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1 ARCHITECTURE

CardiCat adapts a Variational Autoencoder (VAE) architecture to add regularized dual encoder-
decoder embedding layers to parameterize categorical features 1. In contrast to other neural em-
bedding architectures, such as in natural language processing and entity embeddings, CardiCat’s
embeddings are learned in tandem by the recognition model (encoder) and the generator model (de-
coder). This architecture dynamically parameterizes and homogenizes the high-cardinality features
during training, which accommodates better learning overall.

Figure 1: illustration and description of CardiCat’s network architecture.

CardiCat’s encoder-decoder architecture can be formally describe as:

Encoder:



eh = emb(xh), h ∈ H

cl = oh(xl), l ∈ L

rm = standard1→1(xm), m ∈ M

h1 = reLU(FC128→128(cnct(e, c, r))

h2 = reLU(FC128→128(h1))

µ = FC128→a(h2)

σ = exp(0.5(FC128→a(h2))

qφ(z|[e, c, r]) ∼ Na(µ, diag(σ))

Decoder:



h1 = reLU(FC128→128(z))

h2 = reLU(FC128→128(h1))

ēh, ēh,k = tanh(FC128→1(h2)), h ∈ H

r̄m = tanh(FC128→1(h2)), m ∈ M

c̄l ∼ softmax(FC128→cl
)(h2), l ∈ L

pθ([e, c, r]|z) =
∏L

l=1 P(c̄l = cl)×∏H
h=1 ϕK(êh = eh)) ×

∏M
m=1 ϕ1(r̂m = rm)

CardiCat is trained with ELBO loss as defined in the main paper. We use the Adam optimizer with
learning rate of 0.0005.

1
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2 DATASETS DETAILS

More information on the benchmark datasets is available online 1. Identifier and index columns
were removed from all datasets (see source code).

Table 1: Sources of benchmark datasets
Dataset Source

PetFinder https://www.kaggle.com/competitions/petfinder-adoption-prediction

Bank (bank marketing) https://archive.ics.uci.edu/ml/datasets/Bank%2BMarketing

Census (census income) https://archive-beta.ics.uci.edu/dataset/20/census+income

Medical (medicare impatient hospitals) https://data.cms.gov/provider-summary-by-type-of-service/medicare-inpatient-hospitals/

Credit (home credit default risk) https://www.kaggle.com/competitions/home-credit-default-risk/data

Criteo http://labs.criteo.com/downloads/2014-kaggle-display-advertising-challenge-dataset

MIMIC-III https://mimic.mit.edu/docs/iii/

Simulated included in source-code

3 EXPERIMENTS

3.1 SOURCE CODE

The source code to our model and benchmarks is available here: https://www.
dropbox.com/scl/fi/hhn7lththr7kv8ueuygf9/CardiCat_ICLR25.zip?
rlkey=9zrk8jasretwyjy4wz1i54xlg&dl=0.

Additionally, the datasets can be downloaded here: https://www.dropbox.
com/scl/fi/clonvo55gv1llf9sj9i7o/CardiCat_datasets.zip?rlkey=
d8hsypmjf79lycfjbdon282rl&dl=0.

3.2 EVALUATION METRICS

Some of the synthetic data quality evaluation metrics were adapted from Xu et al. (2019). Here we
elaborate on the specifics of each evaluation metric.

Marginal reconstruction.

• Continuous features were evaluated using the complement of the Kolmogorov-Smirnov
(KS) statistic, 1−KSFn,F̂m

(xj) = 1− supx |Fn(x)− F̂m(x)|, where Fn, F̂m are the ob-
served and generated empirical distribution functions, respectively.

• Categorical features were evaluated using the complement of the Total Variation Distance
(TVD), 1−TV DR,S = 1− 1

2

∑cj
ℓ=1 |Rℓ−Sℓ|, where R,S are the observed and generated

marginal probability measures, respectively .

Bi-variate reconstruction.

• Numerical pairs. The complement of the correlation difference between two numer-
ical features xj ,x

′
j is used for evaluating numerical bi-variate reconstruction, 1 −

|Corr(xj ,xj′ )−Corr(x̂j ,x̂j′ )|
2 .

• Categorical pairs. The complement of the TVD on the contingency table between two cate-
gorical features is used for categorical bi-variate reconstruction, 1− 1

2

∑cj
ℓ=1

∑cj′

ℓ′=1 |Rℓ,ℓ′−
Sℓ,ℓ′ |.

• Mixed pairs. Mixed feature pairs were evaluated by averaging reconstruction accuracy of
the conditional distributions for the numerical variable xj′ given values for the categorical
variable xj

1−
cj∑
ℓ=1

πℓ · sup
xj′

|Fn(xj′ |xj = ℓ)− F̂m(xj′ |xj = ℓ)|,

2
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where Fn, F̂m are the observed and generated empirical distribution functions, respectively,
and πℓ = P (xj = ℓ) under the true distribution. If value ℓ is unobserved for variable xj in
the generated, we set the KS for this value to 1.

3.3 NETWORK DESIGN AND HYPER-PARAMETERS

Network design All benchmark models share the same hidden-layer structure of three 128-128-128
fully connected layers in both the encoder and decoder using ReLu activation functions. CardiCat,
tVAE and VAE (vanilla) have a multivariate normal Gaussian prior. In all cases, including tGAN,
the size of the networks’ latent dimension is set to 15. In terms of data preprocessing, CardiCat and
VAE apply label encoding to categorical features, and a shift-scale normalization into a distribution
centered around zero with standard deviation of one to numerical variables. One-hot encoding and
categorical embeddings are applied according to the main paper. The preprocessing of tGAN and
tVAE is done as part of their code library and as specified in Xu et al. (2019).

Hyperparameters All models were trained on a train/test split of 80/20 of the dataset. Training was
done with 150 epochs, batch sizes of 2,000 and an Adam optimizer with a learning rate of 0.0005
on the train set. The loss factor of the ELBO of all VAEs was set to 5.

3.4 CONDITIONAL GENERATOR RESULTS

Table 2: Evaluation results of conditional generators.
marginal pairs

dataset model categorical numerical categorical mixed correlation
Bank cCardiCatMask 0.86 0.78 0.76 0.74 0.97

tGAN 0.88 0.87 0.59 0.82 0.95
Census cCardiCatMask 0.79 0.73 0.64 0.68 0.98

tGAN 0.88 0.71 0.68 0.8 0.97
Credit cCardiCatMask 0.92 0.83 0.93 0.84 0.96

tGAN 0.87 0.86 0.64 0.83 0.91
Criteo cCardiCatMask 0.65 0.80 0.44 0.70 0.97

tGAN 0.78 0.86 0.36 0.73 0.95
MIMIC cCardiCatMask 0.82 0.85 0.68 0.79 0.99

tGAN 0.72 0.85 0.58 0.73 0.97
Medical cCardiCatMask 0.58 0.80 0.17 0.60 0.96

tGAN 0.58 0.90 0.06 0.59 0.94
PetFinder cCardiCatMask 0.88 0.76 0.78 0.91 0.98

tGAN 0.87 0.77 0.70 0.80 0.97
Simulated cCardiCatMask 0.75 0.90 0.60 0.90 0.99

tGAN 0.78 0.84 0.46 0.79 0.98
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4 RELATED MODELS & LITERATURE

Relevant related models & literature is summarized in table 3

Table 3: Summary of relevant literature related to deep tabular generative models
Model architecture use-case
RVAE Akrami et al. (2020; 2022) VAE: two-component mixture likelihoods Outlier robust

HI-VAE Nazabal et al. (2020) VAE: type specific likelihoods with hierarchical structure Imputation

VAEM Ma et al. (2020) VAE: hierarchical two-stage structure Imputation

VSAE Gong et al. (2021) VAE: modeling using imputation mask Imputation

medGAN Choi et al. (2017) GAN: minibatch averaging, batch norm. Synthetic patient records

table-GAN Park et al. (2018) GAN: balance between privacy level and model compatibility Private data synthesis

TGAN/CTGAN Xu & Veeramachaneni (2018); Xu et al. (2019) GAN/VAE: mode-specific norm., conditional generator Conditional data synthesis

CTAB-GAN Zhao et al. (2021) GAN: conditionally encoding imbalanced mixed type Private conditional data synthesis

4.1 ADDITIONAL NOTES ON MODELS

VAEM. Because the VAEM package available on Github1 is no longer supported by its dependen-
cies, we wrote our own version of VAEM that fits our benchmark settings. The input to the marginal
VAEs are either one-hot encoded categorical variables, or normalized numerical variables. The la-
tent variable has a single dimension, and the output of the decoder is either size one or the one-hot
vector size for numerical and categorical features respectively. However, this model performed very
poorly on all the datasets, and we have decided not to include it as a benchmark model.

tGAN. tVAE is used as a benchmark for tGAN, a conditional generative adversarial network frame-
work with the same data normalization. tGAN’s approach to overcome the imbalance nature of
the data is done by ”training-by-sampling”. Sampled data from their conditional generator aims
to represent more accurately the underlying marginal distributions of the categorical features. The
conditional generator in tGAN is a concatenation of all the one-hot encoded categorical features,
where all the elements in the vector are masked (set to zero), except the one-hot elements of the con-
ditional value.During training, the conditional variable for each row is chosen uniformly from the
set of all categorical features. A cross entropy term between the conditional value and the respective
generated value is added to enforce the conditional generator during training. In contrast to tGAN,
cCardiCatMask, does not employ such a ”training-by-sampling” nor an additional cross entropy
term between the conditional value and the respective generated value.

1https://github.com/microsoft/VAEM
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