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Point Cloud Densification for 3D Gaussian Splatting from Sparse
Input Views
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ABSTRACT
The technique of 3D Gaussian splatting (3DGS) has demonstrated
its effectiveness and efficiency in rendering photo-realistic images
for novel view synthesis. However, 3DGS requires a high density
of camera coverage, and its performance inevitably degrades with
sparse training views, which significantly restricts its applications
in real-world products. In recent years, many researchers have
tried to use depth information to alleviate this problem, but the
performance of their methods is sensitive to the accuracy of depth
estimation. To this end, we propose an efficient method to enhance
the performance of 3DGS with sparse training views. Specifically,
instead of applying depth maps for regularization, we propose a
densification method that generates high-quality point clouds for
improved initialization of 3D Gaussians. Furthermore, we propose
Systematically Angle of View Sampling (SAOVS), which employs
Spherical Linear Interpolation (SLERP) and linear interpolation
for side view sampling, to determine unseen views outside the
training data for semantic pseudo-label regularization. Experiments
show that our proposed method significantly outperforms other
promising 3D rendering models on the ScanNet dataset and the
LLFF dataset. In particular, compared with the conventional 3DGS
method, the PSNR and SSIM performance gains achieved by our
method are up to 1.71dB and 0.07, respectively. In addition, the
novel view synthesis obtained by our method demonstrates the
highest visual quality with fewer distortions.

CCS CONCEPTS
• Computing methodologies→ 3D imaging.

KEYWORDS
3D Gaussian Splatting, Sparse Input Views, Semantic Knowledge
Prior

1 INTRODUCTION
Neural Radian Field (NeRF) [20] has achieved remarkable successes
in rendering novel-view images, by estimating the volumetric den-
sity and color values of voxels with a multilayer perception (MLP)
and rendering the voxels for synthesizing the corresponding novel-
view images. This technique demonstrates high industrial values
in real-world applications, including augmented reality (AR) and
virtual reality (VR), and attracted researchers’ attention in the past
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years. To reconstruct high-quality 3D scenes, NeRF typically re-
quires many images captured by cameras from different views.
However, in many situations, it is hard to deploy such a dense cam-
era coverage to capture images from the scenes. Therefore, many
researchers [4, 9, 13, 25, 31, 38] attempt to reconstruct 3D scenes
with images from sparse views, which is a significantly challenging
problem.

In NeRF, input images from different views can be viewed as
constraints in 3D scene reconstruction, which aims at solving the
ambiguity issue of 3D content generation from its corresponding
2D projection images [14]. Previous studies [32, 35] show that
when processing input images of sparse views, existing methods
usually produce degraded 3D scene content, corrupted by undesir-
able floaters. To handle this issue, Roessle et al. [25] first applied
a depth prediction method to obtain dense maps and add depth
regularization to the training process to enhance the performance
of NeRF. Similarly, DS-NeRF [9] adopts the structure from motion
(SfM) method to obtain sparse depth information, which is used to
supervise the NeRF optimization process for reconstruction. These
two works demonstrate that incorporating depth information can
effectively improve the performance of NeRF in sparse-input-view
settings. However, the performance of such depth-guidance meth-
ods is sensitive to the accuracy of the depth estimation. In other
words, inaccurate depth maps used in these methods inevitably pro-
duce artifacts in the synthesized novel view images. Alternatively,
DietNeRF [13] utilizes a pretrained CLIP-ViT [22] to encode the
target objects and images captured from unobservable views into
the latent space and introduces a semantic consistency loss to reg-
ularize these latent features. SinNeRF [36] proposes to reconstruct
3D scenes from a single image by adding semantic regularization in
the training loss. Specifically, this method constructs pseudo labels
for side views, which are randomly generated next to the train-
ing view, by using semantic prior knowledge and a local texture
discriminator. However, DietNeRF and SinNeRF cannot provide a
feasible scheme for side-view sampling for real-world scenes, i.e.
images in the ScanNet and LLFF datasets.

Recently, 3D Gaussian Splatting (3DGS) [14], which models 3D
scenes with a set of 3D Gaussians, has shown its effectiveness in
accelerating scene optimization and real-time 3D rendering. Chung
et al. [7] introduced a depth rendering method for 3DGS, which ap-
plies 𝛼-blending on the projected depth value and then regularizes
the depth with the 𝐿1 distance calculated by the pretrained depth
estimation network. However, estimated depth maps and rendered
depth maps may have different scales, introducing noise to the opti-
mization process if 𝐿1 distance is used for depth regularization. [41].
Instead of 𝐿1 loss, the studies [35, 41] use the Pearson correlation
as the measurement for depth regularization. These methods rely
on powerful knowledge prior to generate depth maps for depth
regularization while failing to acquire accurate depth values and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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imposing noise to the optimization process if depth maps are not
accurate.

In this paper, we propose a robust method for synthesizing im-
ages of novel views by optimizing 3D scenes with an enhanced
loss function, regularized by additional semantic terms encoded
from side views of the training views, and effectively incorporating
depth prior to the 3DGS method. In our method, we employ a joint
learning method to optimize the 3DGS model with the supervision
of the training views and the side views The previous studies, Diet-
NeRF [13] and SinNeRF [36], show the effectiveness of adopting
unseen view information in 3D view optimization. However, these
methods do not provide a generic side-view sampling scheme for
real-world scenes, i.e. images in the ScanNet and LLFF datasets. To
utilize the benefit of these unseen views, we propose the Systemati-
cally Angle of View Sampling (SAOVS) method to adaptively select
side views of the training views. Specifically, we adopt spherical
linear interpolation (SLERP) [30] to parameterize side-view direc-
tions and linear interpolation to parameterize the position of the
cameras. Side views, sampled with SAOVS, cover a large portion
of the 3D scene while having very similar views to the training
views. The optimization process is guided by training images and
regularizing latent features extracted from training views and side
views. The second challenge is that conventional methods, adding
a depth regularization term in the training loss, introduce noise
to the optimization process if the depth information is erroneous.
Meanwhile, we observed that the performance of 3DGS is sensitive
to the initialization status. As revealed by the previous study [41],
given the same number of training images, the performance of
3DGS degrades if the number of SfM points decreases. To handle
these issues, we propose a point cloud densification method ap-
plied before 3D Gaussian initialization that effectively incorporates
depth prior with 3DGS and alleviates the negative impact due to
the incorrect depth values. In practice, we apply a pretrained Dense
Prediction Transformer (DPT) [1, 23, 24] to obtain a dense map
and then lift a portion of the depth values to the 3D world space
with synthetic rays, resulting in a high-quality point cloud. The
high-quality point cloud is used for the initialization of 3DGS.

The contributions of our work can be summarized as follows:

(1) We propose a point cloud densification method to improve
the quality of point clouds that are used for initializing 3D
Gaussians.

(2) We propose Systematically Angle of View Sampling (SAOVS)
to sample side views for semantic pseudo-label boosted train-
ing.

(3) With the point cloud densificationmethod and SAOVS, depth
prior information can be effectively and efficiently aggre-
gated with 3DGS, allowing our method to outperform the
previous methods on the ScanNet [8] dataset and the LLFF
[18] dataset.

2 RELATEDWORKS
2.1 NeRF From Sparse Input Views
NeRF from sparse input views is a challenging problem as the in-
puts provide less information to supervise the optimization process.
Most of themethods for this task rely on constructing regularization

terms for training loss by using some knowledge priors, e.g. seman-
tic prior of the scene and depth prior, acquired with SfM method
or other depth estimation methods. PixelNeRF [38] feeds the deep
features of query points, extracted by a pre-trained convolutional
neural network, to the NeRF network, facilitating the prediction of
density and color. DietNeRF [13] introduces an auxiliary semantic
consistency loss, measuring the distance of embedding encoded by
a pre-trained CLIP-ViT [22] and encouraging the recovery of scene
geometry. SinNeRF [36] not only utilizes a similar semantic consis-
tency loss for reconstructing 3D models with better global structure
but also adopts an adversarial loss to restore the local texture of the
scene. To exploit depth information on sparse-input-view problems,
RegNeRF [21] introduces a geometry regularization to encourage
depth smoothness from unseen views. DS-NeRF [9] directly super-
vises NeRF optimization with sparse depth information obtained
from point clouds. Concurrently, Roessle et al. [25] applied a pre-
trained dense completion network to construct dense depth maps
from sparse depth information and regularize the training loss with
the distance between estimated depth maps and rendered depth
maps. Recently, the state-of-the-art method ViP-NeRF [31], built
upon DS-NeRF, used additional visibility prior as relative depth
information. Compared with dense depth maps, visibility relaxes
the constraints on absolute depths, which is helpful when the depth
is incorrect, and is beneficial for reconstructing NeRF models with
good quality.

2.2 3D Gaussian Splatting Methods
The emergence of 3DGS not only marks the performance improve-
ment of novel-view rendering techniques but also represents a
successful attempt to search for new 3D scene representations.
Various applications based on 3DGS appeared soon after the an-
nouncement of 3DGS. Recent methods [6, 15, 37] have aggregated
diffusion models to generate 3D Gaussian models. In particular,
GaussianDreamer [37] utilizes a 3D diffusion model to generate
point clouds for Gaussian initialization and a 2D diffusion model
to guide the optimization of 3D Gaussian by providing rich infor-
mation of geometry and appearance. [17, 34] have exploited the
possibility of introducing 3DGS in dynamic scenes. [17] attempts to
solve the novel view rendering problem in dynamic scenes by allow-
ing 3D Gaussians to move and rotate over time while maintaining
color, opacity, and size. [34] introduces a Gaussian deformation field
network to estimate the deformation of 3D Gaussian over time.

For sparse input views problems, FSGS [41] performs a Gaussian
unpooling operation during optimization, which explicitly creates
Gaussians in 3DGS. Additionally, this method calculates the Pear-
son correlation, between the target depth estimated by a pre-trained
Dense Prediction Transformer (DPT) [1, 23, 24] and the depth of the
rendered image, as a regularization term of loss function. SparseGS
[35] explicitly prunes floating Gaussians from the model to re-
duce the corruption caused by floaters and uses the same depth
regularization term calculated by Pearson correlation. [7] use 𝐿1
distance to formulate the depth regularization term. Our method
omits the depth regularization term in the training loss and conducts
semantic-label training with side views obtained with our proposed
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view sampling method. Furthermore, we utilize depth prior by lift-
ing 2D depth estimation to 3D space and sample a high-quality
point cloud from the lift points for 3D Gaussian initialization.

3 METHOD
3.1 Preliminary
3.1.1 3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) [14] is
a technique for real-time 3D reconstruction and rendering photo-
realistic images. Compared with the original NeRF, which usually
takes 1-2 days to train a scene and 30 seconds to render an image
[12], 3DGS achieves state-of-the-art visual quality while allowing
high-quality real-time rendering. In 3DGS, each scene is represented
by a large number of 3D Gaussians and each Gaussian is a 3D
object in an ellipsoid shape. The 3D Gaussian function, Equation
(1), represents the percentage of the opacity of a point in a particular
position 𝑥 .

𝐺 (𝑥) = 𝑒−
1
2 (𝑥−𝜇 )

𝑇 Σ−1 (𝑥−𝜇 ) (1)
Σ is a positive semi-definite matrix, representing the covariance of
the 3D Gaussian and 𝜇 is the origin of the 3D Gaussian [5]. Σ can
be decomposed by Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 , where 𝑅 is a rotation matrix and 𝑆
is a scaling matrix. 3D Gaussians will be projected into 2D image
space before rendering and 2D covariance matrix Σ′ is computed
as follows:

Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 , (2)
where 𝐽 is the Jacobian of the affine approximation of the projective
transformation, and𝑊 is the view transformation matrix [42]. To
render a pixel, 3DGS conducts point-based 𝛼 blending, as follows:

𝑐 =

𝑛∑︁
𝑖=1

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ), (3)

where 𝑛 is the number of points, 𝑐𝑖 is the color of the 𝑖-th point,
and 𝛼𝑖 is given by evaluating a 2D Gaussian with covariance Σ′

multiplied with a learned per-point opacity.

3.1.2 Camera Projection. Camera projection is the process of pro-
jecting 3D points into 2D image space by using the camera param-
eters, including extrinsic and intrinsic. The whole process can be
formulated with the following equation

𝑉𝑤𝑜𝑟𝑙𝑑 ·𝑀𝑒𝑥𝑡 ·𝑀𝑖𝑛𝑡 = 𝑉𝑝𝑖𝑥𝑒𝑙 (4)

where𝑀𝑒𝑥𝑡 is the extrinsic matrix, which represents the positional
information of the camera, and𝑀𝑖𝑛𝑡 is the intrinsic matrix, which
represents the camera configuration including the focal length and
image resolution, etc. 𝑉𝑤𝑜𝑟𝑙𝑑 refers to points in 3D world space,
and 𝑉𝑝𝑖𝑥𝑒𝑙 refers to points in 2D image space.

3.2 Overview
An overview of our method is illustrated in Fig 1. The first part
of our method involves a point cloud densification process, which
predicts dense depth maps and lifts the dense maps to the 3D world
space, obtaining a point cloud that is denser than the output from
COLMAP [27–29]. The second part employs a 3DGaussian splatting
model (3DGS) [14].We sample 3D points from the dense point cloud,
obtained in the previous stage, and initialize 3D Gaussians with
the sampled points. 3DGS renders images using its default settings.
We not only supervise the training using the training views, which

have a ground-truth RGB image, but also train it with side views,
obtained with SAOVS, labeled with semantic prior knowledge.

3.3 Point Cloud Densification
3DGS utilizes COLMAP [27–29] to generate sparse point clouds,
serving as the initial positions of the 3D Gaussians. However, when
the training views of a scene are very sparse, COLMAP cannot
generate good-quality point clouds, which will hinder scene op-
timization. To this end, we propose a Point Cloud Densification
(PCD) method to construct high-quality point clouds that are denser
than the outputs from COLMAP.

3.3.1 3D Points Lifting. We use a pretrained Dense Prediction
Transformer (DPT) [1, 23, 24] to predict dense depth maps of the
training views. Then, we inversely project the depth maps into
the 3D world space. Specifically, for each pixel of a depth map, we
construct a ray as follows:

r(𝑡) = o + 𝑡 · d, (5)

where o is the origin of the ray, d is the direction of the ray, and
𝑡 is the parameter representing the depth. 𝑡 can be obtained from
the depth map and r(𝑡) represents the position of a point in the 3D
world space.

3.3.2 Point Set Alignment. Depth maps predicted by monocular
depth estimation methods [1, 23, 24] usually provide relative depth
information, rather than absolute depth value, causing a scale am-
biguity issue [41]. To address this issue, we conduct 3D point set
alignment. Specifically, we first lift points that correspond to the
SfM points and remove points that are out of the range, between
the largest and smallest depth values provided by the SfM method.
Then, we estimate a 3D affine transformation between the lifted
points and the SfM points. After that, the estimated 3D transforma-
tion is applied to all points lifted from the depth maps.

3.3.3 Point Sampling. To alleviate the negative effect caused by
inaccurate depth estimation, we randomly sample a portion of
points from the dense point cloud. The sampled points, as well
as the points from the original SfM point cloud, will be used for
Gaussian initialization.

Visual results from PCD are demonstrated in Fig. 2. SfM points
with 41 input views can be regarded as a high-quality reference,
which can improve the performance of 3DGS by up to 4dB [41].
Compared with SfM points from 4 input views, the output from
the PCD module provides useful points that are consistent with
the original scene. In addition, PCD can generate points in regions
where the SfM method cannot detect salient points, facilitating
Gaussian initialization in these regions.

3.4 Semantic Prior Supervision
Following DietNeRF [13] and SinNeRF [36], we utilize the unseen
views, i.e. side views of the training views, to facilitate the opti-
mization of the 3D Gaussian model. SinNeRF aims at solving the
single image 3D reconstruction task and the corresponding side
view sampling method of SinNeRF, performing random rotation
with a fixed camera position as shown in Fig. 3 (b), can only cover a
small range of area. DietNeRF targets simple scenes with small ob-
jects, whose embedding can be obtained before training. However,
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Figure 1: Pipeline of our method. We conduct depth estimation on the training-view images and lift the 2D depth maps to a
dense point cloud. Points, sampled from the dense point cloud, as well as the point cloud obtained with the SfM method, are
used for Gaussian initialization. During optimization, we conduct side view sampling and render side views for regularization.

Figure 2: Comparison between the sparse point clouds output
from the SfM method, with 4 input views and 41 input views,
and our point cloud densification method. As the number
of input views increases, the SfM method is capable of pro-
ducing point clouds of high quality. Compared with the SfM
method, PCD can generate accurate points in regions where
the SfM method fails, facilitating Gaussian initialization in
these regions.

real-life scenes, e.g. scenes in the ScanNet dataset, usually contain
different objects in different locations. Therefore, we proposed Sys-
tematically Angle of View Sampling (SAOVS), which adaptively
samples side views that cover a large portion of the scenes and
have a similar angle of view as the training views. An illustration
of SAOVS is shown in Fig. 3 (c). SAOVS can be partitioned into two
steps, i.e. camera position sampling and camera direction sampling.

3.4.1 Camera Position Sampling. In this step, we adopt linear inter-
polation method to parameterize the position of side-view cameras
from Camera 𝑖 to Camera 𝑖+1. Given that 𝑡 is a random variable, the
position of the sampled position is represented by a linear function,
as follows:

(c) SAOVS(b) Locally Random
Direction Sampling 

(a) Random Position
and Direction Sampling

Novel View

Side View

Training View

Camera Trajectory

Figure 3: Comparison of different samplingmethods. (a) Ran-
dom sampling of the position and direction of a camera. (b)
SinNeRF [36], which fixes the position of the camera and
conducts random sampling for the direction. (c) Our sam-
pling method (SAOVS), which allows the direction of the side
view to be similar to the training view, compared to (a), and
enables the side views to cover more area, compared to (b). 𝑑𝑖
and 𝑑𝑖+1 are the directional vectors of two nearby Cameras 𝑖
and 𝑖 + 1, respectively. 𝑝𝑖 and 𝑝𝑖+1 are the corresponding cam-
era positions. 𝑑𝑖 , 𝑑′𝑖 , 𝑑𝑟 and 𝑑′𝑟 are vectors, such that 𝑑𝑖 · 𝑑′𝑖 = 0
and 𝑑𝑟 · 𝑑′𝑟 = 0. We determine 𝑑′𝑟 by using SLERP with the
random variable 𝑟 , and 𝑝𝑡 by using linear interpolation with
the random variable 𝑡 .

p(𝑝𝑖 , 𝑝𝑖+1; 𝑡) = 𝑡𝑝𝑖 + (1 − 𝑡)𝑝𝑖+1, (6)
where 𝑝𝑖 and 𝑝𝑖+1 are the positions of Camera 𝑖 and Camera 𝑖 + 1,
respectively.

3.4.2 Camera Direction Sampling. We adopt spherical linear inter-
polation (SLERP) [30] to parameterize the direction of side views.
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SLERP is based on the fact that any point on an arc is a linear com-
bination of the two ends, 𝑑0 and 𝑑1. Given 𝑟 is a random variable,
the direction of the sampled position can be represented as follows:

d(𝑑𝑖 , 𝑑𝑖+1; 𝑟 ) =
sin[𝑟Ω]
sinΩ

𝑑𝑖 +
sin[(1 − 𝑟 )Ω]

sinΩ
𝑑𝑖+1, (7)

where Ω is the angle subtended by the arc, such that cosΩ = 𝑑0 ·𝑑1.
The concept of SLERP is illustrated in Fig. 3 (c). By using SLERP and
controlling the parameter 𝑟 , we can guarantee that the sampled side
views have similar contents as the corresponding training views.

3.4.3 Progressive Training. We model parameter 𝑡 and 𝑟 as ran-
dom variables subject to two Normal distributions, N(0, 𝜎𝑡 ) and
N(0, 𝜎𝑟 ), respectively. To stabilize the training, we set 𝜎𝑡 and 𝜎𝑟 to
very small numbers, and increase them during training.

Roessle et al. 3DGSGround Truth Ours

Figure 4: Novel view synthesis results from different meth-
ods, namely Roessle et al. [25], 3DGS [14], and our method,
on the ScanNet Dataset. With sparse inputs, both [25] and
3DGS struggle to gather enough information to accurately
reconstruct challenging areas, such as the television in the
first scene. Roessle et al. [25], which uses inaccurate dense
prediction for regularization, results in ghost effects and
blurring in the rendered images. 3DGS does not employ any
regularization and consequently fails to capture some details.
In contrast, our method successfully renders a sharper image
of the television in the first scene and the books in the second
scene.

3.5 Training Losses
3.5.1 Semantic Consistency Loss. Previous works [13, 36] have
shown that the semantic consistency of multi-view data facilitates
the reconstruction of the global structure of the scene. We utilize
a pretrained DINO-ViT [2] as SinNeRF [36] to extract semantic
embedding of cropped regions from a training view and its side
view. The semantic consistency loss is defined as follows:

L𝑐𝑙𝑠 = ∥ 𝑓𝑣𝑖𝑡 (𝐼𝑔𝑡 ) − 𝑓𝑣𝑖𝑡 (𝐼 ′𝑟 )∥2, (8)

Figure 5: Novel view synthesis results from our method and
3DGS on the ScanNet Dataset. Compared with 3DGS, our
method can generate novel view images with fewer distor-
tions and more photo-realistic details. With semantic con-
sistency loss, our method can reconstruct the geometry of
objects, e.g. chairs and couches. With generative adversarial
loss, our method can generate fine-grained details, such as
frames on walls.

where 𝑓𝑣𝑖𝑡 (·) refers to the DINO-ViT encoder, 𝐼𝑔𝑡 is a patch ran-
domly cropped from the training view image and 𝐼 ′𝑟 is the patch
rendered from a side view.

3.5.2 Generative Adversarial Loss. Generative adversarial networks
(GAN) [3, 10, 11, 26], including a generator and a discriminator, are
beneficial for reconstructing good-quality images. A well-trained
discriminator can distinguish certain patterns on synthetic images,
usually caused by corrupted 3D models in radiance field rendering
problems. Following SinNeRF, we adopt differentiable augmenta-
tion [40], represented by 𝑇 , and formulate the loss function as
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Table 1: Quantitative comparisons between our method, 3DGS and Roessle et al. [25] on the ScanNet dataset [8]. The best results
are highlighted in red.

PSNR(↑) SSIM(↑) LPIPS(↓)
0708 0710 0758 0781 Avg. 0708 0710 0758 0781 Avg. 0708 0710 0758 0781 Avg.

Roessle et al. [25] 16.17 12.64 10.03 11.07 12.48 0.58 0.45 0.41 0.43 0.47 0.65 0.76 0.78 0.78 0.74
3DGS 19.30 17.56 18.84 19.36 18.77 0.60 0.62 0.73 0.68 0.66 0.52 0.44 0.33 0.44 0.43
Ours 24.33 18.51 19.15 19.92 20.48 0.78 0.68 0.76 0.71 0.73 0.37 0.43 0.33 0.35 0.37

Table 2: Quantitative comparison of different methods on the LLFF dataset [18].

PSNR(↑) SSIM(↑) LPIPS(↓)
room trex horns Avg. room trex horns Avg. room trex horns Avg.

NeRF 16.69 13.46 13.06 14.40 0.58 0.30 0.31 0.40 0.47 0.55 0.56 0.53
DS-NeRF 16.79 13.87 12.93 14.53 0.56 0.31 0.28 0.38 0.52 0.67 0.64 0.61
ViP-NeRF 22.60 19.41 19.50 20.50 0.80 0.62 0.67 0.70 0.18 0.25 0.18 0.20
3DGS 19.63 18.99 19.11 19.24 0.77 0.60 0.67 0.68 0.20 0.23 0.20 0.21

Ours w/o PCD 20.90 19.29 19.45 19.88 0.80 0.61 0.68 0.70 0.21 0.22 0.18 0.20
Ours w/o SAOVS 19.61 19.79 19.78 19.73 0.78 0.63 0.71 0.71 0.18 0.19 0.19 0.19

Ours w/o generative adversarial loss 20.56 19.57 19.50 19.88 0.78 0.64 0.70 0.71 0.15 0.19 0.19 0.18
Ours w/o semantic consistency loss 19.58 19.18 20.14 19.63 0.76 0.62 0.72 0.70 0.18 0.21 0.16 0.18

Our Full Model 21.48 19.94 20.22 20.55 0.81 0.65 0.73 0.73 0.15 0.17 0.17 0.16

follows:

L𝐷 = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥 ) [𝑓𝐷 (−𝐷 (𝑇 (𝑥)))] + E𝑧∼𝑝 (𝑧 ) [𝑓𝐷 (𝐷 (𝑇 (𝐺 (𝑧))))],
(9)

L𝐺 = E𝑧∼𝑝 (𝑧 ) [𝑓𝐺 (−𝐷 (𝑇 (𝐺 (𝑧))))], (10)
L𝑎𝑑𝑣 = L𝐷 + L𝐺 , (11)

where𝐺 (·) and𝐷 (·) represent the generator, which refers to the ren-
dering process in our algorithm, and the discriminator trained with
Hinge loss [16], respectively. 𝑓𝐷 (𝑥) = max(0, 1 + 𝑥) and 𝑓𝐺 (𝑥) = 𝑥 .

3.5.3 Total Loss. The total loss function for the optimization pro-
cess is expressed as follows:

L𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜆1)L1 + 𝜆1L𝐷−𝑆𝑆𝐼𝑀 + 𝜆2L𝑎𝑑𝑣 + 𝜆3L𝑐𝑙𝑠 , (12)

where 𝜆1, 𝜆2, and 𝜆3 are weighting factors. L1 is L1 loss and
L𝐷−𝑆𝑆𝐼𝑀 is D-SSIM loss used in 3DGS [14].

4 EXPERIMENTS
4.1 Implementation Details
We test our method on challenging room-scale scenes in the Scan-
Net dataset, used by Roessle et al. [25], and indoor scenes in the
Local Light Field Fusion (LLFF) dataset [19]. For scenes in the Scan-
Net dataset, we train the model with about 18 input views. For
scenes in the LLFF dataset, we choose only 4 views as input. The
total number of training iterations is 30,000. All experiments were
conducted on a single NVIDIA RTX 4090 GPU. We initialize both
𝜎𝑡 and 𝜎𝑟 at 0.09 and increase them every 100 iterations. 𝜆1, 𝜆2 and
𝜆3 are set to 0.2, 1.59 and 0.75, respectively.

4.2 Evaluation Protocol
We evaluated our method against other state-of-the-art methods
in novel view synthesis tasks. For quantitative comparison, we
compute the peak signal-to-noise ratio (PSNR), Structural Similarity

Index Measure (SSIM) [33], and Learned Perceptual Image Patch
Similarity (LPIPS) [39] on the RGB images of test views.

4.3 Novel View Synthesis Results
Table 1 shows the quantitative comparison between different meth-
ods on scenes of the ScanNet dataset. Our method outperforms the
other 3DGS methods [14, 25], in all evaluation metrics. Compared
with the state-of-the-art method, Roessle et al. [25], our method
drastically reduces training time from an average of 11 hours to 40
minutes.

Fig. 4 demonstrates the visual results from our method, 3DGS,
and Roessle et al. [25] in very challenging settings, which contain
very sparse input views. Our method synthesizes images with fewer
artifacts and retains rich detailed textures. In particular, our method
generates a sharper appearance of the television in the first scene
and the books in the second scene. We demonstrate more visual
results in Fig. 5, which shows that our method can synthesize novel
view images with better quality, compared to the baseline method,
3DGS. Particularly, our method can reconstruct difficult regions,
with limited scene coverage of cameras.

Table 2 shows the quantitative comparisons on scenes of the LLFF
dataset. Generally, our method outperforms the state-of-the-art
methods on the LLFF dataset. An exception is ViP-NeRF [31], which
performs well in scenes where objects are easily distinguishable
from the background, due to the visibility prior. Therefore, ViP-
NeRF outperforms our method in room scene by 1.18dB, in terms of
PSNR. However, our method synthesizes images with good quality
and textures. Our method outperforms 3DGS by 1.31dB, in terms
of PSNR, and 0.05, in terms of SSIM.

4.4 Ablation Studies
To verify the effectiveness of our proposed components, we conduct
ablation experiments on the LLFF dataset. Results in Table 2 and
Fig. 7 show that with all components proposed by our method,
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Figure 6: Novel view synthesis results from different methods, namely DS-NeRF [9], ViP-NeRF [31], 3DGS [14] and ours, on the
LLFF Dataset.

the model achieves the best performance and synthesizes photo-
realistic novel view images with fine-grained details.

4.4.1 Without Point Cloud Densification. Without the PCD pro-
cess, 3D Gaussians will be initialized with a sparse point cloud
obtained with SfM. Results, shown in Table 2, illustrate that a slight
performance drop is recorded if PCD is not performed. Also, we
conduct another study to validate the effectiveness of the PCD and
investigate the impact of the point cloud sampling rate on the result.
Fig. 8 shows that the quality of the point cloud can significantly
affect the quality of synthesized images. When sampling points
with a sampling rate of 0.1%, the model achieves the best perfor-
mance. As the sampling rate increases, incorrect depth information
generally corrupts the scenes and degrades the performance. Our
PCD module can improve the overall performance of the method
from the baseline, i.e. without point cloud densification.

4.4.2 Without SAOVS. We compare our side-view samplingmethod
with the method shown in Fig. 3 (a), whose direction and position
of the side-view cameras are chosen randomly. If the side-view
directions are not similar to the training directions, or if the posi-
tions of side-view cameras and the corresponding training cameras
are not close, the contents in the corresponding rendered images
are different. Consequently, the pseudo-label regularization will
negatively affect the optimization process. Results in Table 2 show
that the performance of the model, randomly sampling side views,
has a significant performance drop from the full model. Fig. 7 shows
that, compared with the model without semantic losses, the model
without SAOVS synthesized images with more severe distortions.

This observation suggests that without an appropriate side-view
sampling scheme, semantic losses can negatively impact the syn-
thesized results.

4.4.3 Without Semantic Consistency Loss. Without semantic con-
sistency loss, quantitative results in Table 2 recorded a significant
performance drop. Visual results in Fig. 7 show that objects, oc-
cluded in some views, cannot be well reconstructed because the
model does not utilize the semantic consistency loss to regularize
the training and fails to restore the geometry of the 3D objects.

4.4.4 Without Generative Adversarial Loss. Generative adversar-
ial loss encourages the model to optimize 3D scenes by adding
constraints on the details seen from side views. With generative
adversarial loss, rendered side-view images tend to have similar
detailed textures as training views, encouraging the restoration of
fine-grained 3D details. Otherwise, artifacts, corrupting the local
textures can be observed from the synthesized visual results as
shown in Fig. 7.

5 CONCLUSION
In this work, we propose an effective 3D reconstruction method
for novel-view synthesis from sparse input views. The proposed
method includes a Point Cloud Densification (PCD) module and an
enhanced training process, supervised by both the training views
with ground truth and the pseudo labels generated by semantic
knowledge priors. The PCD module utilizes depth prior, provided
by a pretrained Dense Prediction Transformer (DPT), to reconstruct
high-quality point clouds. These point clouds are then fed to the
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Figure 7: Ablation studies on the LLFF Dataset. In the absence
of PCD, we observed a minor decline in performance. With-
out the semantic consistency loss, objects that are occluded
in some views are not effectively reconstructed. If the gener-
ative adversarial loss is not applied, artifacts that disrupt the
local textures become noticeable in the synthesized visual
results. Lastly, without SAOVS, the pseudo-label regulariza-
tion adversely impacts the optimization process, leading to
more pronounced distortions.

3D Gaussian initialization module, facilitating a better initialization
state. In the optimization process, we propose a robust side-view
sampling method, called Systematically Angle of View Sampling
(SAOVS). This method samples random side views that are similar
to the corresponding training views. Specifically, SAOVS combines
linear interpolation and spherical linear interpolation (SLERP) to
parameterize the position and orientation of the side-view cameras
and randomly generate side views. Training with these side views
allows the optimized scenes to be semantically consistent from
different views and to have fine-grained details. Our experimental
results show that our method outperforms the baseline method,
3D Gaussian Splatting, on the ScanNet dataset by 1.71dB and the
LLFF dataset by 1.31dB. It also synthesizes photo-realistic novel
view results with superior visual quality.
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