
Published as a conference paper at ICLR 2025

SVDQUANT: ABSORBING OUTLIERS BY LOW-RANK
COMPONENTS FOR 4-BIT DIFFUSION MODELS

Muyang Li1∗‡ Yujun Lin1∗ Zhekai Zhang1† Tianle Cai4 Xiuyu Li5‡
Junxian Guo1,6 Enze Xie2 Chenlin Meng7 Jun-Yan Zhu3 Song Han1,2

1MIT 2NVIDIA 3CMU 4Princeton 5UC Berkeley 6SJTU 7Pika Labs
https://hanlab.mit.edu/projects/svdquant

Prompt: a cyberpunk cat holding a huge neon sign that says "SVDQuant is lite and fast", wearing fancy goggles and a black leather jacket.

FLUX.1-dev BF16
(25 Steps)

DiT Memory: 22.7 GiB
E2E Latency: 111.7 s

NF4 (W4A16)
LPIPS: 0.272

DiT Memory: 6.9 GiB (3.3× Less)
E2E Latency: 38.6 s (2.9× Faster)

Naïve INT4 (W4A4)
LPIPS: 0.322

DiT Memory: 6.3 GiB (3.6× Less)
E2E Latency: 12.5 s (8.9× Faster)

SVDQuant INT4 (W4A4)
LPIPS: 0.223

DiT Memory: 6.5 GiB (3.5× Less)
E2E Latency: 12.9 s (8.7× Faster)

PixArt- FP16
(20 Steps)

Σ ViDiT-Q (W4A8)
LPIPS: 0.573

Naïve INT4 (W4A4)
LPIPS: 0.762

SVDQuant INT4 (W4A4)
LPIPS: 0.323

Prompt: medium rare steak tenderloin super tasty photo.

Figure 1: SVDQuant is a post-training quantization technique for 4-bit weights and activations that well maintains
visual fidelity. On 12B FLUX.1-dev, it achieves 3.6× memory reduction compared to the BF16 model. By
eliminating CPU offloading, it offers 8.7× speedup over the 16-bit model when on a 16GB laptop 4090 GPU, 3×
faster than the NF4 W4A16 baseline. On PixArt-Σ, it demonstrates significantly superior visual quality over other
W4A4 or even W4A8 baselines. “E2E” means the end-to-end latency including the text encoder and VAE decoder.

ABSTRACT

Diffusion models can effectively generate high-quality images. However, as they
scale, rising memory demands and higher latency pose substantial deployment
challenges. In this work, we aim to accelerate diffusion models by quantizing their
weights and activations to 4 bits. At such an aggressive level, both weights and
activations are highly sensitive, where existing post-training quantization methods
like smoothing become insufficient. To overcome this limitation, we propose
SVDQuant, a new 4-bit quantization paradigm. Different from smoothing, which
redistributes outliers between weights and activations, our approach absorbs these
outliers using a low-rank branch. We first consolidate the outliers by shifting them
from activations to weights. Then, we use a high-precision, low-rank branch to
take in the weight outliers with Singular Value Decomposition (SVD), while a
low-bit quantized branch handles the residuals. This process eases the quantization
on both sides. However, naïvely running the low-rank branch independently
incurs significant overhead due to extra data movement of activations, negating the
quantization speedup. To address this, we co-design an inference engine Nunchaku
that fuses the kernels of the low-rank branch into those of the low-bit branch to cut

∗Algorithm co-lead. † System lead. ‡ Part of the work done during an internship at NVIDIA.

1

https://hanlab.mit.edu/projects/svdquant

Published as a conference paper at ICLR 2025

off redundant memory access. It can also seamlessly support off-the-shelf low-rank
adapters (LoRAs) without re-quantization. Extensive experiments on SDXL,
PixArt-Σ, and FLUX.1 validate the effectiveness of SVDQuant in preserving
image quality. We reduce the memory usage for the 12B FLUX.1 models by 3.5×,
achieving 3.0× speedup over the 4-bit weight-only quantization (W4A16) baseline
on the 16GB laptop 4090 GPU with INT4 precision. On the latest RTX 5090
desktop with Blackwell architecture, we achieve a 3.1× speedup compared to the
W4A16 model using NVFP4 precision. Our quantization library* and inference
engine† are open-sourced.

1 INTRODUCTION

Diffusion models have shown remarkable capabilities in generating high-quality images (Ho et al.,
2020), with recent advances further enhancing user control over the generation process. Trained
on vast data, these models can create stunning images from simple text prompts, unlocking diverse
image editing and synthesis applications (Meng et al., 2022b; Ruiz et al., 2023; Zhang et al., 2023).

C
om

pu
ta

tio
n

(T
M

A
C

s)
0

10

20

30

40

50

Parameters (B)
0 3 6 9 12 15

Diffusion Model
LLM AuraFlow v0.1’24

FLUX.1’24

Llama2-13B’23

Gemma2-9B’24
Llama3-8B’24

Phi-3.5’24
Gemma2-2B’24

PixArt’23

SD3-Medium’24

SDXL’23

SD1.4’22

Figure 2: Computation vs. param-
eters for LLMs and diffusion mod-
els. LLMs’ computation is mea-
sured with 512 context and 256
output tokens, and diffusion mod-
els’ computation is for a single
step. Dashed lines show trends.

To pursue higher image quality and more precise text-to-image
alignment, researchers are scaling up diffusion models. As shown in
Figure 2, Stable Diffusion (SD) (Rombach et al., 2022) 1.4 only has
800M parameters, while SDXL (Podell et al., 2024) scales this up to
2.6B parameters. AuraFlow v0.1 (fal.ai, 2024) extends this further to
6B parameters, with the latest model, FLUX.1 (Black-Forest-Labs,
2024), pushing the boundary to 12B parameters. Compared to large
language models (LLMs), diffusion models are significantly more
computationally intensive. Their computational costs‡ increase
more rapidly with model size, posing a prohibitive memory and
latency barrier for real-world model deployment, particularly for
interactive use cases that demand low latency.

As Moore’s law slows down, hardware vendors are turning to
low-precision inference to sustain performance improvements.
For instance, NVIDIA’s Blackwell Tensor Cores introduce a new
4-bit floating point (FP4) precision, doubling the performance
compared to FP8 (NVIDIA, 2024). Therefore, using 4-bit inference
to accelerate diffusion models is appealing. In the realm of LLMs, researchers have leveraged
quantization to compress model sizes and boost inference speed (Dettmers et al., 2022; Xiao et al.,
2023). However, unlike LLMs–where latency is primarily constrained by loading model weights
on modern GPUs, especially with small batch sizes–diffusion models are heavily computationally
bounded, even with a single batch. As a result, weight-only quantization cannot accelerate diffusion
models. To achieve speedup on these devices, both weights and activations must be quantized to the
same bit width; otherwise, the lower-precision weight will be upcast during computation, negating
potential performance enhancements.

In this work, we focus on quantizing both the weights and activations of diffusion models to 4
bits. This challenging and aggressive scheme is often prone to severe quality degradation. Existing
methods like smoothing (Xiao et al., 2023; Lin et al., 2024), which transfer the outliers between
the weights and activations, are less effective since both sides are highly vulnerable to outliers. To
address this issue, we propose a general-purpose quantization paradigm, SVDQuant. Our core idea is
to use a low-cost branch to absorb outliers on both sides. To achieve this, as illustrated in Figure 3,
we first aggregate the outliers by migrating them from activation X to weight W via smoothing.
Then we apply Singular Value Decomposition (SVD) to the updated weight, Ŵ , decomposing it
into a low-rank branch L1L2 and a residual Ŵ −L1L2. The low-rank branch operates at 16 bits,
allowing us to quantize only the residual to 4 bits, significantly reducing outliers and magnitude.
However, naively running the low-rank branch separately incurs substantial memory access overhead,

*Quantization library: github.com/mit-han-lab/deepcompressor
†Inference Engine: github.com/mit-han-lab/nunchaku
‡Measured by the number of Multiply-Accumulate operations (MACs). 1 MAC=2 FLOPs.

2

https://github.com/mit-han-lab/deepcompressor
https://github.com/mit-han-lab/nunchaku
https://github.com/mit-han-lab/nunchaku
https://github.com/mit-han-lab/deepcompressor
https://github.com/mit-han-lab/nunchaku

Published as a conference paper at ICLR 2025

Q
ua

nt
iz

at
io

n
Le

ve
l

0

10

0

2
 |X | |W |Outlier

Low Effective Bits

Very Hard to Quantize Hard to Quantize

0

2

0

4.5
 | X̂ | |Ŵ |

Migrate Difficulty with Smoothing

Easy to Quantize Harder to Quantize

0

2

0

0.05

rank=32

16-Bit L1

16-Bit L2

+

 | X̂ | |Ŵ − L1L2 |

Migrate Difficulty with SVD

Easy to Quantize Easy to Quantize No Need to Quantize

Low-Rank Branch L1L2

(a) Original (b) Shift Outliers from Activation to Weight X W (c) SVDQuant (Ours)

Channel Input Channel Channel Input Channel Channel Input Channel

Figure 3: Overview of SVDQuant. (a) Originally, both the activation X and weight W contain outliers, making
4-bit quantization challenging. (b) We migrate the outliers from the activation to weight, resulting in the updated
activation X̂ and weight Ŵ . While X̂ becomes easier to quantize, Ŵ now becomes more difficult. (c)
SVDQuant further decomposes Ŵ into a low-rank component L1L2 and a residual Ŵ − L1L2 with SVD.
Thus, the quantization difficulty is alleviated by the low-rank branch, which runs at 16-bit precision.

offsetting the speedup of 4-bit inference. To overcome this, we co-design a specialized inference
engine Nunchaku, which fuses the low-rank branch computation into the 4-bit quantization and
computation kernels. This design enables us to achieve measured inference speedup even with
additional branches.

SVDQuant can quantize various text-to-image diffusion architectures into 4 bits, including both
UNet (Ho et al., 2020; Ronneberger et al., 2015) and DiT (Peebles & Xie, 2023) backbones, while
maintaining visual quality. It supports both INT4 and FP4 data types and integrates seamlessly with
pre-trained low-rank adapters (LoRA) (Hsu et al., 2022) without requiring re-quantization. To our
knowledge, we are the first to successfully apply 4-bit post-training quantization to both the weights
and activations of diffusion models, and achieve measured speedup on NVIDIA GPUs. On the latest
12B FLUX.1, our 4-bit models largely preserve the image quality and reduce the memory footprint
of the original BF16 model by 3.5×. Furthermore, our INT4 and FP4 model delivers a 3.0× and
3.1× speedup over the NF4 weight-only quantized baseline on the 16GB laptop-level RTX 4090 and
desktop-level RTX 5090 GPU, respectively. See Figure 1 for visual examples.

2 RELATED WORK

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged as a powerful class
of generative models, known for generating high-quality samples by modeling the data distribution
through an iterative denoising process. Recent advancements in text-to-image diffusion models (Bal-
aji et al., 2022; Rombach et al., 2022; Podell et al., 2024) have already revolutionized content
generation. Researchers further shifted from convolution-based UNet architectures (Ronneberger
et al., 2015; Ho et al., 2020) to transformers (Peebles & Xie, 2023; Bao et al., 2023) and scaled up
the model size (Esser et al., 2024). However, diffusion models suffer from extremely slow inference
speed due to their long denoising sequences and intense computation. To address this, various
approaches have been proposed, including few-step samplers (Zhang & Chen, 2022; Zhang et al.,
2022; Lu et al., 2022) or distilling fewer-step models from pre-trained ones (Salimans & Ho, 2021;
Meng et al., 2022a; Song et al., 2023; Luo et al., 2023; Sauer et al., 2024; Yin et al., 2024b;a; kan,
2024). Another line of works choose to optimize or accelerate computation via efficient architecture
design (Li et al., 2023b; 2020; Cai et al., 2024; Liu et al., 2024a), quantization (Shang et al., 2023;
Li et al., 2023a), sparse inference (Li et al., 2022; Ma et al., 2024c;b), and distributed inference (Li
et al., 2024b; Wang et al., 2024c; Chen et al., 2024b). This work focuses on quantizing the diffusion
models to 4 bits to reduce the computation complexity. Our method can also be applied to few-step
diffusion models to further reduce the latency (see Section 5.2).
Quantization has been recognized as an effective approach for LLMs to reduce the model size
and accelerate inference (Dettmers et al., 2022; Frantar et al., 2023; Xiao et al., 2023; Lin et al.,
2025; 2024; Kim et al., 2024; Zhao et al., 2024d). For diffusion models, Q-Diffusion (Li et al.,
2023a) and PTQ4DM (Shang et al., 2023) first achieved 8-bit quantization. Subsequent works refined
these techniques with approaches like sensitivity analysis (Yang et al., 2023) and timestep-aware
quantization (He et al., 2023; Huang et al., 2024; Liu et al., 2024b; Wang et al., 2024a). Some
recent works extended the setting to text-to-image models (Tang et al., 2024; Zhao et al., 2024c), DiT
backbones (Wu et al., 2024), quantization-aware training (He et al., 2024; Zheng et al., 2024; Wang
et al., 2024b; Sui et al., 2024), video generation (Zhao et al., 2024b), and different data types (Liu
& Zhang, 2024). Among these works, only MixDQ (Zhao et al., 2024c) and ViDiT-Q (Zhao et al.,
2024b) implement low-bit inference engines and report measured 8-bit speedup on GPUs. In this

3

Published as a conference paper at ICLR 2025

work, we push the boundary further by quantizing diffusion models to 4 bits, supporting both the
integer or floating-point data types, compatible with the UNet backbone (Ho et al., 2020) and recent
DiT architecture (Peebles & Xie, 2023). Our co-designed inference engine, Nunchaku, further ensures
on-hardware speedup. Additionally, when applying LoRA to the model, existing methods require
fusing the LoRA branch to the main branch and re-quantizing the model to avoid tremendous memory-
access overhead in the LoRA branch. Nunchaku cuts off this overhead via kernel fusion, allowing the
low-rank branch to run efficiently as a separate branch, eliminating the need for re-quantization.
Low-rank decomposition has gained significant attention in deep learning for enhancing computa-
tional and memory efficiency (Hu et al., 2022; Zhao et al., 2024a; Jaiswal et al., 2024). While directly
applying this approach to model weights can reduce the compute and memory demands (Hsu et al.,
2022; Yuan et al., 2023; Li et al., 2023c), it often leads to performance degradation. Instead, Yao et al.
(2024) combined it with quantization for model compression, employing a low-rank branch to com-
pensate for the quantization error. Low-Rank Adaptation (LoRA) (Hu et al., 2022) introduces another
active line of research using low-rank matrices to adjust a subset of pre-trained weights for efficient
fine-tuning. This has sparked numerous advancements (Dettmers et al., 2023; Guo et al., 2024; Li et al.,
2024c; Xu et al., 2024b; Meng et al., 2024), which combines quantized models with low-rank adapters
to reduce memory usage during model fine-tuning. However, our work differs in two major aspects.
First, our goal is different, as we aim to accelerate model inference through quantization, while previ-
ous works focus on model compression or efficient fine-tuning. Thus, they primarily consider weight-
only quantization, resulting in no speedup. Second, as shown in our experiments (Figure 6 and ablation
study in Section 5.2), directly applying these methods not only degrades the image quality, but also in-
troduces significant overhead. In contrast, our method yields much better performance due to our joint
quantization of weights and activations and overhead reduction of our inference engine Nunchaku.

3 QUANTIZATION PRELIMINARY

Quantization is an effective approach to accelerate linear layers in networks. Given a tensor X , the
quantization process is defined as:

QX = round
(
X

sX

)
, sX =

max(|X|)
qmax

. (1)

Here, QX is the low-bit representation of X , sX is the scaling factor, and qmax is the maximum
quantized value. For signed k-bit integer quantization, qmax = 2k−1 − 1. For 4-bit floating-point
quantization with 1-bit mantissa and 2-bit exponent, qmax = 6. Thus, the dequantized tensor can be
formulated as Q(X) = sX ·QX . For a linear layer with input X and weight W , its computation
can be approximated by

XW ≈ Q(X)Q(W) = sXsW ·QXQW . (2)

The same approximation applies to convolutional layers. To speed up computation, modern commer-
cial GPUs require both QX and QW using the same bit width. Otherwise, the low-bit weights need
to be upcast to match the higher bit width of activations, or vice versa, negating the speed advantage.
Following the notation in QServe (Lin et al., 2025), we denote x-bit weight, y-bit activation as WxAy.
“INT” and “FP” refer to the integer and floating-point data types, respectively.

In this work, we focus on W4A4 quantization for acceleration, where outliers in both weights
and activations place substantial obstacles. Traditional methods to suppress these outliers include
quantization-aware training (QAT) (He et al., 2024) and rotation (Ashkboos et al., 2024; Liu et al.,
2024c; Lin et al., 2025). QAT requires massive computing resources, especially for tuning models
with more than 10B parameters such as FLUX.1. Rotation is inapplicable due to the usage of adaptive
normalization layers (Peebles & Xie, 2023) in diffusion models. The runtime-generated normalization
weights preclude the offline rotation with the weights of projection layers, while online rotation of
both activations and weights incurs significant runtime overhead.

4 METHOD

In this section, we first formulate our problem and discuss where the quantization error comes from.
Next, we present SVDQuant, a new W4A4 quantization paradigm for diffusion models. Our key

4

Published as a conference paper at ICLR 2025

0 7k 14k 21k
0

0.5

1

1.5

2

0 7k 14k 21k
0

5

10

15

20

0 18k 55k 74k
0

0.2

0.4

0.8

1.0

0.6

37k0 7k 14k 21k
0

0.5

1.0

1.5

2.0

0 18k 37k 55k 74k
0

4

6

10

2

8

Input Activation Group Index Weight Group Index Weight Group IndexWeight Group IndexInput Activation Group Index

W
ei

gh
t V

al
ue

In
pu

t A
ct

iv
at

io
n

Va
lu

e

W
ei

gh
t V

al
ue

W
ei

gh
t V

al
ue

In
pu

t A
ct

iv
at

io
n

Va
lu

e

(a) |X | (b) |W | (c) | X̂ | = |X ⋅ diag(λ)−1 | (d) |Ŵ | = |W ⋅ diag(λ) | (e) |R | = |Ŵ − L1L2 |

50% Percentile

99% Percentile

Max
Original After Smoothing After SVDOutliers

Outliers
More

Outliers

Figure 4: Example value distribution of inputs and weights in PixArt-Σ (Chen et al., 2024a) λ is the smooth
factor. Red indicates the outliers. Initially, both the input X and weight W contain significant outliers. After
smoothing, the range of X̂ is reduced with much fewer outliers, while Ŵ shows more outliers. Once the SVD
low-rank branch L1L2 is subtracted, the residual R has a narrower range and is free from outliers.

idea is to introduce an additional low-rank branch that can absorb quantization difficulties in both
weights and activations. Finally, we provide a co-designed inference engine Nunchaku with kernel
fusion to minimize the overhead of the low-rank branches in the 4-bit model.

4.1 PROBLEM FORMULATION

Consider a linear layer with input X ∈ Rb×m and weight W ∈ Rm×n, where b represents the batch
size, and m and n denote the input and output channels, respectively. The quantization error can
be defined as

E(X,W) = ∥XW −Q(X)Q(W)∥F , (3)

where ∥ · ∥F denotes Frobenius Norm.

Proposition 4.1 (Error decomposition). The quantization error can be decomposed as follows:

E(X,W) ≤ ∥X∥F ∥W −Q(W)∥F + ∥X −Q(X)∥F (∥W ∥F + ∥W −Q(W)∥F). (4)

See Appendix A.1 for the proof. From the proposition, we can see that the error is bounded by
four elements – the magnitude of the weight and input, ∥W ∥F and ∥X∥F , and their respective
quantization errors, ∥W −Q(W)∥F and ∥X −Q(X)∥F . To minimize the overall quantization
error, we aim to optimize these four terms.

4.2 SVDQUANT: ABSORBING OUTLIERS VIA LOW-RANK BRANCH

Migrate outliers from activation to weight. Smoothing (Xiao et al., 2023; Lin et al., 2024) is an
effective approach for reducing outliers. We can smooth outliers in activations by scaling down the
input X and adjusting the weight matrix W correspondingly using a per-channel smoothing factor
λ ∈ Rm. As shown in Figure 4(a)(c), the smoothed input X̂ = X · diag(λ)−1 exhibits reduced
magnitude and fewer outliers, resulting in lower input quantization error. However, in Figure 4(b)(d),
the transformed weight Ŵ = W · diag(λ) has a significant increase in both magnitude and the
presence of outliers, which in turn raises the weight quantization error. Consequently, the overall
error reduction is limited.
Absorb magnified weight outliers with a low-rank branch. Our core insight is to introduce a 16-bit
low-rank branch to further migrate the weight quantization difficulty. Specifically, we decompose
the transformed weight as Ŵ = L1L2 +R, where L1 ∈ Rm×r and L2 ∈ Rr×n are two low-rank
factors of rank r, and R is the residual. Then XW can be approximated as

XW = X̂Ŵ = X̂L1L2 + X̂R ≈ X̂L1L2︸ ︷︷ ︸
16-bit low-rank branch

+Q(X̂)Q(R)︸ ︷︷ ︸
4-bit residual

. (5)

Compared to direct 4-bit quantization, i.e., Q(X̂)Q(W), our method first computes the low-rank
branch X̂L1L2 in 16-bit precision, and then approximates the residual X̂R with 4-bit quantization.
Empirically, r ≪ min(m,n), and is typically set to 16 or 32. As a result, the additional parameters
and computation for the low-rank branch are negligible, contributing only mr+nr

mn to the overall costs.
However, it still requires careful system design to eliminate redundant memory access, which we will
discuss in Section 4.3.

5

Published as a conference paper at ICLR 2025

La
te

nc
y

(u
s)

0

100

200

300

400

500

Naïve Nunchaku (Ours)

Quantize
4-bit Compute
Up Proj.
Down Proj.

1.43 ×

(a) Latency Breakdown on QKV projection

Fused Kernel 1

X̂
4-Bit Compute

 QR, s
RQX̂, s

X̂

Quantize

Down Proj.
 L1

Up Proj.
 L2

X̂L1
X̂L1L2

⊕
s

X̂
s

R
QX̂QR

(b) Nunchaku Kernel Fusion

Fused Kernel 2

Shared OutputShared Input

7

287

150

17

300

22

Figure 6: (a) Naïvely running low-rank branch with rank 32 will introduce 57% latency overhead due to extra
read of 16-bit inputs in Down Projection and extra write of 16-bit outputs in Up Projection. Our Nunchaku
engine optimizes this overhead with kernel fusion. (b) Down Projection and Quantize kernels use the same input,
while Up Projection and 4-Bit Compute kernels share the same output. To reduce data movement overhead, we
fuse the first two and the latter two kernels together.

From Equation 5, the quantization error can be expressed as∥∥∥X̂Ŵ − (X̂L1L2 +Q(X̂)Q(R))
∥∥∥
F
=

∥∥∥X̂R−Q(X̂)Q(R)
∥∥∥
F
= E(X̂,R), (6)

where R = Ŵ −L1L2. According to Proposition 4.1, since X̂ is already free from outliers, we only
need to focus on optimizing the magnitude of R, ∥R∥F and its quantization error, ∥R−Q(R)∥F .
Proposition 4.2 (Quantization error bound). For any tensor R and quantization method described in
Equation 1 as Q(R) = sR ·QR. Assuming the elements of R follow a distribution that satisfies the
following regularity condition: There exists a constant c such that

E [max(|R|)] ≤ c · E [∥R∥F] . (7)

Then, we have

E [∥R−Q(R)∥F] ≤
c
√

size(R)

qmax
· E [∥R∥F] (8)

where size(R) denotes the number of elements in R. Especially if the elements of R follow a normal

distribution, Equation 7 holds for c =
√

log(size(R))π
size(R) .

0 16 32 48 64

100

400

10

 W
 Ŵ
 R

Extremely
High
Singular
Values Low

Singular
Values

Figure 5: First 64 singular values
of W , Ŵ , and R. The first 32
singular values of Ŵ exhibit a
steep drop, while the remaining
values are much more gradual.

See Appendix A.2 for the proof. From this proposition, we obtain
the intuition that the quantization error ∥R−Q(R)∥F is bounded
by the magnitude of the residual ∥R∥F . Thus, our goal is to find the

optimal L1L2 that minimizes ∥R∥F =
∥∥∥Ŵ −L1L2

∥∥∥
F

, which can
be solved by Singular Value Decomposition (SVD) (Eckart & Young,
1936; Mirsky, 1960). Given the SVD of Ŵ = UΣV , the optimal
solution is L1 = UΣ:,:r and L2 = V:r,:. Figure 5 illustrates the
singular value distribution of the original weight W , transformed
weight Ŵ and residual R. The singular values of the original weight
W are highly imbalanced. After smoothing, the singular value
distribution of Ŵ becomes even sharper, with only the first several
values being significantly larger. By removing these dominant values,
the magnitude of the residual R is dramatically reduced, as ∥R∥F =√∑min(m,n)

i=r+1 σ2
i , compared to the original magnitude

∥∥∥Ŵ∥∥∥
F
=

√∑min(m,n)
i=1 σ2

i , where σi is the

i-th singular value of Ŵ . Furthermore, Figure 4(d)(e) show that R exhibits fewer outliers with a
substantially compressed value range compared to Ŵ . In practice, we further reduce quantization
errors by iteratively updating the low-rank branch through decomposing W −Q(R) and adjusting
R accordingly for several iterations, and then picking the result with the smallest error.

4.3 NUNCHAKU: FUSING LOW-RANK AND LOW-BIT BRANCH KERNELS

Although the low-rank branch introduces negligible computation in theory, running it as a separate
branch incurs large latency overhead—approximately 50% of the 4-bit branch latency, as shown in
Figure 6(a). This occurs because, for a small rank r, even though the computational cost decreases

6

Published as a conference paper at ICLR 2025

significantly, the input and output activation sizes remain unchanged, shifting the bottleneck from
computation to memory access. This issue worsens, especially when the activation cannot fit into the
GPU L2 cache. For example, in the diffusion transformer block, the up projection in the low-rank
branch for QKV projection is much slower since its output exceeds the available L2 cache, resulting
in the extra DRAM load and store operations. Fortunately, the down projection L1 in the low-rank
branch shares the same input as the quantization kernel in the low-bit branch, while the up projection
L2 shares the same output as the 4-bit computation kernel, as illustrated in Figure 6(b). By fusing the
down projection with the quantization kernel and the up projection with the 4-bit computation kernel,
the low-rank branch can share the activations with the low-bit branch, eliminating the extra memory
access and halving the number of kernel calls. As a result, our low-rank branch adds only 5∼10%
latency, making it nearly cost-free.

5 EXPERIMENTS

5.1 SETUPS

Models. We benchmark our methods using FLUX.1 (Black-Forest-Labs, 2024), PixArt-Σ (Chen
et al., 2024a), SANA (Xie et al., 2025), Stable Diffusion XL (SDXL) (Podell et al., 2024) and
SDXL-Turbo (Sauer et al., 2024), including both the UNet (Ronneberger et al., 2015; Ho et al., 2020)
and DiT (Peebles & Xie, 2023) backbones. See Appendix B for more details.
Datasets. Following previous works (Li et al., 2023a; Zhao et al., 2024c;b), we randomly sample the
prompts in COCO Captions 2024 (Chen et al., 2015) for calibration. To evaluate the generalization
capability of our method, we sample 5K prompts from the MJHQ-30K (Li et al., 2024a) and the
summarized Densely Captioned Images (sDCI) (Urbanek et al., 2024) for benchmarking. See
Appendix C for more details.
Baselines. We compare SVDQuant against the following post-training quantization (PTQ) methods:

• 4-bit NormalFloat (NF4) is an information-theoretically optimal 4-bit data type for weight-only
quantization (Dettmers et al., 2023), which assumes that weights follow a normal distribution.
We use the community-quantized NF4 FLUX.1 models (Lllyasviel, 2024) as the baselines.

• ViDiT-Q (Zhao et al., 2024b) uses per-token quantization and smoothing (Xiao et al., 2023) to
alleviate the outliers across different batches and tokens and achieves lossless 8-bit quantization
on PixArt-Σ.

• MixDQ (Zhao et al., 2024c) identifies the outliers in the begin-of-sentence token of text embedding
and protects them with 16-bit pre-computation. This method enables up to W4A8 quantization
with negligible performance degradation on SDXL-Turbo.

• TensorRT contains an industry-level PTQ toolkit to quantize the diffusion models to 8 bits. It uses
smoothing and only calibrates activations over a selected timestep range with a percentile scheme.

Metrics. Following previous works (Li et al., 2022; 2024b), we evaluate image quality and image
similarity with respect to the 16-bit models’ results. For image quality assessment, we use Fréchet
Inception Distance (FID, lower is better) to measure the distribution distance between the generated
images and the ground-truth images (Heusel et al., 2017; Parmar et al., 2022). Besides, we employ
Image Reward (higher is better) to approximate the human rating of the generated images (Xu et al.,
2024a). We use LPIPS (lower is better) to measure the perceptual similarity (Zhang et al., 2018) and
Peak Signal Noise Ratio (PSNR, higher is better) to measure the numerical similarity of the images
from the 16-bit models. Please refer to our Appendix E.1 for more metrics (CLIP IQA (Wang et al.,
2023b), CLIP Score (Hessel et al., 2021) and SSIM§).
Implementation details. Please refer to Appendix D fore more details.

5.2 RESULTS

Visual quality results. We report the quantitative results in Table 1 across various models and
precision levels, and show some corresponding 4-bit qualitative comparisons in Figure 7. Among
all models, our 8-bit results can perfectly mirror the 16-bit results, achieving PSNR higher than 21,
beating all other 8-bit baselines. On FLUX.1-dev, our INT8 PSNR even reaches 27 on MJHQ.

§https://en.wikipedia.org/wiki/Structural_similarity_index_measure

7

https://developer.nvidia.com/blog/tensorrt-accelerates-stable-diffusion-nearly-2x-faster-with-8-bit-post-training-quantization/
https://en.wikipedia.org/wiki/Structural_similarity_index_measure

Published as a conference paper at ICLR 2025

Table 1: Quantitative quality comparisons across different models. RTN stands for round-to-nearest. IR means
ImageReward. Our 8-bit results closely match the quality of the 16-bit models. Moreover, our 4-bit results
outperform other 4-bit baselines, effectively preserving the visual quality of 16-bit models.

MJHQ sDCI

Backbone Model Precision Method Quality Similarity Quality Similarity

FID (↓) IR (↑) LPIPS (↓) PSNR(↑) FID (↓) IR (↑) LPIPS (↓) PSNR (↑)

DiT

FLUX.1
-dev

(50 Steps)

BF16 – 20.3 0.953 – – 24.8 1.02 – –

INT W8A8 Ours 20.4 0.948 0.089 27.0 24.7 1.02 0.106 24.9

W4A16 NF4 20.6 0.910 0.272 19.5 24.9 0.986 0.292 18.2
INT W4A4 Ours 19.9 0.935 0.223 21.0 24.2 1.01 0.240 19.7

NVFP W4A4 Ours 20.4 0.937 0.208 21.4 24.7 1.01 0.218 20.2

FLUX.1
-schnell
(4 Steps)

BF16 – 19.2 0.938 – – 20.8 0.932 – –

INT W8A8 Ours 19.2 0.966 0.120 22.9 20.7 0.975 0.133 21.3

W4A16 NF4 18.9 0.943 0.257 18.2 20.7 0.953 0.263 17.1
INT W4A4 Ours 18.3 0.951 0.258 18.3 20.1 0.979 0.260 17.2

NVFP W4A4 Ours 19.0 0.968 0.227 19.0 20.5 0.979 0.226 18.1

PixArt-Σ
(20 Steps)

FP16 – 16.6 0.944 – – 24.8 0.966

INT W8A8 ViDiT-Q 15.7 0.944 0.137 22.5 23.5 0.974 0.163 20.4
INT W8A8 Ours 16.3 0.955 0.109 23.7 24.2 0.969 0.129 21.8

INT W4A8 ViDiT-Q 37.3 0.573 0.611 12.0 40.6 0.600 0.629 11.2
INT W4A4 ViDiT-Q 412 -2.27 0.854 6.44 425 -2.28 0.838 6.70
INT W4A4 Ours 19.2 0.878 0.323 17.6 25.9 0.918 0.352 16.5

NVFP W4A4 Ours 16.6 0.940 0.271 18.5 22.9 0.971 0.298 17.2

BF16 – 20.6 0.952 – – 29.9 0.847 – –

SANA INT W4A4 RTN 20.5 0.894 0.339 15.3 28.6 0.807 0.371 13.8
-1.6B INT W4A4 Ours 19.3 0.935 0.220 17.8 28.1 0.846 0.242 16.2

(20 Steps) NVFP W4A4 RTN 19.7 0.932 0.237 17.3 29.0 0.829 0.265 15.6
NVFP W4A4 Ours 20.0 0.955 0.177 19.0 29.3 0.846 0.196 17.3

UNet

SDXL
-Turbo

(4 Steps)

FP16 – 24.3 0.845 – – 24.7 0.705 – –

INT W8A8 MixDQ 24.1 0.834 0.147 21.7 25.0 0.690 0.157 21.6
INT W8A8 Ours 24.3 0.845 0.100 24.0 24.8 0.701 0.110 23.7

INT W4A8 MixDQ 27.7 0.708 0.402 15.7 25.9 0.610 0.415 15.7
INT W4A4 MixDQ 353 -2.26 0.685 11.0 373 -2.28 0.686 11.3
INT W4A4 Ours 24.6 0.816 0.262 18.1 26.0 0.671 0.272 18.0

NVFP W4A4 Ours 24.4 0.832 0.231 18.9 25.2 0.688 0.238 18.9

SDXL
(30 Steps)

FP16 – 16.6 0.729 – – 22.5 0.573 – –

INT W8A8 TensorRT 20.2 0.591 0.247 22.0 25.4 0.453 0.265 21.7
INT W8A8 Ours 16.6 0.718 0.119 26.4 22.4 0.574 0.129 25.9

INT W4A4 Ours 20.6 0.601 0.288 21.0 26.2 0.477 0.307 20.7
NVFP W4A4 Ours 18.3 0.640 0.250 21.8 23.9 0.502 0.261 21.7

For 4-bit quantization, NVFP4 outperforms INT4, thanks to the native hardware support of smaller
microscaling group size on Blackwell. On FLUX.1, our SVDQuant consistently surpasses the
NF4 W4A16 baseline regarding all metrics. For the dev variant, our method even exceeds the
original BF16 model regarding Image Reward, suggesting stronger human preference. On PixArt-Σ,
while our INT4 method shows slight degradation, our NVFP4 model achieves a comparable
score to the FP16 model. This is likely due to PixArt-Σ’s highly compact model size (600M
parameters), which benefits from a smaller group size. Remarkably, our INT4 and NVFP4 models
significantly outperform ViDiT-Q’s W4A8 results by a large margin across all metrics. Note that
our FP16 PixArt-Σ model differs slightly from ViDiT’s, though both offer the same quality. For
fair comparisons, ViDiT-Q’s similarity results are calculated using their FP16 results.

For UNet-based models, on SDXL-Turbo, our 4-bit models substantially outperform MixDQ W4A8,
and our FID scores are on par with the FP16 models, indicating no quality loss. On SDXL, our
INT4 and NVFP4 results achieve comparable quality to TensorRT’s W8A8 performance, which
represents the 8-bit SoTA. As shown in Figure 14 in the Appendix, our visual quality only shows
minor degradation.
Memory save and speedup. In Figure 8, we report measured model size, memory savings, and
speedup for FLUX.1. Our INT4 and NVFP4 quantization reduce the original transformer size from
22.2 GiB to 6.1 GiB, including a 0.3 GiB overhead due to the low-rank branch, resulting in an
overall 3.6× reduction. Since both weights and activations are quantized, compared to the NF4

8

Published as a conference paper at ICLR 2025

Prompt: Imagine the first crypto token created by AI called AI TOKEN.
Coin, Future, Neon Lighting, 3D rendered, Cool, Stylish,

Prompt: no gravity, weightless, underwater in a dense thick kelp forest, surrealism with elements of
abstraction and Rococo whimsy full length photography , profile of beautiful young woman, long

hair with a long flowing silk and organza dress, underwater surrounded by thick kelp

FLUX.1-dev BF16
Image Reward: 0.953

NF4 W4A16
Image Reward: 0.910

Our INT W4A4
Image Reward: 0.935

Our NVFP W4A4
Image Reward: 0.937

FLUX.1-schnell BF16
Image Reward: 0.968

NF4 W4A16
Image Reward: 0.943

Our INT W4A4
Image Reward: 0.951

Our NVFP W4A4
Image Reward: 0.968

Prompt: A smiling woman planting tomato seedlings in her permaculture garden, sunny day, a
greenhouse in the background, retro modern styling, highly realistic with a cinematic background blur,
Focal point and angle evoking a filmic perspective, Photography, DSLR with a 35mm prime lens at f2.8

Prompt: bohemian maximalist interior design, outdoor patio with a
stunning view of the tropical beach, dappled lighting, rattan swinging chair,

wicker overhead, lush plants and a garden library filled with books.

PixArt- FP16
Image Reward: 0.944

Σ ViDiT-Q INT W4A8
Image Reward: 0.573

Our INT W4A4
Image Reward: 0.878

Our NVFP W4A4
Image Reward: 0.940

Prompt: a 12 year old orphan boy wizard with tattered clothes. South American ancient
clothing. Night sky with falling stars. Hyper realistic, cinematic lighting

Prompt: hummingbird flying near a flower. 4k ultra realistic ray tracing dynamic lighting

SDXL-Turbo FP16
Image Reward: 0.845

MixDQ INT W4A8
Image Reward: 0.708

Our INT W4A4
Image Reward: 0.816

Our NVFP W4A4
Image Reward: 0.832

Prompt: Close up portrait deep underwater ,light, epic, green jungle ,flower white,
fox red, detailed, pretty face, dark background, detailed, photo

Prompt: cyberpunk city sunset drone shot
(c) PixArt-Σ (d) SDXL-Turbo

(a) FLUX.1-dev (b) FLUX.1-schnell

Figure 7: Qualitative visual results on MJHQ. Image Reward is calculated over the entire dataset. On FLUX.1
models, our 4-bit models outperform the NF4 W4A16 baselines, demonstrating superior text alignment and
closer similarity to the 16-bit models. For instance, NF4 misses the swinging chair in the top right example.
On PixArt-Σ and SDXL-Turbo, our 4-bit results demonstrate noticeably better visual quality than ViDiT-Q’s
and MixDQ’s W4A8 results.

0

175

350

525

700

0

500

1000

1500

2000

0

6

12

18

24
BF16 NF4 (W4A16) SVDQuant INT4/NVFP4 (W4A4)

0

7

14

21

28

(b) DiT Inference Memory (GiB) (c) Single Step Latency
on Desktop 4090 (ms)(a) Model Size (GiB)

3.0×
657 660

218

3.5×
9.8 6.9

24.4

5.8 6.1

22.2
3.8× 3.6× 2.5×

4382

1320

433

(d) Single Step Latency
on Laptop 4090 (ms)

3.3×
10.1×

0

125

250

375

500

(c) Single Step Latency
on Desktop 5090 (ms)

BF16 NF4 INT4
/NVFP4 BF16 NF4 INT4

/NVFP4 BF16 NF4 INT4 BF16 NF4 INT4 BF16 NF4 NVFP4

3.1×
484

162

496

Figure 8: SVDQuant reduces the 12B FLUX.1 model size by 3.6× and cuts the 16-bit model’s memory usage
by 3.5×. With Nunchaku, our INT4 model runs 3.0× faster than the NF4 W4A16 baseline on both desktop and
laptop NVIDIA RTX 4090 GPUs. Notably, on the laptop 4090, it achieves a total 10.1× speedup by eliminating
CPU offloading. Our NVFP4 model is also 3.1× faster than both BF16 and NF4 on the RTX 5090 GPU.

weight-only-quantized variant, our inference engine Nunchaku even saves more memory footprint.
It offers a 3.0× speedup on both desktop- and laptop-level NVIDIA RTX 4090 GPUs with INT4
precision and a 3.1× speedup on the RTX 5090 GPU with NVFP4 precision, compared to both NF4
and the original 16-bit models. Notably, while the original BF16 model requires per-layer CPU
offloading on the 16GB laptop 4090, our INT4 model fits entirely in GPU memory, resulting in a
10.1× speedup by avoiding offloading.
Integrate with LoRA. Previous quantization methods require fusing the LoRA branches and
re-quantizing the model when integrating LoRAs. In contrast, our Nunchaku eliminates redundant
memory access, allowing adding a separate LoRA branch. In practice, we can fuse the LoRA branch
into our low-rank branch by slightly increasing the rank, further enhancing efficiency. In Figure 9,
we exhibit some visual examples of applying LoRAs of five different styles (Realism, Ghibsky
Illustration, Anime, Children Sketch, and Yarn Art) to our INT4 FLUX.1-dev model. Our INT4
model successfully adapts to each style while preserving the image quality of the 16-bit version.
For more visual examples, see Appendix E.2. For FLUX.1-schnell, we further support LoRAs from
one-step conditional model pix2pix-turbo (Parmar et al., 2024), enabling additional controls like
sketch. An interactive demo is available here.

9

https://huggingface.co/XLabs-AI/flux-RealismLora
https://huggingface.co/aleksa-codes/flux-ghibsky-illustration
https://huggingface.co/aleksa-codes/flux-ghibsky-illustration
https://huggingface.co/alvdansen/sonny-anime-fixed
https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch
https://huggingface.co/linoyts/yarn_art_Flux_LoRA
https://svdquant.mit.edu/flux1-schnell-sketch/

Published as a conference paper at ICLR 2025

Realism LoRA Ghibsky Illustration LoRA Anime LoRA Children Sketch LoRA Yarn Art LoRA

FLUX.1-dev
BF16

Our INT4

Figure 9: Our 4-bit model seamlessly integrates with off-the-shelf LoRAs without requiring requantization.
When applying LoRAs, it matches the image quality of the original 16-bit FLUX.1-dev. See Appendix F for
the text prompts.

Prompt: beach stock image popular no text prompt trend. pinterest contest winner

Prompt: recipe image, angry crab sallad, in salvador dali style photographed by david lachapelle, eerie,
rennaisance colors, award winning recipe on white background

PixArt- : FP16
Image Reward: 0.931

Σ SVD Only
Image Reward: -2.18

Naïve Quantization
Image Reward: -1.12

Smoothing
Image Reward: 0.508

Ours w/o Smoothing
Image Reward: 0.690

Ours
Image Reward: 0.878

LoRC
Image Reward: -0.965

Figure 10: Ablation study of SVDQuant on PixArt-Σ. The rank of the low-rank branch is 64. Image Reward is
measured over 1K samples from MJHQ. Our results significantly outperform the others, achieving the highest
image quality by a wide margin.

Ablation study. In Figure 10, we present several ablation studies of SVDQuant on PixArt-Σ. First,
both SVD-only and naïve quantization perform poorly in the 4-bit setting, resulting in severe quality
degradation. While applying smoothing to the quantization slightly improves image quality compared
to naïve quantization, the results remain unsatisfactory. LoRC (Yao et al., 2024) introduces a low-rank
branch to compensate for quantization errors, but this approach is suboptimal, as quantization errors
exhibit a well-spread distribution of singular values. Consequently, low-rank compensation fails
to effectively mitigate these errors, as discussed in Section 4.2. In contrast, we first decompose the
weights and quantize only the residual. As demonstrated in Figure 5, the first several singular values
are significantly larger than the rest, allowing us to shift them to the low-rank branch, effectively
reducing weight magnitude. Finally, smoothing consolidates the outliers, enabling the low-rank
branch to absorb outliers from the activations and substantially improving image quality.
Trade-off of increasing rank. Please refer to Appendix E.5 for more details.

6 CONCLUSION

In this work, we introduce a novel 4-bit post-training quantization paradigm, SVDQuant, for diffusion
models. It adopts a low-rank branch to absorb the outliers in both the weights and activations, easing
the process of quantization. Our inference engine Nunchaku further fuses the low-rank and low-bit
branch kernels, reducing memory usage and cutting off redundant data movement overhead. Exten-
sive experiments demonstrate that SVDQuant preserves image quality. Nunchaku further achieves a
3.5× reduction in memory usage over the original 16-bit model and 3.0× speedup over the W4A16 on
an NVIDIA RTX 4090 and 5090 GPUs. This advancement enables the efficient deployment of large-
scale diffusion models on edge devices, unlocking broader potential for interactive AI applications.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We thank NVIDIA for donating the DGX server and Blackwell GPUs. We thank MIT-IBM Watson
AI Lab, MIT and Amazon Science Hub, MIT AI Hardware Program, National Science Foundation,
Sloan foundation, Packard Foundation, Dell, LG, Hyundai, and Samsung for supporting this research.
We thank Paulius Micikevicius for his support and discussion.

REFERENCES

Distilling Diffusion Models into Conditional GANs, 2024. 3

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. NeurIPS, 2024. 4

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Aittala,
Timo Aila, Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image diffusion models with an
ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022. 3

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In CVPR, 2023. 3

Black-Forest-Labs. Flux.1, 2024. URL https://blackforestlabs.ai/. 2, 7, 18

Han Cai, Muyang Li, Qinsheng Zhang, Ming-Yu Liu, and Song Han. Condition-aware neural network
for controlled image generation. In CVPR, 2024. 3

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-σ: Weak-to-strong training of diffusion transformer for
4k text-to-image generation. In ECCV, 2024a. 5, 7, 18

Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, and
Song Han. Deep compression autoencoder for efficient high-resolution diffusion models. ICLR,
2025. 18

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015. 7

Zigeng Chen, Xinyin Ma, Gongfan Fang, Zhenxiong Tan, and Xinchao Wang. Asyncdiff: Parallelizing
diffusion models by asynchronous denoising. arXiv preprint arXiv:2406.06911, 2024b. 3

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In ICML. PMLR, 2023. 18

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. NeurIPS, 2022. 2, 3, 27

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. In NeurIPS, 2023. 4, 7

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936. 6

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In ICML, 2024. 3, 18

fal.ai. Auraflow v0.1, 2024. URL https://blog.fal.ai/auraflow/. 2

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
compression for generative pretrained transformers. ICLR, 2023. 3, 19, 25

11

https://blackforestlabs.ai/
https://blog.fal.ai/auraflow/

Published as a conference paper at ICLR 2025

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. ICLR, 2024. 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016. 18

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate
post-training quantization for diffusion models. NeurIPS, 2023. 3

Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Efficientdm: Efficient quantization-
aware fine-tuning of low-bit diffusion models. In ICLR, 2024. 3, 4

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021. 7, 20

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 2017. 7

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.
2, 3, 4, 7

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In ICLR, 2022. 3, 4

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022. 4

Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. Tfmq-dm: Temporal
feature maintenance quantization for diffusion models. In CVPR, 2024. 3

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang Wang.
From galore to welore: How low-rank weights non-uniformly emerge from low-rank gradients.
arXiv preprint arXiv: 2407.11239, 2024. 4

Sehoon Kim, Coleman Richard Charles Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen,
Michael W. Mahoney, and Kurt Keutzer. SqueezeLLM: Dense-and-sparse quantization. In ICML,
2024. 3

Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024a. 7, 18,
25

Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu, and Song Han. Gan compression:
Efficient architectures for interactive conditional gans. In CVPR, 2020. 3

Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song Han, and Jun-Yan Zhu. Efficient spatially
sparse inference for conditional gans and diffusion models. In NeurIPS, 2022. 3, 7

Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Ming-Yu Liu,
Kai Li, and Song Han. Distrifusion: Distributed parallel inference for high-resolution diffusion
models. In CVPR, 2024b. 3, 7

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In ICCV, 2023a. 3, 7, 27

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within two seconds.
NeurIPS, 2023b. 3

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
LoSparse: Structured compression of large language models based on low-rank and sparse approx-
imation. In ICML, volume 202. PMLR, 2023c. 4

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In ICLR, 2024c. 4

12

Published as a conference paper at ICLR 2025

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. In MLSys, 2024. 2, 3, 5, 27

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han.
Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. In MLSys, 2025. 3,
4, 27

Songhua Liu, Weihao Yu, Zhenxiong Tan, and Xinchao Wang. Linfusion: 1 gpu, 1 minute, 16k
image. arXiv preprint arXiv:2409.02097, 2024a. 3

Wenxuan Liu and Saiqian Zhang. Hq-dit: Efficient diffusion transformer with fp4 hybrid quantization.
arXiv preprint arXiv:2405.19751, 2024. 3

Xuewen Liu, Zhikai Li, Junrui Xiao, and Qingyi Gu. Enhanced distribution alignment for post-training
quantization of diffusion models. arXiv preprint arXiv:2401.04585, 2024b. 3

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant–llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024c. 4

Lllyasviel. [major update] bitsandbytes guidelines and flux · lllyasviel stable-diffusion-
webui-forge · discussion #981, 2024. URL https://github.com/lllyasviel/
stable-diffusion-webui-forge/discussions/981. 7

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. In NeurIPS, 2022. 3

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv: 2310.04378,
2023. 3

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024a. 27

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching. NeurIPS, 2024b. 3

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In CVPR, 2024c. 3

Pascal Massart. Concentration inequalities and model selection: Ecole d’Eté de Probabilités de
Saint-Flour XXXIII-2003. Springer, 2007. 18

Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On
distillation of guided diffusion models. arXiv preprint arXiv:2210.03142, 2022a. 3

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
SDEdit: Guided image synthesis and editing with stochastic differential equations. In ICLR, 2022b.
2

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. NeurIPS, 2024. 4

Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The quarterly journal of
mathematics, 11(1):50–59, 1960. 6

NVIDIA. Nvidia blackwell architecture technical brief, 2024. URL https://resources.
nvidia.com/en-us-blackwell-architecture. 2

NVIDIA Corporation. Block Scaling in cuDNN Frontend API, 2025. URL https:
//docs.nvidia.com/deeplearning/cudnn/frontend/latest/operations/
BlockScaling.html. 19

13

https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/981
https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/981
https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture
https://docs.nvidia.com/deeplearning/cudnn/frontend/latest/operations/BlockScaling.html
https://docs.nvidia.com/deeplearning/cudnn/frontend/latest/operations/BlockScaling.html
https://docs.nvidia.com/deeplearning/cudnn/frontend/latest/operations/BlockScaling.html

Published as a conference paper at ICLR 2025

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in
gan evaluation. In CVPR, 2022. 7

Gaurav Parmar, Taesung Park, Srinivasa Narasimhan, and Jun-Yan Zhu. One-step image translation
with text-to-image models. arXiv preprint arXiv:2403.12036, 2024. 9

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023. 3, 4,
7

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. In ICLR, 2024. 2, 3, 7, 18

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021. 20

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022. 2, 3

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015. 3, 7

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In CVPR,
2023. 2

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
ICLR, 2021. 3

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. In ECCV, 2024. 3, 7, 18

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In CVPR, 2023. 3

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015. 3

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023.
3

Yang Sui, Yanyu Li, Anil Kag, Yerlan Idelbayev, Junli Cao, Ju Hu, Dhritiman Sagar, Bo Yuan, Sergey
Tulyakov, and Jian Ren. Bitsfusion: 1.99 bits weight quantization of diffusion model. In NeurIPS,
2024. 3

Siao Tang, Xin Wang, Hong Chen, Chaoyu Guan, Zewen Wu, Yansong Tang, and Wenwu Zhu.
Post-training quantization with progressive calibration and activation relaxing for text-to-image
diffusion models. In ECCV, 2024. 3

Jack Urbanek, Florian Bordes, Pietro Astolfi, Mary Williamson, Vasu Sharma, and Adriana Romero-
Soriano. A picture is worth more than 77 text tokens: Evaluating clip-style models on dense
captions. In CVPR, 2024. 7, 18

Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. Towards accurate
post-training quantization for diffusion models. In CVPR, 2024a. 3

Haoxuan Wang, Yuzhang Shang, Zhihang Yuan, Junyi Wu, and Yan Yan. Quest: Low-bit diffusion
model quantization via efficient selective finetuning. arXiv preprint arXiv:2402.03666, 2024b. 3

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023a. 27

14

Published as a conference paper at ICLR 2025

Jiannan Wang, Jiarui Fang, Aoyu Li, and PengCheng Yang. Pipefusion: Displaced patch pipeline
parallelism for inference of diffusion transformer models. arXiv preprint arXiv:2405.14430, 2024c.
3

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
of images. In AAAI, 2023b. 7, 20

Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training
quantization for diffusion transformers. In NeurIPS, 2024. 3

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In ICML, 2023. 2, 3,
5, 7, 19, 27

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li,
Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffusion
transformers. ICLR, 2025. 7, 18

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. NeurIPS,
2024a. 7

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. In ICLR, 2024b. 4

Yuewei Yang, Xiaoliang Dai, Jialiang Wang, Peizhao Zhang, and Hongbo Zhang. Efficient quantiza-
tion strategies for latent diffusion models. arXiv preprint arXiv:2312.05431, 2023. 3

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Exploring post-training
quantization in llms from comprehensive study to low rank compensation. In AAAI, 2024. 4, 10

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. In
NeurIPS, 2024a. 3

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In CVPR, 2024b. 3

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint arXiv:
2312.05821, 2023. 4

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, 2023. 2

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In ICLR, 2022. 3

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim: Generalized denoising diffusion implicit
models. In ICLR, 2022. 3

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018. 7

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In ICML, 2024a.
4

Tianchen Zhao, Tongcheng Fang, Enshu Liu, Wan Rui, Widyadewi Soedarmadji, Shiyao Li, Zinan
Lin, Guohao Dai, Shengen Yan, Huazhong Yang, et al. Vidit-q: Efficient and accurate quantization
of diffusion transformers for image and video generation. arXiv preprint arXiv:2406.02540, 2024b.
3, 7

15

Published as a conference paper at ICLR 2025

Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan,
Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion models
with metric-decoupled mixed precision quantization. In ECCV, 2024c. 3, 7

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. MLSys, 2024d. 3, 27

Xingyu Zheng, Haotong Qin, Xudong Ma, Mingyuan Zhang, Haojie Hao, Jiakai Wang, Zixiang Zhao,
Jinyang Guo, and Xianglong Liu. Binarydm: Towards accurate binarization of diffusion model.
arXiv preprint arXiv:2404.05662, 2024. 3

16

Published as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF PROPOSITION 4.1

Proposition 4.1. The quantization error E(X,W) = ∥XW −Q(X)Q(W)∥F in Equation 3 can
be decomposed as follows:

E(X,W) ≤ ∥X∥F ∥W −Q(W)∥F + ∥X −Q(X)∥F (∥W ∥F + ∥W −Q(W)∥F). (9)

Proof.

∥XW −Q(X)Q(W)∥F
= ∥XW −XQ(W) +XQ(W)−Q(X)Q(W)∥F
≤∥X(W −Q(W))∥F + ∥(X −Q(X))Q(W)∥F
≤∥X∥F ∥W −Q(W)∥F + ∥X −Q(X)∥F ∥Q(W)∥F
≤∥X∥F ∥W −Q(W)∥F + ∥X −Q(X)∥F ∥W − (W −Q(W))∥F
≤∥X∥F ∥W −Q(W)∥F + ∥X −Q(X)∥F (∥W ∥F + ∥W −Q(W)∥F).

A.2 PROOF OF PROPOSITION 4.2

Proposition 4.2. For any tensor R and quantization method described in Equation 1 as Q(R) =
sR ·QR. Assuming the elements of R follow a distribution that satisfies the following regularity
condition: There exists a constant c such that

E [max(|R|)] ≤ c · E [∥R∥F] . (10)

Then, we have

E [∥R−Q(R)∥F] ≤
c
√

size(R)

qmax
· E [∥R∥F] (11)

where size(R) denotes the number of elements in R. Especially if the elements of R follow a normal

distribution, Equation 10 holds for c =
√

log(size(R))π
size(R) .

Proof.

∥R−Q(R)∥F
= ∥R− sR ·QR∥F

=

∥∥∥∥sR · R

sR
− sR · round

(
R

sR

)∥∥∥∥
F

=|sR|
∥∥∥∥ R

sR
− round

(
R

sR

)∥∥∥∥
F

.

So,

E [∥R−Q(R)∥F]

≤E [|sR|]
√

size(R)

=

√
size(R)

qmax
· E [max(|R|)]

≤
c
√

size(R)

qmax
· E [∥R∥F]

Especially, if the elements of R follows a normal distribution, we have

E [max(|R|)] ≤ σ
√
2 log (size(R)) (12)

17

Published as a conference paper at ICLR 2025

where σ is the std deviation of the normal distribution. Equation 12 comes from the maximal
inequality of Gaussian variables (Lemma 2.3 in Massart (2007)).

On the other hand,

E [∥R∥F]

=E

√∑
x∈R

x2

≥E

[∑
x∈R |x|√
size(R)

]
(13)

=σ

√
2size(R)

π
, (14)

where Equation 13 comes from Cauchy-Schwartz inequality and Equation 14 comes from the
expectation of half-normal distribution.

Together, we have that for a normal distribution,

E [max(|R|)]

≤σ
√

2 log (size(R))

≤

√
log (size(R))π

size(R)
E [∥R∥F] .

In other words, Equation 10 holds for c =
√

log(size(R))π
size(R) .

B BENCHMARK MODELS

We benchmark our methods using the following six text-to-image models:

• FLUX.1 (Black-Forest-Labs, 2024) is the SoTA open-sourced DiT-based diffusion model. It
consists of 19 joint attention blocks (Esser et al., 2024) and 38 parallel attention blocks (Dehghani
et al., 2023), totaling 12B parameters. We evaluate both the 50-step guidance-distilled (FLUX.1-
dev) and 4-step timestep-distilled (FLUX.1-schnell) variants.

• PixArt-Σ (Chen et al., 2024a) is another DiT-based model. Instead of using joint attention, it stacks
28 attention blocks composed of self-attention, cross-attention, and feed-forward layers, amounting
to 600M parameters. We evaluate it on the default 20-step setting.

• SANA (Xie et al., 2025) is a 1.6B DiT model. It utilizes a 32× compression autoencoder (Chen
et al., 2025) and replaces Softmax attention with linear attention to accelerate image generation.

• Stable Diffusion XL (SDXL) is a widely-used UNet-based model with 2.6B parameters (Podell
et al., 2024). It predicts noise with three resolution scales. The highest-resolution stage is processed
entirely by ResBlocks (He et al., 2016), while the other two stages jointly use ResBlocks and
attention layers. Like PixArt-Σ, SDXL uses cross-attention layers for text conditioning. We evaluate
it in the 30-step setting, along with its 4-step distilled variant, SDXL-Turbo (Sauer et al., 2024).

C BENCHMARK DATASETS

To assess the generalization capability of our method, we adopt two distinct prompt sets with varying
styles for benchmarking:

• MJHQ-30K (Li et al., 2024a) consists of 30K samples from Midjourney with 10 common categories,
3K samples each. We randomly select 5K prompts from this dataset to evaluate model performance
on artistic image generation.

• Densely Captioned Images (DCI) (Urbanek et al., 2024) is a dataset containing ∼8K images with
detailed human-annotated captions, averaging over 1,000 words. For our experiments, we use

18

Published as a conference paper at ICLR 2025

the summarized version (sDCI), where captions are condensed to 77 tokens using large language
models (LLMs) to accommodate diffusion models. Similarly, we randomly sample 5K prompts for
realistic image generation.

D IMPLEMENTATION DETAILS

For the 8-bit setting, we use per-token dynamic activation quantization and per-channel weight
quantization with a low-rank branch of rank 16. For the 4-bit setting, we adopt per-group symmetric
quantization for both activations and weights, along with a low-rank branch of rank 32. INT4
quantization uses a group size of 64 with 16-bit scales. We use NVFP4 for FP4 quantization, which
has native hardware support of group size of 16 with FP8 scales on Blackwell GPUs (NVIDIA
Corporation, 2025). We use GPTQ (Frantar et al., 2023) to quantize the residual weights. For FLUX.1
models, the inputs of linear layers in adaptive normalization are kept in 16 bits (i.e., W4A16). For
other models, key and value projections in the cross-attention are retained at 16 bits since their latency
only covers less than 5% of total runtime.

The smoothing factor λ ∈ Rm is a per-channel vector whose i-th element is computed as λi =
max(|X:,i|)α/max(|Wi,:|)1−α following SmoothQuant (Xiao et al., 2023) Here, X ∈ Rb×m and
W ∈ Rm×n. It is decided offline by searching for the best migration strength α for each layer to
minimize the layer output mean squared error (MSE) after SVD on the calibration dataset.

19

Published as a conference paper at ICLR 2025

E ADDITIONAL RESULTS

E.1 VISUAL QUALITY RESULTS

We report extra quantitative quality results with additional metrics in Table 2. Specifically, CLIP
IQA (Wang et al., 2023b) and CLIP Score (Hessel et al., 2021) assesses the image quality and
text-image alignment with CLIP (Radford et al., 2021), respectively. Structural Similarity Index
Measure (SSIM) is used to measure the luminance, contrast, and structure similarity of images
produced by our 4-bit model against the original 16-bit model. We also visualize more qualitative
comparsions in Figures 11, 12, 13, 14 and 15.

Table 2: Additional quantitative quality comparisons across different models. RTN stands for round-to-nearest.
C.IQA means CLIP IQA, and C.SCR means CLIP Score.

MJHQ sDCI

Backbone Model Precision Method Quality Similarity Quality Similarity

C.IQA (↑) C.SCR (↑) SSIM(↑) C.IQA (↑) C.SCR (↑) SSIM (↑)

DiT

FLUX.1
-dev

(50 Steps)

BF16 – 0.952 26.0 – 0.955 25.4 –

INT W8A8 Ours 0.953 26.0 0.748 0.955 25.4 0.697

W4A16 NF4 0.947 25.8 0.748 0.951 25.4 0.697
INT W4A4 Ours 0.950 25.8 0.797 0.951 25.3 0.751

NVFP W4A4 Ours 0.952 25.8 0.808 0.955 25.4 0.768

FLUX.1
-schnell
(4 Steps)

BF16 – 0.938 26.6 – 0.932 26.2 –

INT W8A8 Ours 0.938 26.6 0.844 0.932 26.2 0.811

W4A16 NF4 0.941 26.6 0.713 0.933 26.2 0.674
INT W4A4 Ours 0.937 26.5 0.720 0.932 26.2 0.681

NVFP W4A4 Ours 0.939 26.6 0.745 0.932 26.1 0.712

PixArt-Σ
(20 Steps)

FP16 – 0.944 26.8 – 0.966 26.1 –

INT W8A8 ViDiT-Q 0.948 26.7 0.815 0.966 26.1 0.756
INT W8A8 Ours 0.947 26.8 0.849 0.967 26.0 0.800

INT W4A8 ViDiT-Q 0.912 25.7 0.356 0.917 25.4 0.295
INT W4A4 ViDiT-Q 0.185 13.3 0.077 0.176 13.3 0.080
INT W4A4 Ours 0.926 26.6 0.655 0.948 26.1 0.577

NVFP W4A4 Ours 0.938 26.7 0.692 0.956 26.1 0.618

BF16 – 0.934 26.8 – 0.958 26.4 –

SANA INT W4A4 RTN 0.915 26.9 0.604 0.943 26.4 0.538
-1.6B INT W4A4 Ours 0.926 26.9 0.710 0.951 26.4 0.649

(20 Steps) NVFP W4A4 RTN 0.929 26.8 0.694 0.953 26.4 0.626
NVFP W4A4 Ours 0.932 26.9 0.755 0.955 26.4 0.701

UNet

SDXL
-Turbo

(4 Steps)

FP16 – 0.926 26.5 – 0.913 26.5 –

INT W8A8 MixDQ 0.922 26.5 0.763 0.907 26.5 0.750
INT W8A8 Ours 0.925 26.5 0.821 0.912 26.5 0.808

INT W4A8 MixDQ 0.893 25.9 0.512 0.895 26.1 0.493
INT W4A4 MixDQ 0.556 13.1 0.289 0.548 11.9 0.296
INT W4A4 Ours 0.915 26.5 0.631 0.894 26.8 0.614
FP W4A4 Ours 0.919 26.5 0.663 0.902 26.6 0.649

SDXL
(30 Steps)

FP16 – 0.907 27.2 – 0.911 26.5 –

INT W8A8 TensorRT 0.905 26.7 0.733 0.901 26.1 0.697
INT W8A8 Ours 0.912 27.0 0.843 0.910 26.3 0.814

INT W4A4 Ours 0.878 26.7 0.717 0.862 26.2 0.672
NVFP W4A4 Ours 0.892 26.8 0.739 0.877 26.4 0.701

20

Published as a conference paper at ICLR 2025

FLUX.1-dev BF16
Image Reward: 0.953

Our INT W8A8
Image Reward: 0.948

NF4 W4A16
Image Reward: 0.910

Our INT W4A4
Image Reward: 0.935

Our NVFP W4A4
Image Reward: 0.937

Prompt: perfect, attractive, beautiful young italian mans face, Clear facial features, EyeLevel Shot, f1.8

Prompt: A scientist analyzing sequential data with a recurrent neural network A research laboratory with computer screens and graphs in the
background Fluorescent lighting 35mm, photorealistic, Canon EOS 5D Mark IV DSLR, f5.6 aperture, 1125 second shutter speed, ISO 100

Prompt: Eiffel tower, landed on the moon, from moon perspective, earth in background, no town

Prompt: photography of word END in neon sign on a googie building by night

Figure 11: Qualitative visual results of FLUX.1-dev on MJHQ.

FLUX.1-schnell BF16
Image Reward: 0.968

Our INT W8A8
Image Reward: 0.966

NF4 W4A16
Image Reward: 0.943

Our INT W4A4
Image Reward: 0.951

Our NVFP W4A4
Image Reward: 0.968

Prompt: Cat in sunglasses relaxes on hammock

Prompt: Ludwig van Beethoven playing modern electronic mulikeyboard Yamaha set, 8k, Shot on DIGITAL CINEMA VRAPTOR XL 8K VV
Cinema Camera, f 11, Shutter Speed 1 800, 8mm lens, raw, super resolution, tone mapping, ray tracing, Megapixels

Prompt: the word FLORIDA spelled out, with each letter having its own beach coastal theme

Prompt: cyberpunk lion with glowing eyes in the jungle hyperrealistic

Figure 12: Qualitative visual results of FLUX.1-schnell on MJHQ.

21

Published as a conference paper at ICLR 2025

PixArt- FP16
Image Reward: 0.944

Σ ViDiT-Q INT W8A8
Image Reward: 0.944

Our INT W8A8
Image Reward: 0.955

ViDiT-Q INT W4A8
Image Reward: 0.573

Our INT W4A4
Image Reward: 0.878

Our NVFP W4A4
Image Reward: 0.940

Prompt: wildlife photography, photograph, high quality, wildlife, f 1.8, soft focus, 8k, national geographic, award winning photograph by nick nichols

Prompt: Beautiful nature photo showing the earth 350 million years ago, sunny day, modern, clean lines, high saturation, color grading, Canon EOS 6D
Mark II, 70mm lens, f 1. 8, amazing and breathtaking amazing, super realistic, super detailed, accent lighting, global illumination, 32k, production quality,
depth of field, professional color grading, ultra detail, soft lighting, rtx lighting, studio lighting, ambient lighting, insane detail, extreme Fine Detail, Fine

Detail, Sharp Focus, Diffuse Backlighting, Realistic Photography by Ishi Hako, Ray Tracing Global Illumination, Optics, Glowing, Shadows, Rough,
Shimmering, Lumen Reflections, Screen Space Reflections, Grating, GB Displacement, ray tracing, 8k, anti aliasing SSAA, SSAO, MSAA, SMAA, CAA,

EQAA, FKAA, TXAA, RTX, CGI, VFX, SFX, shaders, tone mapping, chromatic aberration, incredibly detailed and complex, no pole, orange, pink, yellow

Prompt: lake Powell at sunrise. Dramatic lighting with sun shining over the rocks. Still water. Realistic photograph. Breathtaking landscape. Ar 12

Prompt: 1950s style hamburger restaurant Cartoon with soft and funny contours with 3d with white background

Figure 13: Qualitative visual results of PixArt-Σ on MJHQ.

SDXL
Image Reward: 0.729

TensorRT W8A8
Image Reward: 0.591

Our W8A8
Image Reward: 0.718

Our INT W4A4
Image Reward: 0.601

Our NVFP W4A4
Image Reward: 0.640

Prompt: tasty pancakes epic and realistic photo, isolated on dark background, photography f22 f1.4

Prompt: morgan freeman headshot, hyperrealistic, 4k, colour graded, wearing old shashank redemption hat, looking at camera

Prompt: a portrait of a young lady in the rain, by guy aroch

Prompt: professional photo of a negroni cocktail. Italian atmosphere.

Figure 14: Qualitative visual results of SDXL on MJHQ.

22

Published as a conference paper at ICLR 2025

SDXL-Turbo FP16
Image Reward: 0.845

MixDQ INT W8A8
Image Reward: 0.834

Our INT W8A8
Image Reward: 0.845

MixDQ INT W4A8
Image Reward: 0.708

Our INT W4A4
Image Reward: 0.816

Our NVFP W4A4
Image Reward: 0.832

Prompt: portrait of a miner after hard work in a coal mine, high contrast, a lot of details, good light, a mining shaft in the background,
Canon EOS R5 prime lens, the lighting is a mix of natural light and artificial lighting, creating a dramatic and intense effect.

Prompt: barcelone conference event blockchain summit

Prompt: AI, flaming lion with a human body, warrior, fighting pose, 8k, 10 PIC, a photorealistic
white tiger, emerging from the jungle, stalking its prey in the snow

Prompt: a cat sitting in a movie theatre eating popcorn

Figure 15: Qualitative visual results of SDXL-Turbo on MJHQ.

23

Published as a conference paper at ICLR 2025

E.2 LORA RESULTS

In Figure 16, we showcase more visual results of applying the aforementioned five community-
contributed LoRAs of different styles (Realism, Ghibsky Illustration, Anime, Children Sketch, and
Yarn Art) to our INT4 quantized models.

(a) Realism LoRA

(e) Yarn Art LoRA

(c) Anime LoRA

(d) Children Sketch LoRA

(b) Ghibsky Illustration LoRA

FLUX.1-dev
BF16

Our INT4

FLUX.1-dev
BF16

Our INT4

FLUX.1-dev
BF16

Our INT4

FLUX.1-dev
BF16

Our INT4

FLUX.1-dev
BF16

Our INT4

Figure 16: Additional LoRA results on FLUX.1-dev. When applying LoRAs, our INT4 model matches the
image quality of the original BF16 model. See Appendix F for the detailed used text prompts.

24

https://huggingface.co/XLabs-AI/flux-RealismLora
https://huggingface.co/aleksa-codes/flux-ghibsky-illustration
https://huggingface.co/alvdansen/sonny-anime-fixed
https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch
https://huggingface.co/linoyts/yarn_art_Flux_LoRA

Published as a conference paper at ICLR 2025

E.3 ADDITIONAL ABLATION OF SVDQUANT

Table 3: Quantitative comparisons of different SVDQuant settings on MJHQ. NVFP4 outperforms INT4.
SVDQuant leverages a low-rank branch to ease quantization, significantly enhancing image quality. It can further
apply GPTQ to quantize the weight residual, further improving quality.

Model Precision Low-rank Branch GPTQ Image Reward (↑) LPIPS (↓) PSNR (↑)

BF16 – – 0.953 – –

INT4

✗ ✗ 0.908 0.322 18.5
✗ ✓ 0.933 0.297 19.1
✓ ✗ 0.926 0.256 20.1

FLUX.1-dev ✓ ✓ 0.935 0.223 21.0

NVFP4

✗ ✗ 0.928 0.244 20.3
✗ ✓ 0.936 0.204 21.5
✓ ✗ 0.935 0.223 20.9
✓ ✓ 0.937 0.208 21.4

BF16 – – 0.968 – –

INT4

✗ ✗ 0.962 0.345 16.3
✗ ✓ 0.962 0.317 16.8
✓ ✗ 0.957 0.289 17.6

FLUX.1-schnell ✓ ✓ 0.951 0.258 18.3

NVFP4

✗ ✗ 0.957 0.280 17.5
✗ ✓ 0.956 0.247 18.5
✓ ✗ 0.968 0.247 18.4
✓ ✓ 0.968 0.227 19.0

BF16 – – 0.944 – –

INT4

✗ ✗ -1.226 0.762 9.1
✗ ✓ -0.902 0.763 9.9
✓ ✗ 0.858 0.356 17.0

PixArt-Σ ✓ ✓ 0.878 0.323 17.6

NVFP4

✗ ✗ 0.660 0.517 14.8
✗ ✓ 0.696 0.480 15.6
✓ ✗ 0.945 0.290 18.0
✓ ✓ 0.940 0.271 18.5

BF16 – – 0.952 – –

INT4

✗ ✗ 0.894 0.339 15.3
✗ ✓ 0.881 0.288 16.4
✓ ✗ 0.922 0.234 17.4

SANA-1.6B ✓ ✓ 0.935 0.220 17.8

NVFP4

✗ ✗ 0.932 0.237 17.3
✗ ✓ 0.927 0.202 18.3
✓ ✗ 0.957 0.188 18.7
✓ ✓ 0.955 0.177 19.0

In Table 3, we provide additional quantitative ablation results of SVDQuant on the MJHQ prompt
set (Li et al., 2024a). Across all models, NVFP4 outperforms INT4 due to its native support for smaller
microscaling group sizes on Blackwell. SVDQuant leverages a low-rank branch to absorb outliers,
significantly enhancing image quality in all settings. Additionally, it can incorporate GPTQ (Frantar
et al., 2023) instead of round-to-nearest for weight quantization, further improving quality in most
cases. Notably, combining SVDQuant with NVFP4 precision achieves the best results, reaching a
PSNR of 21.5 on FLUX.1-dev, closely matching the image quality of the original 16-bit model. In
Figure 17, we provide qualitative comparisons across different precision settings.

25

Published as a conference paper at ICLR 2025

PixArt- BF16Σ INT4
LPIPS: 0.762

INT4+SVDQuant
LPIPS: 0.323

NVFP4
LPIPS: 0.517

NVFP4+SVDQuant
LPIPS: 0.271

Prompt: Great Oxygenation Event Create an ultrarealistic, highresolution image that appears as if taken with a modernday camera, capturing the first signs of oxygenproducing cyanobacteria thriving in an ancient ocean.
Incorporate fine details, truetolife colors, and highresolution textures to create a highly realistic representation of this pivotal moment in Earths history

SANA-1.6B BF16 INT4
LPIPS: 0.339

INT4+SVDQuant
LPIPS: 0.220

NVFP4
LPIPS: 0.237

NVFP4+SVDQuant
LPIPS: 0.177

Prompt: artist portrait of beautiful young lady, in the style of 2d game art, unreal engine 5, chuah thean teng, kevin hill, desertwave, penelope rosemont, chinese iconography

FLUX.1-dev BF16 INT4
LPIPS: 0.322

INT4+SVDQuant
LPIPS: 0.223

NVFP4
LPIPS: 0.244

NVFP4+SVDQuant
LPIPS: 0.208

Prompt: Illustration for a fairy tale, Fluff, the Astounding Flea Hairstylist, Brom, Alan Lee, vivid colorful hyperdetailed, hyperrealism,
beautiful, trippy, fantastical, whimsical, ephemeral, fairy tale influenced, breathtaking, magical, filled with a sense of wonder

Prompt: Experience the magic of natures bounty as almonds, macadamia nuts, shea, and coffee beans combine with the power of ionization to bring you the ultimate benefits for your skin.
Picture a lush garden where these ingredients grow in abundance, their unique properties captured in every drop of our luxurious formula. Imagine the transformation as your skin is revitalized and restored to its natural radiance.

Let our artistic innovation transport you to a world where beauty meets science, and where the gifts of the earth provide the ultimate luxury.

Figure 17: Qualitative comparisons of different precisions on MJHQ. NVFP4+SVDQuant yields the highest
image fidelity.

26

Published as a conference paper at ICLR 2025

E.4 LATENCY RESULTS

In Table 4, we compare FLUX latency on a laptop-level 4090 GPU across different precisions.
Compared to INT8, 4-bit quantization delivers a 1.3× speedup. However, without optimization,
SVDQuant incurs an 18% overhead due to the low-rank branch. By eliminating redundant memory
access, Nunchaku achieves latency comparable to naive INT4.

Table 4: Single-step latency comparisons of FLUX on a desktop-level 4090 GPU.

Method BF16 INT8 Naïve INT4 SVDQuant SVDQuant +Nunchaku

Latency (ms) 657 282 212 250 218

E.5 TRADE-OFF OF INCREASING RANK

Figure 18 presents the results of different rank r in SVDQuant on PixArt-Σ. Increasing the rank from
16 to 64 significantly enhances image quality but increases parameter and latency overhead. In our
experiments, we select a rank of 32, which offers a decent quality with minor overhead.

Prompt: award winning photography of a beautiful medic smiling

PixArt- : FP16Σ SVDQuant Rank=16
Image Reward: 0.787

SVDQuant Rank=32
Image Reward: 0.829

SVDQuant Rank=64
Image Reward: 0.859

0%

3%

6%

9%

12%
11.3%

5.6%

2.8%

Rank=16 Rank=32 Rank=64

0.0%

2.5%

5.0%

7.5%

10.0%

8.8%

5.2%

3.3%
M

od
el

 S
iz

e
O

ve
rh

ea
d

La
te

nc
y

O
ve

rh
ea

d

Figure 18: Increasing the rank r of the low-rank branch in SVDQuant can enhance image quality, but it also
leads to higher parameter and latency overhead.

E.6 TRADE-OFF BETWEEN QUALITY AND BITWIDTH

We evaluate LPIPS across different bitwidths for various quantization methods on PixArt-Σ and
FLUX.1-schnell using the MJHQ dataset in Figure 19, with weights and activations sharing the same
bitwidth. Following the convention (Xiao et al., 2023; Lin et al., 2024; 2025; Li et al., 2023a; Zhao
et al., 2024d; Dettmers et al., 2022), for bitwidths above 4, we apply per-channel quantization; for 4
or below, we use per-group quantization (group size 64). SVDQuant consistently outperforms naive
quantization and SmoothQuant. Notably, on PixArt–Σ and FLUX.1-schnell, our 4-bit results match
7-bit and 6-bit naive quantization, respectively.

Our SVDQuant can still generate images in the 3-bit settings on both PixArt-Σ and FLUX.1-schnell,
performing much better than SmoothQuant. Below this precision (e.g., W2A4 or W4A2), SVDQuant
cannot produce images either since 2-bit symmetric quantization is essentially a ternary quantization.
Prior work (Ma et al., 2024a; Wang et al., 2023a) has shown that ternary neural networks require
quantization-aware training even for weight-only quantization to adapt the weights and activations to
the low-bit distribution.

LP
IP

S
(↓

)

0.0

0.2

0.3

0.5

0.7

0.8

1.0

Bitwidth
3 4 5 6 7 8

Naive SmoothQuant SVDQuant

LP
IP

S
(↓

)

0.0

0.1

0.3

0.4

0.5

0.7

0.8

Bitwidth
3 4 5 6 7 8

(a) PixArt- Σ (b) FLUX.1-schnell

Figure 19: LPIPS of different quantization methods on PixArt-Σ and FLUX.1-schnell across different bitwidths.

27

Published as a conference paper at ICLR 2025

F TEXT PROMPTS

Below we provide the text prompts we use in Figure 9 (from left to right).

a man in armor with a beard and a sword
GHIBSKY style, a fisherman casting a line into a peaceful village lake

surrounded by quaint cottages↪→
girl, neck tuft, white hair, sheep horns, blue eyes, nm22 style
sketched style, A squirrel wearing glasses and reading a tiny book under

an oak tree↪→
a panda playing in the snow, yarn art style

The text prompts we use in Figure 16 are (in the rasterizing order):

A male secret agent in a tuxedo, holding a gun, standing in front of a
burning building↪→

A handsome man in a suit, 25 years old, cool, futuristic
A knight in shining armor, standing in front of a castle under siege
A knight fighting a fire-breathing dragon in front of a medieval castle,

flames and smoke↪→
A male wizard with a long white beard casting a lightning spell in the

middle of a storm↪→
A young woman with long flowing hair, standing on a mountain peak at dawn,

overlooking a misty valley↪→

GHIBSKY style, a cat on a windowsill gazing out at a starry night sky and
distant city lights↪→

GHIBSKY style, a quiet garden at twilight, with blooming flowers and the
soft glow of lanterns lighting up the path↪→

GHIBSKY style, a serene mountain lake with crystal-clear water,
surrounded by towering pine trees and rocky cliffs↪→

GHIBSKY style, an enchanted forest at night, with glowing mushrooms and
fireflies lighting up the underbrush↪→

GHIBSKY style, a peaceful beach town with colorful houses lining the
shore and a calm ocean stretching out into the horizon↪→

GHIBSKY style, a cozy living room with a view of a snow-covered forest,
the fireplace crackling and a blanket draped over a comfy chair↪→

a dog wearing a wizard hat, nm22 anime style
a girl looking at the stars, nm22 anime style
a fish swimming in a pond, nm22 style
a giraffe with a long scarf, nm22 style
a bird sitting on a branch, nm22 minimalist style
a girl wearing a flower crown, nm22 style

sketched style, A garden full of colorful butterflies and blooming
flowers with a gentle breeze blowing↪→

sketched style, A beach scene with kids building sandcastles and seagulls
flying overhead↪→

sketched style, A hot air balloon drifting peacefully over a patchwork of
fields and forests below↪→

sketched style, A sunny meadow with a girl in a flowy dress chasing
butterflies↪→

sketched style, A little boy dressed as a pirate, steering a toy ship on
a small stream↪→

sketched style, A small boat floating on a peaceful lake, surrounded by
trees and mountains↪→

a hot air balloon flying over mountains, yarn art style
a cat chasing a butterfly, yarn art style
a squirrel collecting acorns, yarn art style
a wizard casting a spell, yarn art style
a jellyfish floating in the ocean, yarn art style
a sea turtle swimming through a coral reef, yarn art style

28

	Introduction
	Related Work
	Quantization Preliminary
	Method
	Problem Formulation
	SVDQuant: Absorbing Outliers via Low-Rank Branch
	Nunchaku: Fusing Low-Rank and Low-Bit Branch Kernels

	Experiments
	Setups
	Results

	Conclusion
	Proofs
	Proof of Proposition 4.1
	Proof of Proposition 4.2

	Benchmark Models
	Benchmark Datasets
	Implementation Details
	Additional Results
	Visual Quality Results
	LoRA Results
	Additional Ablation of SVDQuant
	Latency Results
	Trade-off of Increasing Rank
	Trade-off between Quality and Bitwidth

	Text Prompts

