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Appendices

A PROOF FOR LOWER BOUNDS (THEOREM 2)

We construct here an easy instance of the episodic inventory control problem (as in Section 6), for
which the regret of any algorithm must be at least ⌦(

p
HT ).

Proof. Suppose for any time h in an episode, the demand distribution is h+100 units w.p. 0.5+ 1p
K

,
and h+200 units w.p. 0.5� 1p

K
. Note that this is not a constant gap, because K = ⇥(T ). Suppose

the unit costs for holding, backlogging, and lost-sales penalty are all the same. We generously allow
the algorithm to have the correct prior that the best base stock level is one of these two actions,
and the other actions are worse than these two actions. Then for each time step h, our problem of
estimating the Q-values degenerates to the stochastic full-feedback online bandit problem.

It is a well-known result that in this case, each stage h will incur at least a ⌦(

p
K) regret across

the K episodes. In particularly, at any time step of any episode, the probability of any algorithm
choosing the wrong action is lower-bounded by 1

12

: see Corollary 2.10 in Slivkins (2019). Then at
each time step, the algorithm incur a ⌦(

1

12

p
K
) expected regret. This regret at stage h across the K

episodes sum up to ⌦(

p
K) expected regret. Since there are H time steps with demand independent

from each other, we have that the regret of this example is lower bounded by ⌦(H
p
K) = ⌦(

p
HT )

regret. Note that even though we assume the algorithm receives full information feedback at each
time step, Corollary 2.10 in Slivkins (2019) still applies by scaling the time horizon by a factor of
2, which does not affect the regret bound. Then we put back the ⇥(M ·max(|oh|, |bh|)) factor (or
⇥(M ·max(|oh|, |ph|)) factor) because in the Preliminaries we scaled the unit costs down by ⇥(M)

to have the reward for each time period bounded by 1.

B MISSING PROOFS FOR HQL

Proof. (Lemma 3) We prove number (4) by induction. For the base case t = 1, we have
Pt

i=1

↵i
tp
i
=

↵1

1

= 1 so the statement holds. For t � 2, by the relationship ↵i
t = (1�↵t)↵

i
t�1

for i = 1, . . . , t�1

we have
tX

i=1

↵i
tp
i
=

↵tp
t
+ (1� ↵t)

t�1X

i=1

↵i
t�1p
i

(7)

Assuming the inductive hypothesis holds, on the one hand,

↵tp
t
+ (1� ↵t)

t�1X

i=1

↵i
t�1p
i
� ↵tp

t
+

1� ↵tp
t� 1

� ↵tp
t
+

1� ↵tp
t

=

1p
t

(8)

where the first inequality holds by the inductive hypothesis. On the other hand,

↵tp
t
+ (1� ↵t)

t�1X

i=1

↵i
t�1p
i
 ↵tp

t
+

(1 + 1/H) (1� ↵t)p
t� 1

=

H + 1p
t(H + t)

+

(1 + 1/H)

p
t� 1

H + t

 H + 1p
t(H + t)

+

(1 + 1/H)

p
t

H + t
 (1 + 1/H)p

t

(9)

where the first inequality holds by the inductive hypothesis.

This is a tighter bound than the bound in Jin et al. (2018). For rest of the lemma, see Lemma 4.1 in
Jin et al. (2018).

The following proof for shortfall decomposition is adapted from Benjamin Van Roy’s reinforcement
learning notes for the class MS 338 at Stanford University.
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Proof. (Lemma 4) For any policy ⇡, let ykh denote the action the policy ⇡k takes at stage h of
episode k. Let Rh denote the expected reward of ykh.

E⇡

⇥
Q⇤ �xk

h, y
k
h

�⇤
= E⇡ [Zh+1

]

where Zh+1

=

⇢
Rh +maxy Q

⇤ �xk
h+1

, y
�

if h < H
Rh if h = H

Therefore,

V ⇤
1

� V ⇡k
1

= E⇡

h
max

a2A
Q⇤

(xk
1

, a)�
HX

h=1

Rh

i

= E⇡

h
max

a2A
Q⇤ �xk

1

, a
��

HX

h=1

�
Rh � Zh+1

+Q⇤ �xk
h, y

k
h

�� i

= E⇡

h HX

h=1

�
max

a2A
Q⇤

(xk
h, a)�Q⇤

(xh, y
k
h)
�i

Proof. (Lemma 5) From the Bellman optimality equation (3), and the fact that
Pk�1

i=0

↵i
k�1

= 1,
we have

Q⇤
h(y) = ↵0

k�1

Q⇤
h(y) +

k�1X

i=1

↵i
k�1

h
Ex0,⌧ i

h(y)⇠P(·|x,y)[r̃
⇤
⌧ i
h(x,y)

(y) + V ⇤
⌧ i
h(x,y)

(x0
⌧ i
h(y)

)]

i

Subtracting Equation 5 from this equation, and adding some of the middle terms that cancel with
themselves gives us Lemma 5.

Proof. (Lemma 6) Since we assume that given a fixed value Dh, the next state xh+1

(yh) is increas-
ing in yh, and ah(xh) is increasing in xh for the lower one-sided-feedback problem, we conclude
that the (deterministic given Dh) dynamics are monotone with respect to any simulation starting
point xh. Since the algorithm chooses at least the maximal action in Ak

h at all times, this implies it
can observe the simulated trajectory started from any xh 2 Ak

h for any k, h 2 [K]⇥ [H].

Let F i
h be the �-field generated by all the random variables until episode i, stage h. Then for any ⌧ 2

[K],
⇣
V ⇤
⌧ i
h(x,y)

(xi
⌧ i
h(x,y)

) + r̃⇤
⌧ i
h(x,y)

� Er̃⇤,x0,⌧ i
h(x,y)⇠P(·|x,y)

h
r̃⇤
⌧ i
h(x,y)

+ V ⇤
⌧ i
h(x,y)

(x0
⌧ i
h(x,y)

)

i⌘⌧
i=1

is a

martingale difference sequence w.r.t. the filtration
�F i

h

 
i�0

. Then by Azuma-Hoeffding Theorem,
we have that with probability at least 1� (1/AT )9:
�����
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 cH
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�
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�
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r
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for any constant c � 2

p
2.

(10)
By union bound, we have with probability at least 1� (1/AT )8 that for any x, h, k, y 2 Ak

h,
�����

k�1X
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⇣
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 c

r
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Then Lemma 6 follows immediately this equation and Lemma 5.
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Proof. (Upper Bound on �h’s) We set dh = (�h)·
�
1 +

1

H

�h and observe that the recurrence implies

dh = dh+1

+H + 2

p
2

p
H3◆ (11)

Then from this recursion we see dh  H2

+ 2

p
2H5◆ for all h. Since dh, �h differ by a constant

factor
�
1 +

1

H

�h, we have �h =

H2
+2

p
2H5◆

(

1+

1
H )

h  4

p
H5◆.

Proof. (Lemma 7) We prove by backward induction. Note that all of our statements below hold
with high probability. In particular, we will use Azuma-Hoeffding no more than AT times in the
below, with each use holding with probability at least 1/(AT )9. Under the assumption that each use
of Azuma-Hoeffding holds we will obtain the statement of the Lemma. Our proof goes by induction;
for the base case �H+1

= 0 satisfies the Inequality 7 (actually equality here) with probability 1 based
on Bellman equations.

Now suppose inequality 7 is true for any k 2 [K], x 2 S , for any h0
= ⌧kh (x, a) that has a 2 Ak

h:

max

y2Ak

⌧k
h
(x,a)

���(Qk
⌧k
h (x,a) �Q⇤

⌧k
h (x,a))(y)

��� 
�⌧k

h (x,a)p
k � 1

, 8a 2 Ak
h, w.h.p.

Now we induct on the previous stage h0
= h. By Lemma 6, with probability at least 1� 1/(AT )8

max

y2Ak
h

���(Qk
h �Q⇤

h)(y)
���  max

a2Ak
h

⇢
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k�1

H

+

k�1X
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↵i
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⇣
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�
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k � 1

�

Since based on our inductive hypothesis,we have
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h

h ⇣
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 max

y2Ai

⌧i
h
(x,a)
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then
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We can bound ↵0

k�1

by 1p
k

, and bound
Pk�1

i=1

↵i
k�1

· �
⌧i
h
(x,a)p
i

by 1+1/Hp
k�1

�⌧ i
h(x,a)

using Lemma 3:
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y2Ak
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h �Q⇤

h)(y)
���  1p

k
H +

1 + 1/Hp
k � 1

�⌧ i
h(x,a)

+ c

r
H3◆

k
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k � 1

H +

1 + 1/Hp
k � 1

�h+1

+ c

r
H3◆

k � 1

=

�hp
k � 1

(13)

where the second inequality is because ⌧ ih(x, a) � h+1 and �h’s is a decreasing sequence. The last
equality is true based on the recursive definition of �h.

Proof. (Lemma 8) Recall for any (x, h, k), yk⇤h = argmaxy2Ak
h
Qk

h(y) in HQL. Suppose y⇤h 62 Ak
h,

then Qk
h(y

⇤
h) < Qk

h(y
k⇤
h )� 8

p
H5◆p
k�1

= Qk
h(x, y

k⇤
h )� 2�hp

k�1

. Then we need either Qk
h(y

⇤
h) < Q⇤

h(y
⇤
h)�

�hp
k�1

or Qk
h(y

k⇤
h ) > Q⇤

h(y
k⇤
h ) +

�hp
k�1

. Thus by Lemma 7, Prob(y⇤h 62 Ak
h(x)) 1

(AT )

5 .
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Proof. (Lemma 9) Lemma 7 says for any y 2 Ak
h, our estimated Qk

h(y) differs from the optimal
value Q⇤

h(y) by at most �hp
k�1

with high probability at least 1 � 1

(AT )

5 . Therefore, the optimal
Q-value of the optimal policy’s action Q⇤

(y⇤h) is at most �hp
k�1

more than the estimated Q-value of
our estimated best arm Qk

h(y
k⇤
h ), with high probability at least 1� 1

(AT )

5 . Any action we take in Ak
h

has an estimated Q-value no more than 8

p
H5◆p
k�1

=

2�hp
k�1

lower than Qk
h(y

k⇤
h ) base on our algorithm.

Therefore, the optimal Q-value of the optimal policy’s action Q⇤
(y⇤h) is at most 3�hp

k�1

more than the
estimated Q-value of any action y 2 Ak

h(x), with high probability at least 1� 1

(AT )

5 . Then again, by
Lemma 7, we know that the optimal Q-value of the optimal policy’s action Q⇤

(y⇤h) is at most 4�hp
k�1

more than the optimal Q-value of any action in Ak
h, with high probability at least 1� 2

(AT )

5 .

Proof. (Lemma 10) From Lemma 8, we know that with with probability at least 1 � 1

(AT )

5 , the
optimal action is in the running set, which is inaccessible. Then recall the assumptions that the value
functions are concave and that the feasible action set at any time is an interval of the form A\ [a,1)

for some a dependent on the state. So if we cannot play in the running set, then the running set, and
hence w.h.p. the true optimal action, is contained in (�1, a). By concavity, this implies that the
closest feasible action to the running set is optimal in this case w.p. at least 1� 1

(AT )

5 .

C MISSING PROOFS FOR INVENTORY CONTROL

We gave a more detailed description of the backlogged model and the lost-sales model of the episodic
stochastic inventory control problems.

Lemma 11. For any h 2 [H], the optimal V -value function V ⇤
h (x) is concave in x, and the optimal

Q-value function Q⇤
h(y) is concave in y. This is true for the lost sales and the backlogged models.

Proof. (Lemma 11) We prove this by backward induction. The base case is Q⇤
H(x, y) and

V ⇤
H(x). Since Q⇤

H(y) is just the expectation of a one time reward for the last period, we know
that it is Q⇤

H(x, y) = rH(x, y,DH) = �[oH(y � DH)

+

+ pH min(y,DH)]. This function
is obviously concave in y. Note that the Q-values are not affected by x for the inventory con-
trol problems. Since V ⇤

H(x) = maxy�x Q
⇤
H(x, y), the graph of V ⇤

H(x) is constant on the left
side of x = argmaxy Q

⇤
H(x, y), and then goes down with a slope of oH on the right side of

x = argmaxy Q
⇤
H(x, y). So V ⇤

H(x) is obviously also concave.

Now suppose Q⇤
h+1

(x, y) and V ⇤
h+1

(x) are concave. It remains to show concavity of Q⇤
h(x, y) and

V ⇤
h (x).

We know Q⇤
h(x, y) = E[V ⇤

h+1

(y � Dh) + rh(x, y,Dh)]. We know rh(x, y,Dh) is concave in y
for the same reason that Q⇤

H(x, y) is concave. We know that V ⇤
h+1

(x) is concave in x from our
induction hypothesis, which means V ⇤

h+1

(y �Dh) is concave in y for any value of Dh. Therefore,
E[V ⇤

h+1

(y�Dh)+ rh] is also concave, being a weighted average of concave functions. So we know
Q⇤

h(x, y) is also concave in y. Then again V ⇤
h (x) = maxy�x Q

⇤
h(x, y) is concave for the same

reason why V ⇤
H(x) is concave.

Proof. (Assumption of 0 Purchasing Costs) We want to show that for the episodic lost-sales (and
similarly for the backlogged) model, we can amortize the unit purchasing costs ch into unit holding
costs oh and unit lost-sales penalty ph, so that without loss of generality we can assume 0 purchasing
costs.

8h � 2, yh�xh = yh�Dh+Dh�xh = (yh�Dh)
+�(Dh�yh)++Dh�(yt�1

�Dt�1

)

+ (14)
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Let ch denote the unit purchasing cost, then the total sum of costs starting from stage 2 is
HX

h=2

⇣
ch(yh � xh) + oh(yh �Dh)

+

+ ph(Dh � yh)
+

⌘

=

HX

h=2

⇣
chDh � ch(yh�1

�Dh�1

)

+

+ (oh + ch)(yh �Dh)
+

+ (ph � ch)(Dh � yh)
+

⌘

And the cost of stage 1 is equal to o
1

(y
1

�D
1

)

+

+p
1

(D
1

�y
1

)

+

+ c
1

�
(y

1

�D
1

)

+� (D
1

�y
1

)

+

+

D
1

� x
1

�
.

Let cH+1

� 0 denote the salvage price at which we sell the remaining inventory (yH �DH)

+ at the
end of each episode. Then the total sum of costs from stage 1 to H is
HX

h=2

⇣
chDh � ch(yh�1

�Dh�1

)

+

+ (oh + ch)(yh �Dh)
+

+ (ph � ch)(Dh � yh)
+

⌘

+ c
1

(y
1

�D
1

)

+ � c
1

(D
1

� y
1

)

+

+ c
1

D
1

� c
1

x
1

+ o
1

(y
1

�D
1

)

+

+ p
1

(D
1

� y
1

)

+ � cH+1

(yH �DH)

+

=

HX

h=2

⇣
chDh � ch(yh�1

�Dh�1

)

+

+ (oh + ch)(yh �Dh)
+

+ (ph � ch)(Dh � yh)
+

⌘

+ c
1

(y
1

�D
1

)

+ � c
1

(D
1

� y
1

)

+

+ c
1

D
1

� c
1

x
1

+ o
1

(y
1

�D
1

)

+

+ p
1

(D
1

� y
1

)

+ � cH+1

(yH �DH)

+

=

HX

h=1

chDh +

HX

h=1

⇣
(oh + ch � ch+1

)(yh �Dh)
+

+ (ph � ch)(Dh � yh)
+

⌘
� c

1

x
1

Since
PH

h=1

chDh and �c
1

x
1

are fixed costs independent of our action, we can take them out of
our consideration. Then we can effectively consider the cost of each stage h is just o0h(yh�Dh)

+

+

p0h(Dh � yh)
+, where o0h = oh + ch � ch+1

is the adjusted holding cost, and p0h = ph � ch is the
adjusted lost-sales penalty.

D COMPARISON WITH EXISTING Q-LEARNING ALGORITHMS

For Jin et al. (2018), suppose we discretize the state and action space optimally with step-size ✏
1

to
apply Jin et al. (2018) to the backlogged/lost-sales episodic inventory control problem with contin-
uous action and state space. Then the Regretgap we get is ✏

1

T . Applying the results of Jin et al.

(2018), their RegretMDP is O(

p
H3SAT ◆) = O(

q
1

✏1
· 1

✏1
T ◆). To minimize Regrettotal, we bal-

ance the RegretMDP and Regretgap by setting
q

1

✏1
· 1

✏1
T = ✏

1

T , which gives ✏
1

=

1

T 1/4 , giving

us an optimized regret bound of O(T
3
4

p
H3

log T ).

For Dong et al. (2019), suppose we discretize the state and action space optimally with step-
size ✏

2

to apply Dong et al. (2019) to the backlogged/lost-sales episodic inventory control prob-
lem. We also optimize aggregation using the special property of these inventory control prob-
lems that the Q-values only depend on the action not the state, so we aggregate all the state-
action pairs (x

1

, y), (x
2

, y) into one aggregated state-action pair. This 0-error aggregation helps
reduce the aggregated state-action space. Then the optimized regret bound in Dong et al. (2019) is
O(

q
H4

1

✏T log T + ✏T ). We minimize Regrettotal by balancing the two terms and take ✏ = 1

T 1/3 ,

obtaining an optimized regret bound of O(T
2
3

p
H4

log T ).

E MISSING PROOFS FOR FQL

For the proof for FQL, we adopt similar notations and flow of the proof in Jin et al. (2018) (but
adapted to our full-feedback setting) to facilitate quick comprehension for readers who are familiar
with Jin et al. (2018).
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Like Jin et al. (2018), we use [PhVh+1

] (x, y) := Ex0⇠P(·|x,y)Vh+1

(x0
). Then the Bellman optimal-

ity equation becomes Q⇤
h(x, y) =

�
rh + PhV

⇤
h+1

�
(x, y).

Similar to Equation 4 but without “skipping”, FQL updates the Q values in the following way for
any (x, y) 2 A at any time step:

Qk+1

h (x, y) (1� ↵k)Q
k
h(x, y) + ↵k[r

k+1

h (x, y) + V k
h+1

(xh+1

)] (15)

Then by the definition of weights ↵k
t , we have

Qk
h(x, y) = ↵0

k�1

H +

k�1X

j=1

↵j
k�1

h
rjh(x, y) + V j

h+1

⇣
xj
h+1

⌘i
(16)

The following two lemmas are variations of Lemma 5 and Lemma 6.
Lemma 12. For any (x, y, h, k) 2 S ⇥A⇥ [H]⇥ [K], we have
�
Qk

h �Q⇤
h

�
(x, y) = ↵0

k�1

(H �Q⇤
h(x, y))

+

k�1X

i=1

↵i
k�1

h�
V i
h+1

� V ⇤
h+1

� �
xi
h+1

�
+ rih � E[rih] +

h⇣
ˆPi
h � Ph

⌘
V ⇤
h+1

i
(x, y)

i

Proof. From the Bellman optimality equation Q⇤
h(x, y) = E[rh(x, y)]+PhV

⇤
h+1

(x, y), our notationh
ˆPi
hVh+1

i
(x, y) := Vh+1

�
xi
h+1

�
, and the fact that

Pk�1

i=0

↵i
k�1

= 1, we have

Q⇤
h(x, y) = ↵0

k�1

Q⇤
h(x, y) +

k�1X

i=1

↵i
k�1

h
E[rih(x, y)] +

⇣
Ph � ˆPi

h

⌘
V ⇤
h+1

(x, y) + V ⇤
h+1

�
xi
h+1

�i

Subtracting Equation 16 from this equation gives us Lemma 12.

Lemma 13. For any p 2 (0, 1), with probability at least 1�p, for any (x, y, h, k) 2 S⇥A⇥ [H]⇥
[K], let ◆ = log(SAT/p), we have for some absolute constant c:

0  �Qk
h �Q⇤

h

�
(x, y)  ↵0

k�1

H +

k�1X

i=1

↵i
k�1

�
V i
h+1

� V ⇤
h+1

� �
xi
h+1

�
+ c

r
H3◆

k � 1

(17)

Proof. For any i 2 [k], recall that episode i is the episode where the state-action pair (x, y) was
updated at stage h for the ith time. Let F i

h be the �-field generated by all the random variables

until episode i, stage h. Then for any ⌧ 2 [K],
⇣
[(

ˆPi
h � Ph)V

⇤
h+1

](x, y) + rih � E[rih]
⌘⌧
i=1

is a

martingale difference sequence w.r.t. the filtration
�F i

h

 
i�0

. Then by Azuma-Hoeffding Theorem,
we have that with probability at least 1� p/SAT :

�����

k�1X

i=1

↵i
k ·
h⇣

ˆPi
h � Ph

⌘
V ⇤
h+1

i
(x, y) + rih � E[rih]

����� 
cH

2

vuut
k�1X

i=1

�
↵i
k�1

�
2 · ◆  c

r
H3◆

k � 1

(18)

for some constant c.

Now we union bound over states, actions and times, we see that with probability at least 1 � p, we
have �����

k�1X

i=1

↵i
k=1

h⇣
ˆPki

h � Ph

⌘
V ⇤
h+1

i
(x, y) + rih � E[rih]

�����  c

r
H3◆

k � 1

(19)

Then the right-hand side of Lemma 13 follows from Lemma 12 and Inequality 19. The left-hand
side also follows from Lemma 12 and Inequality 19 using induction on h = H,H � 1, . . . , 1.
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Proof. (Theorem ??) Define �

k
h :=

�
V k
h � V ⇡k

h

� �
xk
h

�
and �k

h :=

�
V k
h � V ⇤

h

� �
xk
h

�
.

By Lemma 18, with 1 � p probability, Qk
h � Q⇤

h and thus V k
h � V ⇤

h . Thus the total regret can be
upper bounded:

Regret(K) =

KX

k=1

⇣
V ⇤
1

� V ⇡k
1

⌘
(xk

1

) 
KX

k=1

�
V k
1

� V ⇡k
1

�
(xk

1

) =

KX

k=1

�

k
1

The main idea of the rest of the proof is to upper bound
PK

k=1

�

k
h by the next step

PK
k=1

�

k
h+1

,
which gives a recursive formula to obtain the total regret. Let ykh denote the base stock levels taken
at stage h of episode k, which means ykh = argmaxQk

h(y
0
).

�

k
h =

�
V k
h � V ⇡k

h

�
(xk

h)

(1)

 �Qk
h �Q⇡k

h

�
(xk

h, y
k
h)

=

�
Qk

h �Q⇤
h

�
(xk

h, y
k
h) + (Q⇤

h �Q⇡k

h ) (xk
h, y

k
h)

(2)

↵0

k�1

H +

k�1X

i=1

↵i
k�1

�i
h+1

+ c

r
H3◆

k � 1

+

⇥
Ph

�
V ⇤
h+1

� V ⇡k

h+1

�⇤
(xk

h, y
k
h)

=↵0

k�1

H +

k�1X

i=1

↵i
k�1

�i
h+1

+ c

r
H3◆

k � 1

+

h⇣
Ph � ˆPk

h

⌘ �
V ⇤
h+1

� V ⇡k

h+1

�i
(xk

h, y
k
h)

+ (V ⇤
h+1

� V ⇡k

h+1

)(xk
h+1

)

(3)

=↵0

k�1

H +

k�1X

i=1

↵i
k�1

�i
h+1

+ c

r
H3◆

k � 1

� �k
h+1

+�

k
h+1

+ ⇠kh+1

(20)

where ⇠kh+1

:=

h⇣
Ph � ˆPk

h

⌘ �
V ⇤
h+1

� V ⇡k

h+1

�i �
xk
h, y

k
h

�
is a martingale difference sequence. In-

equality (1) holds because V k
h

�
xk
h

�  maxfeasible y0 given x Q
k
h

�
xk
h, y

0�
= Qk

h

�
xk
h, y

k
h

�
, and In-

equality (2) holds by Lemma 13 and the Bellman equations. Inequality (3) holds by definition
�

k
h+1

� �k
h+1

=

�
V ⇤
h+1

� V ⇡k

h+1

� �
xk
h+1

�
.

In order to compute
PK

k=1

�

k
1

, we need to first bound the first term in Equation 20. Since ↵0

k =

0, 8k � 1, we know that
PK

k=1

↵0

k�1

H  H .

Now we bound the sum of the second term in Equation 7 over the episodes by regrouping:

KX

k=2

k�1X

i=1

↵i
k�1

�i
h+1


K�1X

i=1

�i
h+1

1X

k=i+1

↵i
k�1


K�1X

i=1

�i
h+1

1X

k0
=i

↵i
k0 

✓
1 +

1

H

◆ KX

k=1

�k
h+1

(21)

where the last inequality uses
P1

t=i ↵
i
t = 1 +

1

H for every i � 1 from Lemma 3.

Plugging the above Equation 21 and
PK

k=1

↵0

kH  H back into Equation 7, we have:

KX

k=1

�

k
h  H +

KX

k=2

�

k
h

 H +H +

✓
1 +

1

H

◆ KX

k=1

�k
h+1

�
KX

k=2

�k
h+1

+

KX

k=2

�

k
h+1

+

KX

k=2

c

r
H3◆

k � 1

+

KX

k=2

⇠kh+1

 2H + �1

h+1

+

1

H

KX

k=2

�k
h+1

+

KX

k=2

�

k
h+1

+

KX

k=2

c

r
H3◆

k � 1

+

KX

k=2

⇠kh+1

 3H +

✓
1 +

1

H

◆ KX

k=2

�

k
h+1

+

KX

k=2

c

r
H3◆

k � 1

+

KX

k=

⇠kh+1

(22)
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where the last inequality uses �k
h+1

 �

k
h+1

. By recursing on h = 1, 2, . . . , H , and because
�

K
H+1

= 0:
KX

k=1

�

k
1

 O
 

HX

h=1

KX

k=1

�
c

r
H3◆

k � 1

+ ⇠kh+1

�
!

where
PH

h=1

PK
k=1

c
q

H3◆
k�1

= O(H
p
H3

log(SAT/p)
p
K) =

˜O(

p
H4T ).

On the other hand, by Azuma-Hoeffding inequality, with probability 1� p, we have
�����

HX

h=1

KX

k=1

⇠kh+1

����� =

�����

HX

h=1

KX

k=1

h⇣
Ph � ˆPk

h

⌘ �
V ⇤
h+1

� V ⇡k

h+1

�i �
xk
h, y

k
h

�
�����  cH

p
Tl  ˜O(

p
H4T )

(23)
which establishes

PK
k=1

�

k
1

 ˜O(H2

p
T ).

F MORE NUMERICAL EXPERIMENTS

We show more numerical experiment results to demonstrate the performance of FQL and HQL. In
Table 3, we use again the backlogged model to compare FQL and HQL against OPT, Aggregated
QL and QL-UCB, but with a different set of parameter than in Section 7. In Table 4 and 5, we use
the lost-sales model to compare HQL against OPT, Aggregated QL and QL-UCB.

For Tables 3 and 4, we make the demand distribution less adversarial: with each step in the episode,
we have demands that are increasing in expectation. However, we let the upper bound of base-stock
levels increase with the episode length H , which is more adversarial. For Table 5, we use the same
demand distributions and base-stock upper bound as in Table 2 in Section 7.

We run each experimental point 300 times for statistical significance.

Episode length: H = 1, 3, 5.
Number of episodes: K = 100, 500, 2000.
Demands: Dh ⇠ U [0, 1] + h.

Holding cost: oh = 2.
Backlogging cost: bh = 10.
Action space: [0, 1

20

, 2

20

, . . . , 2H].

Table 3: Comparison of cumulative costs for backlogged episodic inventory control with less adver-
sarial demands and increasing base-stock upper bounds

OPT FQL HQL Aggregated QL QL-UCB
H K mean SD mean SD mean SD mean SD mean SD

1
100 89.1 3.8 97.1 5.5 117.3 16.8 160.1 8.3 327.5 18.8
500 420.2 4.2 431.2 4.2 507.8 45.6 732.7 22.1 825.4 10.9
2000 1669.8 4.8 1691.2 6.6 1883.6 99.7 2546.2 32.6 2952.1 19.9

3
100 253.0 6.6 304.6 9.6 423.8 15.4 510.9 14.4 1712.0 19.1
500 1252.4 7.0 1314.3 11.9 1611.0 43.9 1703.2 16.1 4603.7 101.6
2000 5056.2 6.5 5128.7 10.2 5702.8 104.7 6188.0 14.1 15088.6 132.0

5
100 415.9 6.4 543.6 11.0 762.4 30.0 3011.8 1294.6 6101.9 357.6
500 2077.1 12.7 2224.6 15.6 2746.3 113.7 10277.1 6888.5 11763.6 2982.5
2000 8394.3 6.2 8557.2 11.1 9630.4 356.6 30489.8 31232.4 39873.8 7210.1

Again for Aggregated QL from Dong et al. (2019) and for QL-UCB from Jin et al. (2018), we
optimize by taking the Q-values to be only dependent on the action, thus reducing the state-action
pair space. As in Section 7, we do not fine-tune the confidence interval for HQL for different settings,

but use a general formula
q

H log(HKA)

k as the confidence interval for all settings. We also do not
fine-tune the UCB bonus defined in QL-UCB (see Jin et al. (2018)).

A caveat of Aggregated QL from Dong et al. (2019) is that we need to know a good aggregation
of the state-action pairs beforehand, which is usually unavailable for online problems. For using
Aggregated QL in Table 3 and 4, we further aggregate the state and actions to be multiples of 1/2.
For using Aggregated QL in Table 5 (and also in Section 7), we further aggregate the state and
actions to be multiples of 1.
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Episode length: H = 1, 3, 5.
Number of episodes: K = 100, 500, 2000.
Demands: Dh ⇠ U [0, 1] + h.

Holding cost: oh = 2.
Lost-Sales Penalty: bh = 10.
Action space: [0, 1

20

, 2

20

, . . . , 2H].

Table 4: Comparison of cumulative costs for lost-sales episodic inventory control with less adver-
sarial demands and increasing base-stock upper bounds

OPT HQL Aggregated QL QL-UCB
H K mean SD mean SD mean SD mean SD

1
100 89.1 3.8 117.3 16.8 201.7 6.6 291.7 6.6
500 420.2 4.2 507.8 44.6 1002.8 4.0 1452.8 4.0
2000 1669.8 4.8 1883.6 99.7 4012.1 5.3 5812.1 5.3

3
100 253.0 6.6 443.8 65.9 1902.8 81.4 2071.4 29.9
500 1252.4 7.0 1730.7 361.3 9534.0 379.7 10375.7 13.1
2000 5056.2 6.5 6163.2 374.3 38139.6 1519.4 41504.9 22.6

5
100 415.9 6.4 780.6 64.3 5716.6 153.0 5902.8 44.8
500 2077.1 12.7 2926.0 332.6 28510.7 764.3 29385.1 183.1
2000 8394.3 6.2 10560.1 1201.6 114010.7 3080.2 117481.6 727.6

Episode length: H = 1, 3, 5.
Number of episodes: K = 100, 500, 2000.
Demands: Dh ⇠ (10� h)/2 + U [0, 1].

Holding cost: oh = 2. Lost-Sales Penalty: bh =

10. Action Space: [0, 1

20

, 2

20

, . . . , 10].

Table 5: Comparison of cumulative costs for lost-sales episodic inventory control with the original
demands and base-stock upper bounds

OPT HQL Aggregated QL QL-UCB
H K mean SD mean SD mean SD mean SD

1
100 88.2 4.1 125.9 19.2 705.4 9.7 895.4 9.7
500 437 4.4 528.9 44.1 3506.1 4.4 4456.1 4.4
2000 1688.9 2.8 1929.2 89.1 14005.6 6.6 17805.6 6.6

3
100 257.4 3.2 448.4 52.1 2405.6 9.1 2975.6 9.1
500 1274.6 6.1 1746.7 239.9 12009.3 6.4 14859.3 6.4
2000 4965.6 8.3 6111.2 918.2 47926.4 14.8 59326.4 14.8

5
100 421.2 3.3 774.6 51.8 4497.4 11.6 5447.4 11.6
500 2079.0 8.2 2973.9 299.9 22478.5 10.7 27228.5 10.7
2000 8285.7 8.3 10701.1 1207.5 89929.7 14.0 108929.7 14.0

As we can see in all of our experiments, FQL and HQL both perform very promisingly with sig-
nificant advantage over the other two existing algorithms. FQL stays consistently very close to the
clairvoyant optimal in both the more adversarial and less adversarial settings for the backlogged
model. HQL catches up rather quickly to OPT in all the settings for both the backlogged model and
the lost-sales model.

19


	Introduction
	Prior Work

	Preliminaries
	One-Sided-Feedback 
	Full-Feedback 

	Algorithms
	Main Results
	Overview of Proof
	Proofs for FQL 

	Example Applications: Inventory Control and More
	Numerical Experiments
	Conclusion
	Proof for Lower Bounds (Theorem 2)
	Missing Proofs for HQL
	Missing Proofs for Inventory Control
	Comparison with Existing Q-Learning Algorithms
	Missing Proofs for FQL 
	More Numerical Experiments

