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A.1 Datasets Overview

We have used 11 datasets in our benchmark. Their statistics are summarized in Table 1 and Table 2
in the main paper. Here, we supplement their access methods and licenses in Table 7 with a more
detailed description below. It can be noted that all datasets contain an audio set and a metadata part.
Audio data used are anonymous and the metadata do not contain personally identifiable information
or offensive content.

COVID-19 Sounds [70] . The COVID-19 Sounds dataset consists of 53,449 audio samples (over
552 hours in total) crowd-sourced from 36,116 participants through the COVID-19 Sounds app.
This dataset is comprehensive in terms of demographics and spectrum of health conditions. It also
provides participants’ self-reported COVID-19 testing status with 2,106 samples tested positive. It
consists of three modalities including breathing, cough, and voice recordings. Only breathing and
cough modalities are used in this paper.

This dataset is crowdsourced through the COVID-19 Sounds project, approved by the Ethics Com-
mittee of the Department of Computer Science and Technology at the University of Cambridge.
Informed consent was obtained from all the participants. The dataset is accessible under controlled
access through a Data Transfer Agreement and has been widely shared and used [73, 51].

UK COVID-19 [12]. The UK COVID-19 Vocal Audio Dataset is designed for the training and
evaluation of machine learning models that classify SARS-CoV-2 infection status or associated
respiratory symptoms using vocal audio. The UK Health Security Agency recruited voluntary
participants through the national Test and Trace programme and the REACT-1 survey in England
from March 2021 to March 2022, during dominant transmission of the Alpha and Delta SARS-CoV-2
variants and some Omicron variant sublineages. Audio recordings of volitional coughs, exhalations,
and speech (speech not included in open access version, nor used in this paper) were collected in the
‘Speak up to help beat coronavirus’ digital survey alongside demographic, self-reported symptom and
respiratory condition data, and linked to SARS-CoV-2 test results.

The study has been approved by The National StatisticianâĂŹs Data Ethics Advisory Committee
(reference NSDEC(21)01) and the Cambridge South NHS Research Ethics Committee (reference
21/EE/0036) and Nottingham NHS Research Ethics Committee (reference 21/EM/0067). Participants
reviewed the participant information and confirmed their informed consent to take part.

COUGHVID [48]. The COUGHVID dataset provides over 25,000 crowdsourced cough recordings
representing a wide range of participant ages, genders, geographic locations, and COVID-19 statuses.

All of the data collection and annotation was done in compliance with relevant ethical regulations.
Informed consent was obtained by all participants who uploaded their cough sounds and metadata.

ICBHI [52]. The ICBHI Respiratory Sound Database contains audio samples, collected independently
by two research teams in two different countries, over several years. Ethical approval was obtained
from the ethics committees of the appropriate institutions.

Most of the database consists of audio samples recorded by the School of Health Sciences, University
of Aveiro (ESSUA) research team at the Respiratory Research and Rehabilitation Laboratory (Lab3R),
ESSUA and at Hospital Infante D. Pedro, Aveiro, Portugal. The second research team, from the
Aristotle University of Thessaloniki (AUTH) and the University of Coimbra (UC), acquired respiratory
sounds at the Papanikolaou General Hospital, Thessaloniki and at the General Hospital of Imathia
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Table 7: Dataset availability. *ICBHI and HF Lung datasets coming from multiple sources, please
refer to the text description below. COVID-19 Sounds, SSBPR, MMLung and NoseMic are available
upon request. The custom license is detailed in the DTA (data transfer agreement).

Dataset Source Access license

COVID-19 Sounds[70] UoC https://covid-19-sounds.org/blog/neurips_dataset Custom license
UK COVID-19 [12] IC https://zenodo.org/records/10043978 OGL 3.0
CoughVID[48] EPFL https://zenodo.org/records/4048312 CC BY 4.0
ICBHI[52] * https://bhichallenge.med.auth.gr CC0
HF Lung [31] * https://gitlab.com/techsupportHF/HF_Lung_V1 CC BY 4.0

https://gitlab.com/techsupportHF/HF_Lung_V1_IP CC BY-NC 4.0
Coswara[7] IISc https://github.com/iiscleap/Coswara-Data CC BY 4.0
KAUH[23] KAUH https://data.mendeley.com/datasets/jwyy9np4gv/3 CC BY 4.0
Respiratory@TR[2] ITU https://data.mendeley.com/datasets/p9z4h98s6j/1 CC BY 4.0
SSBPR[71] WHU https://github.com/xiaoli1996/SSBPR CC BY 4.0
MMlung[45] UoS https://github.com/MohammedMosuily/mmlung Custom license
NoseMic[9] UoC https://github.com/evelyn0414/OPERA/tree/main/datasets/nosemic Custom license

Figure 4: Examples of different respiratory audio modalities used.

(Health Unit of Naousa), Greece. The database consists of a total of 5.5 hours of recordings in 920
annotated audio samples from 126 subjects.

HF Lung [31] . HF Lung V2 dataset comprises of HF Lung V1 and HF Lung V1 IP: The lung
sound recordings of HF Lung V1 come from two sources. The first source was a database used in a
datathon in Taiwan Smart Emergency and Critical Care (TSECC), 2020, under the license of Creative
Commons Attribution 4.0 (CC BY 4.0), provided by the Taiwan Society of Emergency and Critical
Care Medicine (TSECCM). Lung sound recordings in the TSECC database were acquired from
261 patients. The second source was sound recordings acquired from 18 residents of a respiratory
care ward (RCW) or a respiratory care center (RCC) in Northern Taiwan between August 2018 and
October 2019. The recordings were approved by the Research Ethics Review Committee of Far
Eastern Memorial Hospital (case number: 107052-F). Written informed consent was obtained from
the 18 patients.

The lung sound recordings of HF Lung V1 IP come from two sources. The Lung sound recordings
from the first source are provided by Taiwan Society of Emergency and Critical Care Medicine
(TSECCM) acquired from 32 patients by using a commercial digital stethoscope Littmann 3200 (3M).
The lung sound recordings of the second source are acquired by from 7 residents of a respiratory
care ward (RCW) or a respiratory care center (RCC) in Northern Taiwan between August 2019 and
December 2019. The recordings were approved by the Research Ethics Review Committee of Far
Eastern Memorial Hospital (case number: 107052-F). Written informed consent was obtained from
the 7 patients or their statutory agents.

Coswara [7]. The Coswara dataset contains respiratory sounds recorded between April 2020
and February 2022 from 2635 individuals (1819 SARS- CoV-2 negative, 674 positive, and 142
recovered subjects). The respiratory sounds contained nine sound categories associated with variants
of breathing, cough and speech. The metadata contains demographic information associated with
age, gender and geographic location, as well as the health information relating to the symptoms,
pre-existing respiratory ailments, comorbidity and SaRS-CoV-2 test status.

The data collection procedure was approved by the Institutional Human Ethics Committee, at the
Indian Institute of Science, Bangalore. The informed consent was obtained from all participants who
uploaded their data records. All the data collected was anonymized and excluded any participant
identity information.

KAUH [23]. The KAUH dataset includes sounds from seven ailments (i.e., asthma, heart failure,
pneumonia, bronchitis, pleural effusion, lung fibrosis, and chronic obstructive pulmonary disease
(COPD) as well as normal breathing sounds. The dataset contains the audio recordings from
the examination of the chest wall at various vantage points using an electronic stethoscope. The
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stethoscope placement on the subject was determined by the specialist physician performing the
diagnosis. Each recording was replicated three times corresponding to various frequency filters that
emphasize certain bodily sounds. The dataset can be used for the development of automated methods
that detect pulmonary diseases from lung sounds or identify the correct type of lung sound.

All study participants (or their parents in the case of underage subjects) provided written informed
consent to be included in the study and allowed their data to be shared. This study was approved by
the institutional review board at King Abdullah University Hospital and Jordan University of Science
and Technology, Jordan (Ref. 91/136/2020). The data collection was carried out under the relevant
guidelines and regulations. The authors have the right to share the data publicly.

Respiratory@TR [2]. Respiratory@TR contains lung sounds recorded from left and right sides of
posterior and anterior chest wall and back using two digital stethoscopes in Antakya State Hospital.
The chest X-rays and the pulmonary function test variables and spirometric curves, the St. George
respiratory questionnaire (SGRQ-C) are collected as multimedia and clinical functional analysis
variables of the patients. The 12 channels of lung sounds are focused on upper lung, middle lung,
lower lung and costophrenic angle areas of posterior and anterior sides of the chest. The recordings
are validated and labeled by two pulmonologists evaluating the collected chest X-ray, PFT and
auscultation sounds of the subjects. Labels fall into 5 COPD severities (COPD0, COPD1, COPD2,
COPD3, COPD4). The dataset was released by Iskenderun Technical University, Turkey. Voluntary
admittance was evaluated on a voluntary basis form with minimal information. The patients aged
38 to 68 are selected from different occupational groups, socio-economic status and genders for an
accomplished analysis of the disorders.

SSBPR [71] . SSBPR is a snore-based sleep body position recognition dataset consisting of 7570
snoring recordings, which comprises six distinct labels for sleep body position: supine, supine but
left lateral head, supine but right lateral head, left-side lying, right-side lying and prone. One of the
labels is only present in a few subjects and thus is excluded from the task following the 5-class setup
in [71].

The data were collected from 20 adult patients who underwent overnight PSG at a local Sleep
Medicine Research Center within the hospital. The study was conducted with the approval of the
local medical ethics committee, and patients provided signed consent for their participation, including
audio and video recordings during sleep. The personal information of the study subjects was collected
and stored anonymously to ensure privacy protection.

MMLung [45] . This data was collected from 40 participants (20 male, 20 female) with an age range
of 18-85 years old. All participants are English speakers from the UK. Among them, 12 were healthy
participants, while the others consisted of seven self-reported COPD patients, seven self-reported
asthma patients, and 14 people with other long-term conditions. Ethics approval for this study was
obtained from the University of Southampton.

Three devices were used to collect the data: Google Pixel 6 Smartphone with an app installed for the
data collection, and an Easy on-PC ultrasonic spirometer by ndd Medical Technologies. The audio
data collection from smartphones was conducted in stereo mode at a sampling rate of 44100 Hz. The
data was saved in the WAV format. The collection took place in a silent room conditions. The process
consisted of collecting data for four audio modalities i.e. cough, vowels, mobile spirometry, and
speech via a series of tasks from each participant in a single session. In this paper, we only include
the deep breath and the vowel sound of ‘o’. Ground truth data were collected using a medical-grade
spirometer by a healthcare professional as per European Respiratory Society (ATS/ERS) clinical
standards. However, it should be noted that with any objective measure that is reliant on individual
effort, there may always be unforeseen errors (effort dependent blows). This data is available upon
request.

NoseMic [9] . NoseMic is a subset of the data collected for a respiratory rate estimation project. The
audio data was collected using microphones attached close to the nose, and the respiratory dynamics
were measured with a Zephyr pressure sensor on the chest. The data was collected in stationary
settings, both before and after the participants exercised. A total number of 21 participants were
involved, while data from some participants were excluded because of the poor sensing quality. Audio
recordings before and after running were included in our benchmark. Each recording was segmented
into 30-second windows with a 15-second overlap. The average respiratory rate of each window was
used as the ground truth.
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Figure 5: Age distribution of the pretraining datasets.
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Figure 6: Gender distribution of the pretraining datasets.

A.1.1 Pretraining Data Demographics

Diversity and representativeness of the training data are important for a generalizable model. We
examine the demographic distribution of the five datasets used for model pretraining. The bar plots in
Figure 5 and Figure 6 illustrate the age and gender distributions across four of these datasets. While
the demographic details of HF Lung are not publicly available, the data includes 35 male and 21
female subjects, with an average age of 66.58 (according to the paper [31]).

Among the five datasets, COVID-19 Sounds and CoughVID were collected globally, while UK
COVID-19 and ICBHI were primarily collected in European countries, and HF Lung was collected
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Dataset Modality #Sample(#P
articipants)

Age Gender Medical conditions

COVID-19 
Sounds

Cough 40866
(22162)

0-20: 1413
20-29: 3991
30-39: 5459
40-49: 4928
50-59: 3486
60-69: 1981
70-79: 672
80-89: 89
90+ : 4

Female:  8146
Male: 13733

High Blood Pressure: 2704, Asthma: 1712, Other long-term 
condition: 1217, Diabetes: 733, Other heart disease: 353, 
COPD/Emphysema: 234, Other lung disease: 228, Previous 
heart attack: 217, Valvular heart disease: 162, Previous 
stroke or Transient ischaemic attack: 144, Cancer: 112, 
Angina: 107, HIV or impaired immune system: 106, Previous 
organ transplant: 35, Pulmonary fibrosis: 23, Cystic 
fibrosis: 20，COVID-19 positive: 534

Breath 36605
(20635)

0-19: 1238
20-29: 3741
30-39: 5070
40-49: 4585
50-59: 3310
60-69: 1848
70-79: 634
80-89: 93
90+: 3

Female:  7322
Male: 13074

High Blood Pressure: 2571, Asthma: 1609, Other long-term 
condition: 1112, Diabetes: 697, Other heart disease: 324, 
Other lung disease: 223, COPD/Emphysema: 216, Previous 
heart attack: 212, Valvular heart disease: 156, Previous 
stroke or Transient ischaemic attack: 141, Cancer: 111, 
Angina: 104, HIV or impaired immune system: 92, Previous 
organ transplant: 22, Pulmonary fibrosis: 20, Cystic 
fibrosis: 19, COVID-19 positive: 532

UK 
COVID-19

Cough 19533
(NA)

18-44:  5134
45-64:  8767
65+:      5632

Female: 11460
Male:  8068

COVID-19 positive: 7240
Asthma: 2184
Other respiratory conditions: 569

Exhalation 20719
(NA)

18-44:  5090
45-64:  9440
65+:      6189

Female: 11902
Male:  8815

COVID-19 positive: 7283
Asthma: 2253
Other respiratory conditions: 601 

CoughVID Cough 7179
(NA)

0-20:    405
20-29: 1128
30-39: 1020
40-49:  728
50-59: 343
60+ : 3555

Female: 1342
Male: 2646

Healthy: 3077
Symptomatic:  631
COVID-19: 325
Other respiratory conditions: 729

ICBHI Lung 
sound

538
(79)

0-10: 20
10-19: 9
20-29: 1
50-59: 5
60-69: 18
70+ : 26

Female:  32
Male: 47

Sample-level statistics: Has crackle: 310, has wheeze: 203
Participant-level statistics: Healthy: 12, COPD: 39, 
Pneumonia: 6, URTI: 10, Bronchiectasis: 6, Bronchiolitis: 3, 
LRTI: 2, Asthma: 1

HF Lung Lung 
sound

10554
(299)

>20,
Mean = 66.58

Female: 21
Male: 35

Sample-level statistics:  Wheeze: 2253, Rhonchi: 944, 
Stridor: 253
Participant-level statistics: Acute exacerbation of chronic 
obstructive pulmonary disease: 2, Acute respiratory 
distress syndrome: 1, Acute respiratory failure: 4, Asthma: 
1, Bronchitis: 1, Chronic respiratory failure: 14, Chronic 
obstructive pulmonary disease: 7, Emphysema: 1, Pleural 
effusion: 1, Pneumoconiosis: 1, Pneumonia: 13, Pulmonary 
embolism: 1

Figure 7: Statistics of demographics and medical conditions for datasets used for pretraining.

in Asian regions. Therefore, our curated data presents a comprehensive geo-distribution, covering
participants from different ethnic backgrounds and speaking various languages.

Figure 7 summarizes in detail all demographics and medical conditions for the five datasets used
for model pre-training. The five datasets used cover a wide range of respiratory medical conditions.
COVID-19 Sounds, UK COVID-19, and CoughVID were collected during the pandemic and include
some participants who tested positive or negative for COVID-19. Some of the participants had other
conditions such as asthma, COPD, pulmonary fibrosis, cancer, etc. The ICBHI and HF Lung datasets
include participants who were either healthy or had various respiratory diseases including asthma,
COPD, URTI, Pneumonia, etc. Recordings feature both healthy individuals and those with symptoms
such as wheeze, crackles, or rhonchi.

By integrating these diverse datasets in OPERA, we achieve a more representative and unbiased
demographic distribution compared to any single data source. This highlights the importance of
uniting varied sources for pretraining a foundational model: not only increasing the number of data
samples but also ensuring a more comprehensive distribution.
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Dataset ID Country Age Gender Others

UK COVID-19 T1 UK 45-64: 1192, 18-44: 774, 
65+: 534

Female: 1467, Male: 
1032

T2 UK 45-64: 1116, 18-44: 827, 
65+: 557

Female: 1441, Male: 
1059

COVID-19 Sounds T3-4 Global 16-19: 218,   20-29: 837,
30-39: 1091, 40-49: 993, 
50-59: 536,   60-69: 261, 
70-79: 105,   80+: 14

Female: 2173, Male: 
1907

CoughVID T5 Global 0-19: 603,     20-29: 1661
30-39: 1486, 40-49: 1109
50-59: 487,   60-69: 174
70-79: 48,     80-89: 2

Female: 1988,
Male: 3944

T6 Global 0-19: 676,     20-29: 1964
30-39: 1809, 40-49: 1300
50-59: 567,   60-69: 199
70-79: 54,     80-89: 4

Female: 2468,
Male: 4795

ICBHI T7 Portugal,
UK, Greece

43.0 ± 32.2 Female: 46,
Male: 79

77 adults, 49 children

Coswara T8 Indian 0-19: 54,      20-29: 321
30-39: 223,  40-49: 109
50-59: 123,  60-69: 74
70-79: 33,    80-89: 11

Female: 335, 
Male: 613

T9 Indian 0-19: 139,    20-29: 987
30-39: 604,  40-49: 319
50-59: 279,  60-69: 111
70-79: 44,    80-89: 13

Female: 759, 
Male: 1737

KAUH T10 Jordan 21 to 90 (50.5 ± 19.4) Female: 69,
Male: 43

Respiratory@TR T11 Turkey 38 to 68 Female:11,
Male: 34

SSBPR T12 China 26 to 57 (Avg = 43.1) Female: 10,
Male: 10

a mean body mass index 
(BMI) of 26.57 kg/m2 

MMlung T13 - 18 UK 18-85 (54.5 ± 21.9) Female: 20,
Male: 20

12 healthy, 7 COPD, 7 
asthma, 14 with other 
conditions

NoseMic T19 UK 22-53 (28.8 ± 1.4) Female: 9,
Male: 10

Figure 8: Statistics of demographics for downstream tasks.

A.1.2 Downstream Task Description

Here we give a detailed description of all 19 tasks formulated in the OPERA benchmark. The
demographic statistics are summarized in Figure 8. The tasks are categorized into three types:

• Binary Classification (Tasks 1-10): Tasks requiring prediction of a binary outcome (positive/neg-
ative, smoker/non-smoker, etc.) based on respiratory audio recordings.

• Multi-Class Classification (Tasks 11, 12): Tasks involving classification of respiratory audio
recordings into one of several predefined categories (5 classes of COPD severity, sleeping position)

• Regression (Tasks 13-19): Tasks aiming to predict continuous values (lung function metrics,
respiratory rate) from respiratory audio data.

Task 1. Each of the audio in UK COVID-19 [12] has a binary label indicating the COVID-19
test result of the participant. This task is to predict whether the test result is positive based on the
exhalation recording, consisting of three successive âĂIJhaâĂİ exhalation sounds.

Task 2. The data source and prediction target is the same as Task 1, while Task 2 is based on the
cough recording consisting of three successive volitional coughs.

Task 3. The audio samples in COVID-19 Sounds [70] have the reported symptoms at the moment of
participation. This task aims at predicting respiratory abnormalities, where the symptomatic group
consists of participants who reported any respiratory symptoms, including dry cough, wet cough,
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fever, sore throat, shortness of breath, runny nose, headache, dizziness, and chest tightness, while
asymptomatic controls are those who reported no symptoms. The audio data consists of 3 to 5 deep
breathing sounds. This task follows the subset and split from [70], with the training set downsampled.

Task 4. The dataset and prediction target is the same as Task 3, but the audio includes three coughs.

Task 5. Each of the audio in CoughVID[48] contains a cough and is associated with labels of
self-reported demographics and COVID-19 status. This task involves predicting the COVID-19 status
based on the cough recording.

Task 6. The dataset and audio modality are the same as Task 5, while the prediction target is gender
as reported in demographics.

Task 7. The ICBHI [52] dataset contains labels of the diagnosis of the subjects. We use the subset of
COPD patients and healthy controls to formulate a binary classification of COPD detection.

Task 8. Each audio in the Coswara [7] dataset contains a binary label of smoker in the metadata.
This task aims to predict the smoker from non-smokers from the cough-shallow audio modality in the
dataset, aligning with the implementation in [6].

Task 9. Each audio in the Coswara [7] dataset contains a label of sex in the metadata. This task
aims to predict this label from the cough-shallow audio modality in the dataset, aligning with the
implementation in [6].

Task 10. The KAUH [23] dataset contains the disease diagnosis labels of the participants. This
task aims to use lung sound audio to distinguish patients with COPD and asthma (obstructive lung
diseases) from healthy controls.

Task 11. The Respiratory@TR [2] dataset associates each audio with a COPD severity label from 0
to 4. This task aims to predict this severity level from lung sounds.

Task 12. The SSBPR [71] dataset associates each snoring audio with a label of the body position:
supine, supine but left lateral head, supine but right lateral head, left-side lying, right-side lying and
prone. The last class is excluded here as it is only present in some of the male participants. Thus this
task aims to predict one of the five body positions from the snoring sounds.

Task 13. Spirometry is a gold standard for diagnosing Long-term respiratory illnesses like COPD
and Asthma. It is a lung health test that requires specialized equipment and trained healthcare experts,
making it expensive and difficult to scale. Moreover, blowing into a spirometer can be quite hard
for people suffering from pulmonary illnesses. To address this problem, researchers aim to develop
audio-based testing methods without requiring the best efforts from patients. MMLung [45] was
collected for this purpose. Task 13 evaluates how accurate the forced vital capacity (FCV) can be
estimated from a deep breath sound.

Task 14. Similar with Task 13 , Task 14 evaluates how accurate the forced expiratory volume in 1
second (FEV1) can be estimated from a deep breath sound.

Task 15. While FEV1 and FVC are very personal, the ratio between them is the proportion of lung
capacity that can be exhaled in the first second. It is expressed as a percentage and is used to diagnose
and determine the severity of obstructive and restrictive lung diseases. Task 15 uses breathing sounds
to estimate this ratio.

Task 16. Task 16 again aims to evaluate an individual’s FVC, similar to Task 13. However, a vowel
sound is used, i.e., the participant speaks out the ‘o’ sound for as long as possible.

Task 17. Task 17 involves the use of ‘o’ vowel sound for FEV1 estimation.

Task 18. This task predicts the ratio between FEV1 and FVC from the collected ‘o’ vowel sounds.

Task 19. Continuous respiratory rate (RR) monitoring is integral to mobile healthcare and fitness
tracking, offering valuable insights into longitudinal health and wellness due to its strong correlations
with both physical and mental health. This task involves the estimation of RR from 30 seconds of
breathing sounds.
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Fig. 1: The model architecture of HTS-AT.

• HTS-AT takes fewer parameters (31M vs. 87M), fewer
GPU memories, and less training time (80 hrs vs. 600 hrs)
than AST’s to achieve the best performance.

• HTS-AT further enables the audio transformer to produce
the localization results of event only with weakly-labeled
data. And it achieves a better performance than the previ-
ous CNN-based model.

2. PROPOSED MODEL

2.1. Hierarchical Transformer with Window Attention

A typical transformer structure consumes lots of GPU mem-
ories and training time, because the length of input tokens
is too long and remains unchanged in all transformer blocks
from beginning to end. As a result, the machine saves the out-
put and its gradient of each block via large GPU memories,
and spends much calculation time maintaining a large global
self-attention matrix. To combat these problems, as depicted
in Figure 1, we propose two key designs: a hierarchical trans-
former structure and a window attention mechanism.

2.1.1. Encode the Audio Spectrogram

In the left of Figure 1, an audio mel-spectrogram is cut into
different patch tokens with a Patch-Embed CNN of kernel
size (P ⇥ P ) and sent into the transformer in order. Dif-
ferent from images, the width and the height of an audio mel-
spectrogram denote different information (i.e. the time and
the frequency bin). And the length of time is usually much
longer than that of frequency bins. Therefore, to better cap-
ture the relationship among frequency bins of the same time
frame, we first split the mel-spectrogram into patch windows
w1, w2, ..., wn and then split the patches inside each window.
The order of tokens follows time!frequency!window as
shown in Figure 1. With this order, patches with different
frequency bins at the same time frame will be organized adja-
cently in the input sequence.

2.1.2. Patch-Merge and Window Attention

In the middle of Figure 1, the patch tokens are sent into sev-
eral groups of transformer-encoder blocks. At the end of each
group, we implement a Patch-Merge layer [17] to reduce the

sequence size. This merge operation is applied by first reshap-
ing the sequence to its original 2D map (T

P ⇥ F
P , D), where D

is the latent state dimension. Then it merges adjacent patches
as ( T

2P ⇥ F
2P , 4D) and finally applies a linear layer to reduce

the latent dimension to ( T
2P ⇥ F

2P , 2D). As illustrated in Fig-
ure 1, the shape of the patch tokens is reduced by 8 times from
(T

P ⇥ F
P , D) to ( T

8P ⇥ F
8P , 8D) after 4 network groups, thus

the GPU memory consumption is reduced exponentially after
each group.

For each transformer block inside the group, we adopt a
window attention mechanism to reduce the calculation. As
shown in different color boxes in the middle right of Figure
1, we first split the patch tokens (in 2D format) into non-
overlapping (M⇥M) attention windows aw1, aw2, ..., awk.
Then we only compute the attention matrix inside each M ⇥
M attention window. As a result, we have k window atten-
tion (WA) matrices instead of a whole global attention (GA)
matrix. The computational complexities of these two mecha-
nisms in one transformer block for f ⇥ t audio patch tokens
with the initial latent dimension D are:

GA: O(ftD2 + (ft)2D) (1)

WA: O(ftD2 + M2ftD) (2)

where the window attention reduces the second complexity
term by ( ft

M2 ) times. For audio patch tokens in a time-
frequency-window order, each window attention module will
calculate the relation in a certain range of continuous fre-
quency bins and time frames. As the network goes deeper,
the Patch-Merge layer will merge adjacent windows, thus
the attention relation is calculated in a larger space. In the
code implementation, we use the swin transformer block with
a shifted window attention [17], a more efficient window
attention mechanism. This also helps us to use the swin
transformer pretrained vision model in the experiment stage.

2.2. Token Semantic Module

The existing AST uses a class-token (CLS) to predict the clas-
sification label, which limits it from further indicating the
start and end times of events as realized in CNN-based mod-
els. In the final layer output, each token contains information
about its corresponding time frames and frequency bins. We
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Figure 9: The hierarchical token-semantic audio transformer architecture, from [10].

A.2 Implementation Details

All of the experiments are implemented in Python 3.10.4, with main supporting libraries: PyTorch,
Librosa, PyTorch Lightning, numpy, with the exact environment detailed in ‘environment.yml’ in the
code repository. All our experiments are conducted using a NVIDIA A100 GPU with 80GB memory.
Our code is accessible from https://github.com/evelyn0414/OPERA.

A.2.1 Pretraining Models and Methods

We pre-train our models on a combination of seven sets of data derived from the first five data
sources in Table 7 (including separate modalities from COVID-19 Sounds and UK COVID-19).
Each set of data is split into batches of equal length to ensure consistent data processing. These
batches maintain both modality and source homogeneity. We then randomly shuffle the batches and
reserve 10% for validation. Due to inherent variations in audio length within individual batches, we
employ random cropping of spectrograms. Crop lengths for each of the seven datasets are detailed
in Table 1, and the crop methods depend on the pretraining methods, which will be elaborated on
below. Two representative SSL approaches are adopted: contrastive learning-based methods and
generative pretraining-based methods, to pretrain three models. The high-level reasoning behind
this is that if an encoder can distinguish the source of audio segments (contrastive) or reconstruct
masked spectrograms (generative), it is expected to encode useful and generalizable acoustic features.
Specifically:

OPERA-CT: OPERA-CT is a contrastive learning-based transformer model. Following [55], we
randomly crop two segments from a spectrogram and regard them as a positive pair. Segments from
different samples within one batch are regarded as negative pairs. As shown in Figure 2(a), an encoder
network (a transformer here) extracts features from these segments, and a projector (a multi-layer
perception) maps them into a low-dimensional representation space, where bilinear similarity is
calculated as,

s(x, x0) = g(f(x))T Wg(f(x0)). (1)

The optimization objective aims to maximize the similarity between positive pairs and minimize it
for negative pairs. The loss function for this instance discrimination objective is a multi-class cross
entropy applied to similarities,

L = � log
exp (s(x, x+))P

x�2X�(x)[{x+} exp (s(x, x�))
, (2)

where x+ is the positive anchor for x and X�(x) refers to negative distractors.

Specifically, the transformer we employ is a hierarchical token-semantic audio transformer [10], which
improves the computing and memory efficiency of the typical vision transformer for spectrograms. A
patch size of 4 ⇥ 4 is used and the output feature dimension is 768. The encoder has 31M trainable
parameters.

OPERA-CE: Similar to OPERA-CT, CE leverages a contrastive pre-training approach. However, it
utilizes a more lightweight and efficient CNN encoder (EfficientNet-B0) [62]. The architecture is
detailed in Table 8. This encoder outputs a feature dimension of 1280 and has approximately 4M
trainable parameters.
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Table 8: The EfficientNet-B0 architecture.

Layer Kernel Size #channels #layers

Input - 32 1
MBConv1 3x3 16 1
MBConv6 3x3 24 2
MBConv6 5ÃŮ5 40 2
MBConv6 3x3 80 3
MBConv6 5x5 112 3
MBConv6 5x5 192 4
MBConv6 3x3 320 1
Conv head & Avg Pooling 1280 1

Figure 10: OPERA-GT architecture.

OPERA-GT: OPERA-GT is a generative pretrained transformer model. It uses a masked auto-
encoder to extract useful features from masked spectrograms, which a decoder then uses to reconstruct
the original spectrograms, as illustrated in Figure 2(b). Following [3], we employ a vision transformer
as the encoder (21M trainable parameters) and a lightweight swin-transformer (12M trainable
parameters) as the decoder. The detailed architecture is shown in Figure 10.

To train this model, spectrograms from each dataset are cropped to equal lengths, as summarized in
Table 1, and then split into patches of 4 ⇥ 4. Considering the varying lengths of different modalities,
our model uses a unique patching order and accommodates any input length (no larger than the
number of positional embeddings), as indicated by the arrows in Figure 10. Each patch is converted
into a patch embedding via a 2-dimensional convolutional layer with a kernel size of 4 ⇥ 4 and a
channel number of 384. We randomly mask 70% of patches per spectrogram and only feed the
embeddings of the visible patches into the encoder. The encoder is a typical vision transformer with
l = 12 blocks and 2 heads in each block. The output feature dimension is 384.

To reconstruct the spectrograms, both the embeddings of the masked patches and the new embeddings
from the encoder are fed into the decoder. The decoder is a typical swin-transformer with both local
and global attention. The output of the decoder is an array resembling a spectrogram. Mean square
error loss is used for optimization, and only the masked pixels are considered in the loss,

LMSE =
1

N

NX

i=1

(yi � ŷi)
2, (3)

where y is the vector only with the masked pixels in the i-th spectrogram.

A.2.2 Benchmark implementation details

Within our benchmark of downstream tasks, we have four baselines to compare with the OPERA
models. Opensmile is chosen as a baseline representing the traditional feature extraction methods.
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Table 9: Number of parameters and feature dimension of all the models.

Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
# Parameters (M) - 62 86 80 31 4 21
Input length (s) - 1 10 5 <32 >1.5 <8.18
Feature Dim. 988 128 768 1024 768 1280 384

VGGish, AudioMAE and CLAP are chosen as baselines for this study since they are open-source
pretrained models representing the cutting edge of deep learning approaches.

Opensmile. OpenSMILE [18] is a powerful tool for extracting features from audio data. It offers
pre-defined feature sets designed to capture various aspects of an audio signal. This established toolkit
serves as a strong baseline for traditional feature extraction. It offers a diverse set of handcrafted
features, providing a foundation for comparison.

VGGish. The VGGish model [30] is a modified VGG model using mel spectrograms as input,
pretrained to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with
30,871 video-level labels.

AudioMAE. AudioMAE [35] leverages self-supervised learning for audio, inspired by image-based
Masked Autoencoders (MAE) [29]. During training, AudioMAE masks a high proportion (70%) of
the spectrogram patches and feeds the remaining unmasked tokens through a transformer encoder,
which then attempts to reconstruct the original spectrogram. This process forces the model to learn
robust features by relying on context and relationships within the spectrogram.

CLAP. The CLAP model is trained under natural language supervision, leveraging text descriptions
to learn about audio concepts. It utilizes two encoders: one for processing audio spectrograms and
another for handling text descriptions. Through a contrastive learning approach, CLAP brings these
audio and text features into a shared space and encourages similarity within the same audio-text pair.

For baselines, both the data pre-processing and feature extraction strictly follow their official imple-
mentation. For our pretrained models, the same audio preprocessing is used as in pretraining. The
required audio input length is also summarized in Table 9.

Our OPERA models can accept audio input of different lengths. Specifically, OPERA-CT has an
interpolation step that transforms all spectrogram inputs to the same size, fitting the hierarchical
structure of the model [10]. Audio longer than the maximum input length of about 32 seconds will
need to be cropped, although this is not relevant to our downstream tasks. OPERA-CT is a CNN
model with a pooling layer, allowing it to always output fixed-length features. However, it requires a
minimum length of 1.5 seconds (the input size must be larger than the kernel size). OPERA-GT, a
transformer model, incorporates a special patching method (see Figure 10) that allows it to accept
varying lengths of audio shorter than its maximum input length of 8.18 seconds. For input audio
exceeding 8 seconds, we segment the audio into short frames with overlaps, feed them into the model,
and use the averaged representation of these frames as the final embedding [35].

Our evaluation employs linear evaluation for all downstream tasks. This technique leverages the
pre-trained model’s weights without modification, preserving their learned features. A new linear
layer, sized according to the feature dimension (see Table 9) and the number of output classes (or 1
dimension for regression) in the specific downstream task, is added on top of the pre-trained model’s
output. This approach offers an efficient way to transfer the knowledge of the pre-trained models
without extensive fine-tuning of the entire model and can be used for tasks with very limited data
size. For classification tasks, a standard cross-entropy loss is used. For regression tasks, an MAE loss
is used. A L2 regularization of 10�5 is employed.
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A.3 Pretraining Results

Pretraining loss. We showcase the training process of our three OPERA models here. Specifically,
Figure 11 exhibits the training loss of different subsets of the data, converging at different speeds
and levels, due to heterogeneity in data quality, data modality, etc. Figure 12 present the evolution
of the loss on the validation set (a set combined a small proportion from all the data resource). It
demonstrates a continued decay until convergence.

(a) OPERA-CT (b) OPERA-CE (c) OPERA-GT

Figure 11: Training loss of the three OPERA models. The OPERA-GT and OPERA-CE use
contrastive instance discrimination loss, while OPERA-GT uses generative mean square error loss.

(a) OPERA-CT (b) OPERA-CE (c) OPERA-GT

Figure 12: Validation loss of the three OPERA models. The OPERA-GT and OPERA-CE use
contrastive instance discrimination loss, while OPERA-GT uses generative mean square error loss.
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Embedding distribution analysis for constructive pretraining. Figure 13 and Figure 14 present
the T-SNE visualization applied to features extracted from the contrastive pretraining models on the
held-out test set of pretraining data. The visualization depicts four random crops of the same audio
sample (the same color) close together in the embedding space. This suggests that the model can
effectively capture the underlying characteristics of the audio data despite variations introduced by
cropping.

(a) COVID-19 Sounds (breath) (b) UK COVID-19 (cough) (c) HF Lung (lung sounds)

Figure 13: T-SNE visualization result of features from OPERA-CT on the held-out validation of
pretraining data. Each dot is an audio segment and the same color represents the same audio recording.
It can be seen that audio segments from the same recording are close to each other while far away
from other recordings in the embedding space.

(a) COVID-19 Sounds (breath) (b) UK COVID-19 (cough) (c) HF Lung (lung sounds)

Figure 14: T-SNE visualization result of features from OPERA-CE on the validation data.
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Spectrogram reconstruction result for generative pretraining. OPERA-GT aims to learn a useful
encoder by extracting features that can be used to reconstruct the entire spectrogram. Figure 12(c)
demonstrates a very small MSE loss on the validation set when the model converges, suggesting
a good reconstruction ability. To show it more straightforward, some examples are visualized in
Figure 15, Figure 16, Figure 17. From the visualization, it is clear that our pretrained encoder can
capture both the local and global distribution of the spectrograms and the decoder can accurately
recover the original information.

(a) Original spectrogram (b) Masked spectrogram (c) Reconstructed spectrogram

Figure 15: Reconstruction result for a breath sound recording (cropped into 8s) from COVID-19
Sounds dataset.

(a) Original spectrogram (b) Masked spectrogram (c) Reconstructed spectrogram

Figure 16: Reconstruction result for a cough sound recording (cropped into 2s) from COUGHVID
dataset.

(a) Original spectrogram (b) Masked spectrogram (c) Reconstructed spectrogram

Figure 17: Reconstruction result for a lung sound recording (cropped into 8s) from ICBHI dataset.
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A.4 Additional Evaluation Results

Table 3 summarized the over mean reciprocal ranks, with the reciprocal ranks of all the 19 tasks
detailed in Figure 18.

(a) Health Condition Inference (b) Lung Function Estimation

Figure 18: Radar plot of reciprocal ranks on two groups of tasks.

A.4.1 Another Metric for Lung Function Estimation Tasks

While AUROC, used for classification, ranges from 0.5 to 1, MAE, used for regression, doesn’t
have a bounded range for comparison. Hence, here we additionally report the relative error for the
estimation measured by MAPE (Mean Absolute Percentage Error) in Table 10. MAPE ranges from 0
to 1, with a lower value indicating better estimations.

Table 10: MAPE on lung function estimation tasks (lower is better). The best model per task is
highlighted. We report mean and standard deviation across subjects.

ID Task Abbr. Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
T13 FVC (Breath) 0.329 ± 0.338 0.298 ± 0.252 0.299 ± 0.245 0.295 ± 0.222 0.304 ± 0.259 0.278 ± 0.261 0.291 ± 0.247 X*
T14 FEV1 (Breath) 0.353 ± 0.469 0.394 ± 0.444 0.392 ± 0.480 0.396 ± 0.435 0.399 ± 0.449 0.381 ± 0.447 0.392 ± 0.466
T15 FEV1/FVC (Breath) 0.178 ± 0.219 0.167 ± 0.165 0.164 ± 0.163 0.174 ± 0.177 0.161 ± 0.152 0.166 ± 0.149 0.162 ± 0.150 X*
T16 FVC (Vowel) 0.277 ± 0.238 0.294 ± 0.246 0.280 ± 0.253 0.292 ± 0.247 0.292 ± 0.233 0.264 ± 0.260 0.293 ± 0.255 X*
T17 FEV1 (Vowel) 0.342 ± 0.363 0.396 ± 0.446 0.417 ± 0.462 0.402 ± 0.409 0.359 ± 0.372 0.398 ± 0.455 0.368 ± 0.440 *
T18 FEV1/FVC (Vowel) 0.175 ± 0.183 0.167 ± 0.164 0.167 ± 0.157 0.176 ± 0.170 0.167 ± 0.153 0.171 ± 0.162 0.167 ± 0.158 X*
T19 Breathing Rate 0.212 ± 0.080 0.205 ± 0.080 0.207 ± 0.086 0.207 ± 0.084 0.207 ± 0.099 0.193 ± 0.065 0.186 ± 0.071 X*
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A.4.2 Fine-tuning Performance

Apart from the standard linear evaluation, we also explore the effect of fine-tuning in improving the
performance, using some of the tasks with a comparatively sufficient number of samples.

For OPERA-CE, due to the small number of parameters that could easily overfit and forget the
pretraining, we freeze two-thirds of the blocks and only fine-tune the first 5 blocks dealing with the
input data (along with the classification head). For all other models and baselines, we fine-tune the
entire model together with the classifier.

In addition to the result for Task 4 detailed in Section 6, the performance of Task 7 and 12 after
fine-tuning are presented in Table 11 and Table 12. It is obvious that the performance can be greatly
improved after fine-tuning, and the two transformer-based OPERA models demonstrate superior
performance.

Table 11: AUROC (higher is better) for linear probing and finetuning on T7 (COPD detection). Best
model highlighted.

Method # Train AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT

Linear 828 0.886 ± 0.017 0.933 ± 0.005 0.855 ± 0.012 0.872 ± 0.011 0.741 ± 0.011
Fine-tune 828 0.984 ± 0.012 0.980 ± 0.007 0.957 ± 0.024 0.808 ± 0.032 0.986 ± 0.006

Table 12: AUROC (higher is better) for linear probing and finetuning on T12 (snoring based body
position recognition). Best model highlighted.

Method # Train AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT

Linear 7468 0.649 ± 0.001 0.702 ± 0.001 0.781 ± 0.000 0.769 ± 0.000 0.742 ± 0.001
Fine-tune 7468 0.981 ± 0.002 0.935 ± 0.004 0.994 ± 0.001 0.981 ± 0.002 0.986 ± 0.003

A.4.3 Cross-domain Zero-shot Performance

Zero-shot capacity is an particularly interesting trait for foundation models, especially LLM-based
models. Though this is uncommon for models trained solely with unlabeled non-textual data, we also
explore cross-domain zero-shot performance following [40]. We train a linear probe on source Task
A and test it on target Task B, using T6 ! T9 and T7 ! T10 as examples, given their similarity (ref.
Table 2). Table below shows that OPERA-CT outperforms the baselines.

Table 13: AUROC (higher is better) for cross domain zero-shot performance. Best model highlighted.

Method Opensmile VGGish AudioMAE CLAP OPERA-CT

T6 ! T9 0.534 ± 0.048 0.537 ± 0.025 0.472 ± 0.003 0.457 ± 0.005 0.600 ± 0.009
T7 ! T10 0.682 ± 0.014 0.588 ± 0.002 0.692 ± 0.003 0.722 ± 0.002 0.823 ± 0.001
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A.4.4 Performance for different model architectures

To investigate whether models trained using OPERA data consistently outperforms models trained
with general audio data, comparison using consistent model architectures is also important. We used
the same ViT from AudioMAE in OPERA-GT. Similarly, for CNNs, we pretrained VGG (same as
VGGish) and CNN14 (as CLAP) using the contrastive objective. While in the main paper we chose
to showcase OPERA-CE for its competitive performance and potential in constrained scenarios, we
include the results here. The better performance of our models suggests the superiority of our curated
respiratory audio data and pretrained models for respiratory health.

Table 14: Average AUROC (higher is better) for the health condition inference tasks.

Model VGG CNN14 ViT

General audio 0.584 0.676 0.627
OPERA data 0.653 0.692 0.674

A.4.5 Performance for a hybrid model

Given that contrastive and generative pretraining objectives bring different strengths and weaknesses,
we also explored training a model that combines both. Using the ViT encoder, we employed a
projection head for contrastive learning and a decoder to reconstruct the spectrogram. Preliminary
results indicate that while this combined objective yields a model with more balanced performance, it
does not consistently outperform the single-objective pretraining approach. We report the performance
in Table 15 and Table 16, which can be compared with Table 4 and Table 5.

Table 15: AUROC (higher is better) of the hybrid model for the health condition inference tasks.

Task ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Hybrid 0.575 0.692 0.622 0.711 0.558 0.730 0.886 0.671 0.759 0.652 0.655 0.737

Table 16: MAE (lower is better) of the hybrid model for the health condition inference tasks.

Task ID T13 T14 T15 T16 T17 T18 T19

Hybrid 0.886 0.797 0.124 0.889 0.805 0.133 2.457
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A.4.6 Significance tests

We conducted significance tests for all tasks and the p values indicating significance is shown in
Table 17. Compared to the baselines, our models show a significant improvement in most cases.
When compared to the best baseline, OPERA-CT performs better (a higher average of AUROC) on 8
tasks, with 5 of these improvements being statistically significant. Our github repo also provides an
easy-to-use significance test function for benchmarking purposes and further use.

Table 17: P-values for significance tests (t-test) for Tasks 1-12. Significant values are highlighted in
yellow (p<0.01). The cases where OPERA models outperform the best baseline are underlined.

Dataset ID Best baseline OPERA-CT OPERA-CE OPERA-GT
UK COVID-19 T1 VGGish 0.0001 0.0002 0.4230

T2 CLAP 0.0000 0.0022 0.0000
COVID-19 Sounds T3 CLAP 0.0075 0.2155 0.9161

T4 CLAP 0.0558 0.0000 0.0011
CoughVID T5 CLAP 0.0003 0.0003 0.0000

T6 CLAP 0.0000 0.0000 0.0000
ICBHI T7 CLAP 0.0000 0.0000 0.0000
Coswara T8 CLAP 0.1586 0.8547 0.0000

T9 Opensmile 0.0000 0.0000 0.0000
KAUH T10 CLAP 0.0183 0.0003 0.9875
Respiratory@TR T11 CLAP 0.7182 0.0439 0.4200
SSBPR T12 Opensmile 0.0027 0.9944 0.0000
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