
Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

To promote reproducibility, we provide all necessary implementation details in this Appendix.
Statistics regarding all the datasets we used in our experiments are provided in Table 6. To train deep
neural networks, we use the open-source PyTorch library (Paszke et al., 2019). For adversarial training,
we use the open-source Robustness library (Engstrom et al., 2019) which was developed by Madry
Lab. For autoPGD attack evaluation, we use the AutoAttack official code.1 For training and evaluation
using the randomized smoothing framework, we use the code provided by Jeong et al. (Jeong & Shin,
2020).2 All the code and instructions for replicating our experiments are available at [REDACTED].3

Table 6: Statistics for all datasets used in our experiments.

Dataset # Train Images # Classes # Test Images Skip # Certified Images

ImageNet 1,281,167 1,000 50,000 100 500
Food 75,750 101 25,250 50 505
CIFAR-10/100 50,000 10/100 10,000 20 500
Birdsnap 32,677 500 8,171 16 511
. 19,850 397 19,850 39 509
Caltech-256 15,420 257 15,189 30 506
Cars 8,141 196 8,041 16 503
Aircraft 6,667 100 3,333 6 556
DTD 3,760 47 1,880 4 470
Pets 3,680 37 3,669 7 524
Caltech-101 3,030 101 5,647 11 513
Flowers 2,040 102 6,149 12 512

Input Pre-processing. For all experiments, we fix the dimension of the input image to 224⇥ 224.
For cases where the image is of smaller resolution (i.e., CIFAR-10 and CIFAR-100), we upscale it
first during the input pre-processing stage. The complete set of pre-processing steps we perform are
as follows:

TRAIN_TRANSFORMS = transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize()

])

TEST_TRANSFORMS = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize()

])

We follow prior works (He et al., 2019; Kornblith et al., 2019; Salman et al., 2020) and only use
normalization for the ImageNet, CIFAR-10, and CIFAR-100 datasets.

Training. When training from scratch, we perform hyperparameter tuning by performing grid
search over lr 2 {0.1, 0.01, 0.05, 0.001}, batch size 2 {256, 128, 64, 32}, and weight decay 2

1https://github.com/fra31/auto-attack
2https://github.com/jh-jeong/smoothing-consistency
3Redacted to honor the double-blind review process.

13

%5BREDACTED%5D
https://github.com/fra31/auto-attack
https://github.com/jh-jeong/smoothing-consistency


Under review as a conference paper at ICLR 2024

{1e � 04, 1e � 03, 1e � 02}. Before terminating training, the learning rate is decayed twice by a
factor of 0.1 when the performance on validation set doesn’t improve for 30 epochs. For ImageNet
pre-training, we use publicly available weights for Adversarial Training4 and SimCLR.5 Since
ImageNet pre-trained weights are not publicly available for the Consistency Regularization method,
we generate them ourselves using hyperparameter details provided by the authors (Jeong & Shin,
2020). For all training, we use the Stochastic Gradient Descent (SGD) optimizer.

Certification Using Randomized Smoothing. During certification, we use � = 0.5 and follow
Cohen et al. (Cohen et al., 2019) for all other hyperparameters, i.e., N0 = 100, N = 100, 000, and
failure probability ↵ = 0.001. Also following prior works, we certify about 500 test images for each
dataset, by skipping every nth image in the complete test set (see Table 6 for skip factor used).

4https://github.com/microsoft/robust-models-transfer
5https://github.com/facebookresearch/vissl/blob/main/MODEL_ZOO.md

14

https://github.com/microsoft/robust-models-transfer
https://github.com/facebookresearch/vissl/blob/main/MODEL_ZOO.md

