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APPENDIX

In this supplementary material, we firstly provide more experimental results for ablation studies
in Sec. 1. We present comprehensive contents including additional quantitative comparisons and
convergence analyses. Secondly, we provide more comparisons with recent state-of-the-art (SOTA)
method to validate the superiority of our method in Sec. 2. Thirdly, we employ our Xformer to train
a single model to solve Gaussian grayscale or color image denoising with various noise levels in
Sec. 3. Experimental results further demonstrate that our proposed method achieves better perfor-
mance. Fourthly, we provide additional experimental results of motion deblurring task and provide
more visual results in Sec. 4 and 5 . Lastly, we discuss the limitations and future work. Code and
models are available in the the website https://github.com/gladzhang/xformer.

1 ADDITIONAL ABLATION RESULTS

In this section, we present more comprehensive results to demonstrate the effectiveness of the Bidi-
rectional Connection Unit (BCU). We also provide more comparisons to validate the necessity of
dual branches. Then, we discuss the results of the model with smaller window size. Lastly, we dis-
cuss the comparisons between the new model architecture with alternating blocks and our Xformer.

1.1 IMPACT OF BCU

As introduced in the Ablation Study section of the main paper, we conduct comparative experiments
about whether to use the BCU. Note that training iterations are 100k on Gaussian color image
denoising with noise level σ=50. We provide more comparative results here.

Quantitative Comparisons. Table 1a shows the complete evaluation results on commonly-used
four benchmark datasets, including CBSD68 (Martin et al., 2001), Kodak24 (Franzen, 1999), Mc-
Master (Zhang et al., 2011), and Urban100 (Huang et al., 2015). As we can see, our Xformer with
BCU achieves better performance across all benchmarks. Equipped with BCU, our proposed con-
current network can fuse two styles of deep features and simultaneously capture patch-level and
channel-level information. Therefore, it plays an important role in improving the performance of
our proposed Transformer-based network.

Convergence Analyses. We provide the validation curve comparisons for the corresponding ab-
lation experiments. We show validation curves on all four benchmarks. As shown in Fig. 1, our
Xformer with BCU can achieve obvious performance gains over that without BCU.

1.2 IMPACT OF DIFFERENT BRANCHES

We conduct comparative experiments to investigate the importance of different branches in our net-
work. The details have been introduced in the Ablation Study section of the main paper. The
training iterations are 100k on Gaussian color image denoising with noise level σ=50. We provide
more quantitative comparisons here.

∗Corresponding authors: Yulun Zhang, yulun100@gmail.com; Linghe Kong, linghe.kong@sjtu.edu.cn.
†The work was mainly done when Yulun Zhang was at ETH Zürich.
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w/o BCU w/ BCUMethod PSNR SSIM PSNR SSIM

CBSD68 28.55 0.8094 28.57 0.8108
Kodak24 29.76 0.8190 29.79 0.8203
McMaster 30.17 0.8479 30.22 0.8487
Urban100 29.82 0.8842 29.94 0.8865

(a) Ablation study about the BCU.

CBSD68 Kodak24 McMaster Urban100Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

single STB-branch 28.52 0.8103 29.74 0.8201 30.14 0.8478 29.84 0.8853
single CTB-branch 28.53 0.8099 29.74 0.8189 30.14 0.8477 29.68 0.8829

two-branch w/o BCU 28.55 0.8094 29.76 0.8190 30.17 0.8479 29.82 0.8842
two-branch w/ BCU 28.57 0.8108 29.79 0.8203 30.22 0.8487 29.94 0.8865

(b) Ablation study about using different branches.
Table 1: Ablation experiments. For ablation, we train models on Gaussian color image denoising task with
σ=50 for 100k iterations and test on four benchmark datasets. We report the PSNR (dB) and SSIM scores.

Quantitative Comparisons. Table 1b shows the complete evaluation results on four benchmark
datasets, which are CBSD68 (Martin et al., 2001), Kodak24 (Franzen, 1999), McMaster (Zhang
et al., 2011), and Urban100 (Huang et al., 2015). The PSNR and SSIM scores are reported. As we
can see, the model using two branches with BCU achieves the best performance across all bench-
marks. It achieves the obvious performance improvement over the model using the single STB-based
branch or CTB-based branch. Besides, we find that the model using dual branches without BCU has
the limited performance. Although the dual branches enable the network to capture two levels of in-
formation, the direct connection of these two branches by concatenating has limited ability to utilize
the information. Equipped with BCU, the performance is greatly enhanced. Therefore, the effective
fusion of patch-level information from STB and channel-level information from CTB is very impor-
tant for achieving state-of-the-art results. In conclusion, the joint designs of dual branches and the
BCU bring promising performance improvement for our method.

1.3 IMPACT OF WINDOW SIZE

We use the window-based self-attention block in the spatial-wise branch to capture the patch-level
information. Therefore, the size of window affects the performance of the proposed model. For
further comparisons, we also provide the results of Xformer with smaller window size in STB. The
new model variant named Xformer-SW only changes the window size to 8. We train the model on
the task of the 15-level gaussian color image denoising. We provide the comparisons with recent
state-of-the-art methods, which are SwinIR (Liang et al., 2021), Uformer (Wang et al., 2022) and
Restormer (Zamir et al., 2022). Since the Uformer has not provided the results of 15-level color
denoising in their paper, we train the basic version of Uformer by ourselves. We use the officially
provided model settings and keep the training conditions the same with Restormer and Xformer.
The detailed results are shown in Tab. 2.

Quantitative Comparisons. Table 2 shows the evaluation results on four benchmark datasets for
15-level gaussian color denoisng. The PSNR scores are reported. As we can see, our method
Xformer-SW still achieves the best performance. Besides, the model parameters and FLOPs of our
model are acceptable as shown in the table. In conclusion, it is validated that our proposed model
with smaller window size still has promising performance on image denoising tasks.

1.4 COMPARISONS WITH ALTERNATING STRATEGY

Since the joint usage of STB and CTB is important, we also try another model architecture with
alternating STB and CTB in a complete U-shaped network. We compare this model architecture with
our proposed Xformer. To make a fair comparison, we keep the specific settings in STB or CTB the
same. Besides, the layers number in corresponding stages of the network are the same. We name the
new model architecture as AlternateNet. We train this model under the same settings with Xformer
on the task of 15-level color image denoising. For ablation, we provide the evaluation results of these
two different models with 200k training iterations on four commonly-used benchmark datasets. The
detailed results are shown in Tab. 4.

Quantitative Comparisons. As shown in Tab. 4, our Xformer achieves better results on all bench-
mark datasets. It shows that the alternating usage of STB and CTB has suboptimal performance.
It is because that the direct alternating connection of these two blocks fails to effectively fuse the
patch-level and channel-level information. In contrast, our proposed concurrent network Xformer is
able to achieve promising performance since it has powerful ability to utilize the fused information.

2



Published as a conference paper at ICLR 2024

Method Params (M) FLOPs (G) CBSD68 Kodak24 McMaster Urban100

SwinIR (Liang et al., 2021) 11.50 201.2 34.42 35.34 35.61 35.13
Uformer* (Wang et al., 2022) 50.88 21.7 34.41 35.32 35.55 35.06
Restormer (Zamir et al., 2022) 26.11 38.7 34.40 35.35* 35.61 35.13

Xformer-SW 25.15 38.8 34.42 35.37 35.65 35.22

Table 2: We train our model while setting the window size to 8. Parameters and FLOPs are also
reported. We calculate FLOPs while setting the input size to 3×128×128. The best results are
bolded. * denotes results obtained by testing with officially provided pre-trained models. * means
that we train the Uformer by ourselves under the same settings.
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Figure 1: Convergence analyses on four benchmark datasets. All the validating curves are ob-
tained by sampling every 10k training iterations. Comparisons are based on the ablation study about
whether to use BCU. Training task is Gaussian color image denoising with noise level σ=50. We
train these two models under the same training settings for 100k iterations.

2 ADDITIONAL COMPARISONS WITH SOTA

In this section, we provide detailed comparisons with recent state-of-the-art method Restormer (Za-
mir et al., 2022). We train the model of Restormer based on the officially provided training settings
and code. In order to make fair comparisons, we also train our proposed model under the same
training settings. In detail, the training is based on Gaussian color image denoising with noise level
σ=15. Total training iterations are 300k and the progressive training strategy is used. The detailed
comparisons are introduced as follows.

Convergence Analyses. We provide the validation curve comparisons for the trained two mod-
els. We show validation curves on all four benchmarks, which are CBSD68 (Martin et al., 2001),
Kodak24 (Franzen, 1999), and Urban100 (Huang et al., 2015). As shown in Fig. 2, our Xformer
can achieve significant performance improvement over Restormer across all testing datasets. Ex-
perimental results validate that our proposed Xformer is becoming a new promising Transformer-
based image denoising network. Thanks to the fusion of channel-level and patch-level information,
our proposed method can exploit stronger global information modeling ability in two branches and
achieve state-of-the-art performance.

3 ONE MODEL FOR VARIOUS NOISE LEVELS

We conduct new experiments on Gaussian grayscale and color image denoising about using one
model to solve different levels of noise. In detail, we employ the proposed Xformer to train two
new models while solving the synthetic noise removal tasks with various noise levels. Specifically,
we train a single model to handle different noise levels, including 15, 25, and 50. As introduced in
the main paper, we do not change any parameters settings of Xformer. During training process, the
input noise levels are randomly determined between 0 and 50. Therefore, the trained models enjoy
robustness to handle various noise levels. We present the comparative results as follows. Note that
the evaluation results are based on the commonly-used benchmarks, including Set12 (Zhang et al.,
2017a), BSD68 (Martin et al., 2001), Kodak24 (Franzen, 1999), McMaster (Zhang et al., 2011), and
Urban100 (Huang et al., 2015).

Quantitative Comparisons. We compare our Xformer to recent leading methods, including
DRUNet (Zhang et al., 2021) and Restormer (Zamir et al., 2022). Note that DRUNet asks the
inputs to include the noise level map while our model only needs the degraded images as inputs.
As Restormer also trained a single model to solve various noise levels and achieved SOTA results,
we mainly compare our method to it. As shown in Tab. 3, our proposed Xformer obtains the best
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Figure 2: Convergence analyses on four benchmark datasets. All the validating curves are obtained
by sampling every 40k training iterations. Comparisons are based on Restormer and our proposed
Xformer. Training task is Gaussian color image denoising with noise level σ=15. All the training
settings are the same. We train these two models for 300k iterations.

Set12 BSD68 Urban100Method
σ =15 σ =25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

DRUNet 33.25 30.94 27.90 31.91 29.48 26.59 33.44 31.11 27.96
Restormer 33.35 31.04 28.01 31.95 29.51 26.62 33.67 31.39 28.33

Xformer (ours) 33.45 31.15 28.09 31.97 29.54 26.64 33.97 31.75 28.72

(a) Gray image denoising comparisons.

CBSD68 Kodak24 McMaster Urban100Method
σ =15 σ =25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

DRUNet 34.30 31.69 28.51 35.31 32.89 29.86 35.40 33.14 30.08 34.81 32.60 29.61
Restormer 34.39 31.78 28.59 35.32* 32.91* 29.86* 35.55 33.31 30.29 35.06 32.91 30.02

Xformer (ours) 34.43 31.82 28.63 35.40 32.99 29.93 35.67 33.43 30.37 35.29 33.19 30.35

(b) PSNR (dB) comparisons on color image denoising.

Table 3: Quantitative comparisons for learning a single model to solve various noise levels.
PSNR scores are reported in (a) and (b). The best results are bolded. * denotes results obtained
by testing with officially provided pre-trained models.

performance across three noise levels on all provided benchmarks. It is informed that we use the
officially provided models of Restormer to evaluate results on Kodak24. For both grayscale and
color image denoising, our method can achieve promising performance. Compared to Restormer,
our method has obvious performance gains, e.g., +0.39 dB on Gaussian grayscale image denoising
with noise level σ=50. It is worth mentioning that our Xformer has the comparable model param-
eters and computational cost with Restormer. In conclusion, experimental results validate that our
proposed method enjoys the superiority and robustness to solve the synthetic noise removal tasks
with various noise levels. Therefore, our Xformer is also good at handling a wide range of noise
levels via a single model.

4 ADDITIONAL IMAGE RESTORATION TASK

To further demonstrate the effectiveness of our proposed method, we train our model to solve another
image restoration task. We train our Xformer on the task of motion deblurring. We keep the same
training settings with the state-of–art method Restormer (Zamir et al., 2022). The specific settings
of Xformer are not changed. We evaluate the model on the commonly-used datasets, which are
Gopro (Nah et al., 2017), HIDE (Shen et al., 2019), and the real-world datasets (RealBlur-R (Rim
et al., 2020) and RealBlur-J (Rim et al., 2020)). The detailed results are shown in Tab. 5.

Quantitative Comparisons. We compare our method to recent representative vision Transformer
method Restormer. As shown in Tab. 5, our proposed method Xformer can achieve comparable
performance with Restormer. Although our proposed method does not focus on the task of motion
deblurring, it still has promising performance. It is because that our Xformer has strong ability to
model global information in the Transformer network.

5 ADDITIONAL VISUAL RESULTS

In this section, we provide more visual comparisons on Gaussian color and grayscale image denois-
ing tasks. We compare our approach to recent state-of-the-art methods. We show the visual results
in Figures 3 and 4. Besides, we also analyze some failure cases of Xformer in Figure 5. The detailed
comparisons are as follows.

Visual Comparisons. We show the visual results of color image denoising in Fig. 3. The compared
methods include BM3D (Dabov et al., 2007), IRCNN (Zhang et al., 2017b), DnCNN (Zhang et al.,
2017a), RNAN (Zhang et al., 2019), RDN (Zhang et al., 2020), SwinIR (Liang et al., 2021), and
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Method Params (M) FLOPs (G) CBSD68 Kodak24 McMaster Urban100

AlternateNet 22.38 42.0 34.40 35.31 35.55 35.08
Xformer 25.23 42.2 34.42 35.36 35.64 35.23

Table 4: PSNR (dB) comparisons on 15-level Gaussian color image denoising. We compare the
model AlternateNet with alternating STB and CTB to our Xformer. We calculate FLOPs while
setting the input size to 3×128×128.

Gopro HIDE RealBlur-R RealBlur-JMethod PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer* 32.92 0.9611 31.22 0.9423 36.19 0.9572 28.96 0.8786
Xformer 33.06 0.9624 31.19 0.9424 36.19 0.9574 29.02 0.8829

Table 5: PSNR (dB)/SSIM comparisons on motion deblurring task. We compare our method
Xformer to recent representative method Restormer. * means that we test Restormer with the offi-
cially provided pre-trained model.

Restormer (Zamir et al., 2022). As we can see, our proposed Xformer can remove heavy noise
and restore the high-frequency components. While, most of previous denoising methods suffer
from blurring artifacts and missing details. Taking “img 085” and “img 087” as example, all the
compared methods have difficulty in recovering parts of lines and textures while our Xformer can
restore more details. Besides, we show the visual comparisons on gray image denoising in Fig. 4.
We can find that our proposed method can achieve the best performance to recover clean and crisp
images. Taking “img 031” and “img 057” as example, previous state-of-the-art methods fail to
recover the obvious lines while our Xformer can do this. In conclusion, our proposed hybrid X-
shaped Transformer-based network Xformer is good at solving image denoising tasks. Better visual
results could be obtained by using our method. Besides, we provide some failure cases of Xformer
in Figure 5. As we can see, Xformer fails to recover good details. As the provided low-quality
images suffer from severe blurring, it is difficult for Xformer to restore perfect details.

6 LIMITATIONS AND FUTURE WORK

In this work, we propose an X-shaped vision Transformer named Xformer for image denoising. We
exploit the joint usage of spatial-wise self-attention and channel-wise self-attention mechanisms.
Our proposed dual branches enable the network to capture patch-level and channel-level informa-
tion respectively. Furthermore, the proposed BCU module brings the enhanced information fusion
so that our method can achieve promising performance. In practice, we have not explored the further
improvement about the modifications of specific self-attention modules. While the corresponding
improvement is not specific to Xformer, it could be a common issue for existing Transformer-based
networks, e.g., enlarging the global receptive field of window-based self-attention or introducing
more contextual information to cross-covariance self-attention. Therefore, we will try these improv-
ing strategies in future work. Besides, the BCU module is important in our proposed method, which
is simple but effective. We will also try more information fusion mechanisms in the future.
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Figure 3: Visual comparisons with challenging examples on color image denoising (σ=50).
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Figure 4: Visual comparisons with challenging examples on gray image denoising (σ=50).

Urban100: img 086

HQ Noisy (σ=50) BM3D IRCNN DnCNN

RNAN RDN SwinIR Restormer Xformer (ours)
Figure 5: Some failure cases of Xformer on gary image denoising (σ=50).
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