
LEAD: Min-Max Optimization from
a Physical Perspective

The development of efficient optimization
methods for games is an
active area of research with a timely impact on adversarial
formulations including GANs. Existing methods for this type of
problem typically
 employ intuitive, carefully hand-designed
mechanisms for controlling the problematic rotational dynamics
commonly encountered during optimization. In this work, we cast
min-max optimization as a physical system. We propose LEAD
(Least-Action Dynamics), an optimizer that uses the principle of
least-action from physics to
 discover an efficient optimizer. We
provide convergence analysis and showcase its superiority in GAN
training.

Warm Up!

Image source.

To begin, let us first take note of a central principle governing the physical world around us, namely the principle of least
action (or more generally stationary action).

where  is the kinetic energy and 

is the potential energy.

The action , typically has the
following form,

A

A = (K(x, , t) −∫ ẋ U(x, , t))dt,ẋ

K U

The principle states that the movement of physical systems, from the falling of a ball to the motion of electrons in an atom,
is guided by an entity called the action ( ). Specifically, the trajectory of motion of such natural systems is such that it
minimizes (or extremizes) . To exemplify this point, let us consider a visual example! Think of Newton throwing an apple
in the air. We know that the apple does not just take any random path to reach the ground,

A

A

Rather the apple follows a specific projectile motion,

Incidentally, as it can be easily checked, the principle of least action applied in this context states that the trajectory of the
apple is given by the solution of the equation,

Acceleration is the first
derivative of the velocity ( ), 

d h

v

/

​ =Fgravity m a,

Player x

Pl
ay

er
 y

Magnetic field coming out of page⊙

M
ag

ne
tic

 F
or

ce

The 2D bilinear game is modeled

as a physical system! Modify the

forces to see how they each affect

the convergence in this game.

Friction Force

https://katherinepaus.wordpress.com/2013/09/24/physics-at-a-glance/


From Physics to Optimization

Games

The mechanics of Games

, and the
second derivative of the
position of the particle( ), 

.

a = dv/dt = v̇

x

a = d x/dt =2 2 ẍ

where  is the (downwards) gravitational force acting on the apple,  is the mass of the apple and  its
acceleration. This equation is commonly known as Newton’s 2nd Law, and can be interpreted as the trajectory of motion
of a physical system under a force F, as outlined by the least action principle.

Fgravity m a

A force is conservative if it can
be expressed as the gradient
of a single function, .−∇f(x)

Now, to bring to light how the dynamics of physical systems such as that of the apple above, can be connect with
machine learning optimization, we note that for conservative forces Newton’s 2nd Law takes the form,

−∇f(x) = m ,ẍ

An Explicit Euler discretization
of  is,

where  is the momentum and
 is the step-size.

−∇f(x) = mẍ

x ​ =k+1 x ​ +k β(x ​−x ​)−η∇ ​L(x ​)k k−1 x k

β

η

where  is the loss function. Although this equation might seem unfamiliar, it is the continuous-time dynamics of a
popular optimization algorithm in machine learning, i.e., gradient descent with momentum.

f(x)

Taking inspiration from this, in the following, we set out to determine a corresponding physical system which can provide
an efficient optimizer in the context of two-player zero-sum games!

Multi-objective or game optimization is a common ML formulation observed in GANs, multi-task learning, and
multiagent settings in RL. In this work, we aim to tackle the following min-max zero-sum game,

​ ​f(x, y),
x

min
y

max

where  is the loss function and player one only controls  and player two only controls . 
It has been observed that gradient descent-ascent performs poorly in game optimization. Specifically, we observe
rotational dynamics around the Equilibrium point of the game, which slows down convergence. A simple example of the
above formulation is the bilinear game where  . The bilinear game has been extensively studied in literature
as it allows us to study game optimization in a simple setup. At the same time, it shares many of the properties of more
complex systems. In this game, gradient descent ascent follows,

f(x, y) x y

f(x, y) = xy

x ​ =k+1 x ​ −k η∇ ​f(x ​, y ​) =x k k x ​ −k ηy ​k

y ​ =k+1 y ​ +k η∇ ​f(x ​, y ​) =y k k y ​ +k ηx ​k

Plot shows the
dynamics in the x-y
plane. Gradient
descent-ascent on a
bilinear game slowly
diverges away from
the Equilibrium 
.

(0, 0)

If we start somewhere around the Equilibrium point of this game (in this case ), the players will slowly diverge away
from the Equilibrium. This problem has also been observed in GAN optimization [1].

(0, 0)

In the next section, we design a physical system that mimics game optimization properties and proposes mitigation based
on the physical system to tackle the rotational dynamics.

In order to model game optimization as a physical system, we need to model the dynamics of a particle in a 2-D plane
that has the following equations of motion,

=ẍ −∇ ​f(x, y)x

​ =ÿ ∇ ​f(x, y)y

The first extension that would naturally come to mind is to model these dynamics similar to gradient descent with
momentum. However, in that case, we need a single potential function ( ) which is simultaneously positive and
negative. Now we know that this is impossible. To understand this in more details, see this excellent blog post on how
two-player games are non-conservative dynamical systems.

f(x, y)

Vortex forceDivergence of the
dynamics of a
particle under the
vortex force in the
bilinear game.

So the question persists, how can we model game dynamics as a physical system? Let's think about the properties of this
system. We know that this system has rotational dynamics and diverges away from the optimum. One similar force in
nature is the vortex force,

m =ẍ F ​ =vortex −∇ ​f(x, y)x

m ​ =ÿ F ​ =vortex ∇ ​f(x, y)y

On discretization, the above dynamics diverge in a bilinear game. This is in line with our observation of divergence of
gradient descent-ascent with positive momentum in the bilinear games. So the vortex force does provide the main
properties of the dynamics of gradient descent-ascent.


Now we can easliy modify the dynamics by introducing new forces to the system. What we need is a counteracting force
to curb the rotations. One of such is the magnetic force,

m  =ẍ F ​ +vortex F ​ =magnetic −∇ ​f(x, y) −x 2q(∇ ​f) ​xy ẏ

http://www.maths.lth.se/na/courses/FMN050/media/material/part14.pdf
https://www.inference.vc/my-notes-on-the-numerics-of-gans/
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m  ​ =ÿ F ​ +vortex F ​ =magnetic ∇ ​f(x, y)2q(∇ ​f)y xy ẋ

Divergence of the
dynamics of a
particle under the
vortex and magnetic
force in the bilinear
game.

where  is the charge of the particle.


The plot on the left shows that the magnetic force has curbed the dynamics towards the inside, but still, it's not enough for
convergence. This is predictable from a physics perspective. The vortex force is known to increase the particle's speed
over time[2], while the magnetic force is known not to cause any change to the speed of the particle. Hence, under the
influence of simply the curl and magnetic forces, our particle will keep increasing in velocity over time, preventing it from
convergence.

q

Convergence of the
dynamics of a
particle under the
vortex, magnetic
and friction forces in
the bilinear game.

The last piece is to add some form of dissipation to decrease the velocity of the particle. So we introduce friction to the
system,

m  =ẍ F ​ +vortex F ​ +magnetic F ​ =friction −∇ ​f(x, y) −x 2q(∇ ​f) ​ −xy ẏ μẋ

m  ​ =ÿ F ​ +vortex F ​ +magnetic F ​ =friction ∇ ​f(x, y) +y 2q(∇ ​f) −xy ẋ μ ​ẏ

where  is the friction coefficient. This time we see that the friction causes the particle to lose speed and converge! You
can play with the interactive plot above to see the effect of the friction and magnetic forces.

μ

In the previous section, we modeled game optimization as a physical system for a bilinear problem. Using the Least
Action Principle and Newton's 2nd law, we derived the particle's equations of motion in continuous time. However, in
machine learning, we need discrete-time algorithms. We can use a combination of explicit and implicit Euler method to
discretize the system with all the forces,

x ​ =k+1 x ​ +k β(x ​ −k x ​) −k−1 η∇ ​f(x ​, y ​) −x k k α∇ ​f(x ​, y ​)(y ​ −xy k k k y ​)k−1

y ​ =k+1 y ​ +k β(y ​ −k y ​) +k−1 η∇ ​f(x ​, y ​) +y k k α∇ ​f(x ​, y ​)(x ​ −xy k k k x ​)k−1

where  is the discretization step and  are hyper-parameters dependent on  and . We
refer to the above update rule as Least Action Dynamics (LEAD).


We theoretically study LEAD on the bilinear game and prove exponential (linear) convergence rate for continuous and
discrete-time dynamics. You can check the details of the Lyapunov and Spectral Analysis in the paper.

δ α = 2qδ,β = 1 − μδ, η = δ2 μ, q δ

A natural next step for us is to validate this method in GANs. It is important to note that although the term  is
second order, we do not need to compute it. Using auto-differentiable tools such as PyTorch and Tensorflow, 

 can be computed directly with the cost of computing two gradients. So computationally, our
method is exactly equivalent to extra-gradient on a large scale.

∇ ​f(x ​, y ​)xy k k

∇ ​f(x ​, y ​)(y ​ −xy k k k y ​)k−1

A sample of
generated images
with LEAD on a
ResNet.

To move to GAN experiments, we took two steps. First, we implemented LEAD on top of ADAM, an adaptive optimizer
commonly used in machine learning. Next, we test our method in a ResNet architecture. Our method obtains a
competitive FID score of 10.49 and an inception score of 8.82. See Table below for comparison with several other
methods,

We compare in terms of both the FID and the inception score. Lower FID (or higher Inception Score), correspond to better
sample quality. We have done other expirements and comparison with other methods that you can check their details in
the paper.

In this work, we leverage tools from physics to propose a novel second-order optimization scheme LEAD, to address the
issue of rotational dynamics in min-max games. Our analysis underlines the advantages of physical approaches in
designing novel optimization algorithms for games as well as for traditional optimization tasks.



It is important to note in this regard that our crafted physical system is a way to model min-max optimization physically.
Alternate schemes to perform such modeling can involve other choices of counter-rotational and dissipative forces which
can be explored in future work.
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