¨;r˚
τ0

q

s2„P1p¨|sk,1,ak,1q
ppVk,2ps2q ´ V πk

2 ps2; r
˚
τ0qq

ď

H
ÿ

h“1

ÿ

psh,ahqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h psh, ahq

¨

ˆ

pprkhpsh, ahq ´ prkhps0,h, a0,hqq ´ pr˚
hpsh, ahq ´ r˚

hps0,h, a0,hqq `
1

α
gk,hpsh, ahq

˙

(108)
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Combine with above lemmas, we are ready to prove Theorem 3.

Proof of Theorem 3. By Lemma 15, we have with probability at least 1 ´ δ,

RegretpKq “

K
ÿ

k“1

”

V π˚

1 psk,1; r
˚q ´ V πk

1 psk,1; r
˚q

ı

“

K
ÿ

k“1

”

V π˚

1 psk,1; r
˚q ´ r˚pτ0q ` r˚pτ0q ´ V πk

1 psk,1; r
˚q

ı

“

K
ÿ

k“1

”

V π˚

1 psk,1; r
˚
τ0q ´ V πk

1 psk,1; r
˚
τ0q

ı

ď

K
ÿ

k“1

”

pVk,hpsk,1q ´ V πk
1 psk,1; r

˚
τ0q

ı

,

(109)

where the second equality is due to ´r˚pτ0q is fixed. Denote ∆k,hpsh, ahq :“ pprkhpsh, ahq ´

prkhps0,h, a0,hqq´pr˚
hpsh, ahq´r˚

hps0,h, a0,hqq. Consider the regret decomposition for every episode
k, by Lemma 16, we have

RegretpKq

ď

K
ÿ

k“1

H
ÿ

h“1

ÿ

psh,ahqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h psh, ahq

¨

ˆ

pprkhpsh, ahq ´ prkhps0,h, a0,hqq ´ pr˚
hpsh, ahq ´ r˚

hps0,h, a0,hqq `
1

α
gk,hpsh, ahq

˙

ď
1

α

K
ÿ

k“1

H
ÿ

h“1

ÿ

psh,ahqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h psh, ahqgk,hpsh, ahq

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

I

`

K
ÿ

k“1

H
ÿ

h“1

ÿ

psh,ahqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h psh, ahq∆k,hpsh, ahq

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

J

(110)

Bounding the first term I is almost same as the proof of Theorem 2, which also gives an insight into
bounding J . Therefore, by Cauchy-Schwartz inequality, we have

Iď
1

α

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h ps, aqg2k,hps, aq

¨

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h ps, aq

“
1

α

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h ps, aqg2k,hps, aq
?
KH

ď

?
KH

α

g

f

f

e

1

αH´1

K
ÿ

k“1

E
psh,ahq„dπk

sk,1

«

H
ÿ

h“1

g2k,hpsh, ahq

ff

,

(111)

where dπ
k

sk,1
denotes the distribution of ps, aq pair playing the MDP with initial state sk,1 and policy

πk. Since
b

řH
h“1 g

2
k,hpsk,h, ak,hq ď

?
H3, by Lemma 19, we have with probability at least 1 ´ δ,

K
ÿ

k“1

E
psh,ahq„dπk

sk,1

«

H
ÿ

h“1

g2k,hpsh, ahq

ff

ď 8
K
ÿ

k“1

H
ÿ

h“1

g2k,hpsk,h, ak,hq ` 4H3 log
4 log2K ` 8

δ
.

(112)
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Apply Lemma 9, we have with probability at least 1 ´ 2δ,

I ď

c

4KH

αH`1

c

2H ` 2dEpZqH3 ` 8pγdEpZqHplogpKq ` 1q `H3 log
4 log2K ` 8

δ

“ rO

ˆ

b

α´H´1KH4dEpZq logpNCpP, } ¨ }8,1, 1{Kqq

˙ (113)

Bounding the second term J shares almost the same techniques as bounding I . Thus we have with
probability at least 1 ´ δ,

Jď
1

α

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h ps, aq∆2
k,hps, aq

¨

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h ps, aq

“
1

α

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

ps,aqPSˆA

w
CVaR,α,V πk

p¨;r˚
τ0

q

k,h ps, aq∆2
k,hps, aq

?
KH

ď

?
KH

α

g

f

f

e

1

αH´1

K
ÿ

k“1

E
psh,ahq„dπk

sk,1

«

H
ÿ

h“1

∆2
k,hpsh, ahq

ff

ď

?
KH

α

g

f

f

e

1

αH´1

K
ÿ

k“1

E
psh,ahq„dπk

sk,1

«

H
ÿ

h“1

∆k,hpsh, ahq

ff2

“

?
KH

α

g

f

f

e

1

αH´1

K
ÿ

k“1

E
τ„dπk

sk,1

“

prkτ0pτq ´ r˚
τ0pτq

‰2
.

(114)

Notice that by Lemma 19, we have with probability at least 1 ´ δ,
K
ÿ

k“1

E
psh,ahq„dπk

sk,1

“

prkτ0pτq ´ r˚
τ0pτq

‰2
ď 8

K
ÿ

k“1

“

prkτ0pτq ´ r˚
τ0pτq

‰2
` 4H2 log

4 log2K ` 8

δ
.

(115)
Since we have bounded the reward estimation error in Lemma 13, we can bound J by

J ď

c

KH

αH`1

c

4H2 log
4 log2K ` 8

δ
` 8 ` 8dEpRqpH2 ` pp4 ` 12pβRq{m` 1qplogpKq ` 1qq

ď rO

ˆ

b

α´H´1KH3dEpRq logpNBpR, } ¨ }8, 1{Kqq{m

˙

,

(116)
where the inequality holds with probability at least 1 ´ 2δ

Finally, by Eq. 113 and Eq. 116, we can derive the regret bound for Algorithm 2 with probability at
least 1 ´ 4δ.

RegretpKq ď rO

˜

?
KH3α´H´1 ¨

ˆ

H
b

dEpZq logpNCpP, } ¨ }8,1, 1{Kq

`
a

m´1dEpRq logpNBpR, } ¨ }8, 1{Kqq

˙

¸ (117)

K AUXILIARY LEMMAS

In this section, we present several auxiliary lemmas used in this paper.
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Lemma 17 (Hoeffding-type Self-normalized Bound, Theorem 2 in Abbasi-yadkori et al. (2011)).
Let tFtu

8
t“0 be a filtration. Let tηtu

8
t“1 be a real-valued stochastic process such that ηt is Ft-

measurable and ηt is conditionally R-sub-Gaussian for some R ě 0. Let tXtu
8
t“1 be a Rd-valued

stochastic process such that Xt is Ft´1-measurable. Assume that V is a d ˆ d positive definite
matrix. For any t ě 0, define

V t “ V `

t
ÿ

s“1

XsX
J
s , St “

t
ÿ

s“1

ηsXs.

Then for any δ ą 0, with probability at least 1 ´ δ, for all t ě 0,

}St}
2

V
´1
t

ď 2R2 log

ˆ

detpV tq
1{2 detpV q1{2

δ

˙

.

Lemma 18 (Elliptical Potential Lemma, Lemma 11 in Abbasi-yadkori et al. (2011)). For λ ą 0,
sequence tXtu

8
t“1 Ă Rd, and Vt “ λI `

řt
s“1XsX

J
s , assume }Xt}2 ď L for all t. If λ ě

maxp1, L2q, we have that
n
ÿ

t“1

}Xt}
2
V ´1
t´1

ď 2 log
detpVnq

λd
ď 2d log

dλ` TL2

dλ
. (118)

Lemma 19 (Lemma 9 in Zhang et al. (2021)). Let tFiuiě0 be a filtration. Let tXiu
n
i“1 be a sequence

of random variables such that |Xi| ď 1 almost surely, thatXi is Fi measurable. For every δ P p0, 1q,
we have

P

«

n
ÿ

i“1

ErX2
i |Fi´1s ď

n
ÿ

i“1

8X2
i ` 4 log

4

δ

ff

ď prlog2 ns ` 2qδ. (119)

Lemma 20 (Lemma 11 in Du et al. (2023)). For any ps, aq P S ˆ A, distribution pp¨ | s, aq P ∆S ,
and functions V, pV : S Ñ r0, Hs such that pV ps1q ě V ps1q for any s1 P S.

CVaRα
s1„pp¨|s,aqppV ps1qq ´ CVaRα

s1„pp¨|s,aqpV ps1qq ď βα,V p¨ | s, aqJppV ´ V q

Lemma 21 (Lemma 9 in Du et al. (2023)). For any functions V1, ¨ ¨ ¨ , VH P S Ñ R, k ą 0, h P rHs

and ps, aq P S ˆ A such that wk,hps, aq ą 0.

wCVaR,α,V
k,h ps, aq

wk,hps, aq
ď

1

αh´1
, (120)

where wCVaR,α,V
k,h ps, aq denotes the conditional probability of visiting ps, aq at step h of episode

k, conditioning on transitioning to the worst α-portion successor states s1 (i.e. with the lowest
α-portion values Vh1`1ps1q at each step h1 “ 1, ¨ ¨ ¨ , h´ 1.
Lemma 22 (Theorem 6 in Ayoub et al. (2020)). Let pXp, Ypqp“1,2,¨¨¨ be a sequence of random
elements, Xp P X for some measurable set X and Yp P R. Let F be a set of real-valued mea-
surable function with domain X . Let F “ pFpqp“0,1,¨¨¨ be a filtration such that for all p ě 1,
pX1, Y1, ¨ ¨ ¨ , Xp´1, Yp´1, Xpq is Fp´1 measurable and such that there exists some function f˚ P F
such that ErYp | Fp´1s “ f˚pXpq holds for all p ě 1. Let pft “ argminfPF

řt
p“1pfpXpq ´ Ypq2.

Let Nα be the } ¨ }8-covering number of F at scale α. For β ą 0, define Ftpβq “ tf P F :
řt

p“1pfpXpq ´ pftpXpqq2 ď βu.

If the functions in F are bounded by the positive constant C ą 0. Assume that for each s ě 1,
pYp ´ f˚pXpqqp is conditionally σ-sub-gaussian given Fp´1. Then for any α ą 0, with probability
1 ´ δ, for all t ě 1, f˚ P Ftpβtpδ, αqq, where

βtpδ, αq “ 8σ2 logp2Nα{δq ` 4tαpC `
a

σ2 logp4tpt` 1q{δqq. (121)

Lemma 23 (Proposition 8 in Russo & Van Roy (2014)). Consider the function class Z,P, and pPk,h

defined in Section 5. For fixed h P rHs, let ωkpXkq :“ supPP pPk,h
zPpXkq ´ infPP pPk,h

zPpXkq, then

K
ÿ

k“1

1pωkpAkq ě ϵq ď

ˆ

4pγ

ϵ2
` 1

˙

dimEpZ, } ¨ }8, ϵq, (122)

for all k P rKs and ϵ ą 0.
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