
Provably Efficient Reinforcement Learning with
Linear Function Approximation under Adaptivity

Constraints

Tianhao Wang∗
Department of Statistics and Data Science

Yale University
New Haven, CT 06511

tianhao.wang@yale.edu

Dongruo Zhou∗
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
drzhou@cs.ucla.edu

Quanquan Gu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
qgu@cs.ucla.edu

Abstract

We study reinforcement learning (RL) with linear function approximation under
the adaptivity constraint. We consider two popular limited adaptivity models: the
batch learning model and the rare policy switch model, and propose two efficient
online RL algorithms for episodic linear Markov decision processes, where the
transition probability and the reward function can be represented as a linear function
of some known feature mapping. In specific, for the batch learning model, our
proposed LSVI-UCB-Batch algorithm achieves an Õ(

√
d3H3T +dHT/B) regret,

where d is the dimension of the feature mapping, H is the episode length, T is
the number of interactions and B is the number of batches. Our result suggests
that it suffices to use only

√
T/dH batches to obtain Õ(

√
d3H3T) regret. For the

rare policy switch model, our proposed LSVI-UCB-RareSwitch algorithm enjoys
an Õ(

√
d3H3T [1 + T/(dH)]dH/B) regret, which implies that dH log T policy

switches suffice to obtain the Õ(
√
d3H3T) regret. Our algorithms achieve the

same regret as the LSVI-UCB algorithm (Jin et al., 2020), yet with a substantially
smaller amount of adaptivity. We also establish a lower bound for the batch learning
model, which suggests that the dependency on B in our regret bound is tight.

1 Introduction

Real-world reinforcement learning (RL) applications often come with possibly infinite state and
action space, and in such a situation classical RL algorithms developed in the tabular setting are
not applicable anymore. A popular approach to overcoming this issue is by applying function
approximation techniques to the underlying structures of the Markov decision processes (MDPs).
For example, one can assume that the transition probability and the reward are linear functions of a
known feature mapping φ : S ×A → Rd, where S and A are the state space and action space, and
d is the dimension of the embedding. This gives rise to the so-called linear MDP model (Yang and
Wang, 2019; Jin et al., 2020). Assuming access to a generative model, efficient algorithms under

∗Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

this setting have been proposed by Yang and Wang (2019) and Lattimore et al. (2020). For online
finite-horizon episodic linear MDPs, Jin et al. (2020) proposed an LSVI-UCB algorithm that achieves
Õ(
√
d3H3T) regret, where H is the planning horizon (i.e., length of each episode) and T is the

number of interactions.

However, all the aforementioned algorithms require the agent to update the policy in every episode. In
practice, it is often unrealistic to frequently switch the policy in the face of big data, limited computing
resources as well as inevitable switching costs. Thus one may want to batch the data stream and
update the policy at the end of each period. For example, in clinical trials, each phase (batch) of
the trial amounts to applying a medical treatment to a batch of patients in parallel. The outcomes
of the treatment are not observed until the end of the phase and will be subsequently used to design
experiments for the next phase. Choosing the appropriate number and sizes of the batches is crucial
to achieving nearly optimal efficiency for the clinical trial. This gives rise to the limited adaptivity
setting, which has been extensively studied in many online learning problems including prediction-
from-experts (PFE) (Kalai and Vempala, 2005; Cesa-Bianchi et al., 2013), multi-armed bandits
(MAB) (Arora et al., 2012; Cesa-Bianchi et al., 2013) and online convex optimization (Jaghargh et al.,
2019; Chen et al., 2020), to mention a few. Nevertheless, in the RL setting, learning with limited
adaptivity is relatively less studied. Bai et al. (2019) introduced two notions of adaptivity in RL, local
switching cost and global switching cost, that are defined as follows

Nlocal =

K−1∑
k=1

H∑
h=1

∑
s∈S

1{πkh(s) 6= πk+1
h (s)} and Nglobal =

K−1∑
k=1

1{πk 6= πk+1}, (1.1)

where πk = {πkh : S → A}h∈[H] is the policy for the k-th episode of the MDP, πk 6= πk+1 means
that there exists some (h, s) ∈ [H]×S such that πkh(s) 6= πk+1

h (s), and K is the number of episodes.
Then they proposed a Q-learning method with UCB2H exploration that achieves Õ(

√
H3SAT)

regret with O(H3SA log(T/(AH)) local switching cost for tabular MDPs, but they did not provide
tight bounds on the global switching cost.

In this paper, based on the above motivation, we aim to develop online RL algorithms with linear
function approximation under adaptivity constraints. In detail, we consider time-inhomogeneous2

episodic linear MDPs (Jin et al., 2020) where both the transition probability and the reward function
are unknown to the agent. In terms of the limited adaptivity imposed on the agent, we consider two
scenarios that have been previously studied in the online learning literature (Perchet et al., 2016;
Abbasi-Yadkori et al., 2011): the batch learning model and the rare policy switch model. More
specifically, in the batch learning model (Perchet et al., 2016), the agent is forced to pre-determine
the number of batches (or equivalently batch size). Within each batch, the same policy is used to
select actions, and the policy is updated only at the end of this batch. The amount of adaptivity in
the batch learning model is measured by the number of batches, which is expected to be as small as
possible. In contrast, in the rare policy switch model (Abbasi-Yadkori et al., 2011), the agent can
adaptively choose when to switch the policy and therefore start a new batch in the learning process as
long as the total number of policy updates does not exceed the given budget on the number of policy
switches. The amount of adaptivity in the rare policy switch model can be measured by the number
of policy switches, which turns out to be the same as the global switching cost introduced in Bai et al.
(2019). It is worth noting that for the same amount of adaptivity3, the rare policy switch model can
be seen as a relaxation of the batch learning model since the agent in the batch learning model can
only change the policy at pre-defined time steps. In our work, for each of these limited adaptivity
models, we propose a variant of the LSVI-UCB algorithm (Jin et al., 2020), which can be viewed as
an RL algorithm with full adaptivity in the sense that it switches the policy at a per-episode scale.
Our algorithms can attain the same regret as LSVI-UCB, yet with a substantially smaller number of
batches/policy switches. This enables parallel learning and improves the large-scale deployment of
RL algorithms with linear function approximation.

The main contributions of this paper are summarized as follows:

2We say an episodic MDP is time-inhomogeneous if its reward and transition probability are different at
different stages within each episode. See Definition 3.2 for details.

3The number of batches in the batch learning model is comparable to the number of policy switches in the
rare policy switch model.

2

• For the batch learning model, we propose an LSVI-UCB-Batch algorithm for linear MDPs and
show that it enjoys an Õ(

√
d3H3T + dHT/B) regret, where d is the dimension of the feature

mapping, H is the episode length, T is the number of interactions and B is the number of batches.
Our result suggests that it suffices to use only

√
T/dH batches, rather than T batches, to obtain the

same regret Õ(
√
d3H3T) achieved by LSVI-UCB (Jin et al., 2020) in the fully sequential decision

model. We also prove a lower bound of the regret for this model, which suggests that the required
number of batches Õ(

√
T) is sharp.

• For the rare policy switch model, we propose an LSVI-UCB-RareSwitch algorithm for linear
MDPs and show that it enjoys an Õ(

√
d3H3T [1 + T/(dH)]dH/B) regret, where B is the number

of policy switches. Our result implies that dH log T policy switches are sufficient to obtain the
same regret Õ(

√
d3H3T) achieved by LSVI-UCB. The number of policy switches is much smaller

than that4 of the batch learning model when T is large.

Concurrent to our work, Gao et al. (2021) proposed an algorithm achieving Õ(
√
d3H3T) regret

with a O(dH logK) global switching cost in the rare policy switch model. They also proved a
Ω(dH/ log d) lower bound on the global switching cost. The focus of our paper is different from
theirs: our goal is to design efficient RL algorithms under a switching cost budget B, while their goal
is to achieve the optimal rate in terms of T with as little switching cost as possible. On the other hand,
for the rare policy switch model, our proposed algorithm (LSVI-UCB-RareSwitch) along its regret
bound can imply their results by optimizing our regret bound concerning the switching cost budget
B.

The rest of the paper is organized as follows. In Section 2 we discuss previous works related to
this paper, with a focus on RL with linear function approximation and online learning with limited
adaptivity. In Section 3 we introduce necessary preliminaries for MDPs and adaptivity constraints.
Sections 4 and 5 present our proposed algorithms and the corresponding theoretical results for the
batch learning model and the rare policy switch model respectively. In Section 6 we present the
numerical experiment which supports our theory. Finally, we conclude our paper and point out a
future direction in Section 7.

Notation We use lower case letters to denote scalars and use lower and upper case boldface letters
to denote vectors and matrices respectively. For any real number a, we write [a]+ = max(a, 0).
For a vector x ∈ Rd and matrix Σ ∈ Rd×d, we denote by ‖x‖2 the Euclidean norm and define
‖x‖Σ =

√
x>Σx. For any positive integer n, we denote by [n] the set {1, . . . , n}. For any finite set

A, we denote by |A| the cardinality of A. For two sequences {an} and {bn}, we write an = O(bn)
if there exists an absolute constant C such that an ≤ Cbn, and we write an = Ω(bn) if there exists
an absolute constant C such that an ≥ Cbn. We use Õ(·) to further hide the logarithmic factors.

2 Related Works

Reinforcement Learning with Linear Function Approximation Recently, there have been many
advances in RL with function approximation, especially the linear case. Jin et al. (2020) proposed
an efficient algorithm for the first time for linear MDPs of which the transition probability and the
rewards are both linear functions with respect to a feature mapping φ : S ×A → Rd. Under similar
assumptions, different settings (e.g., discounted MDPs) have also been studied in Yang and Wang
(2019); Du et al. (2020); Zanette et al. (2020); Neu and Pike-Burke (2020) and He et al. (2021). A
parallel line of work studies linear mixture MDPs (a.k.a. linear kernel MDPs) based on a ternary
feature mapping ψ : S ×A× S → Rd (see Jia et al. (2020); Zhou et al. (2021b); Cai et al. (2020);
Zhou et al. (2021a)). For other function approximation settings, we refer readers to generalized
linear model (Wang et al., 2021), general function approximation with Eluder dimension (Wang et al.,
2020; Ayoub et al., 2020), kernel approximation (Yang et al., 2020), function approximation with
disagreement coefficients (Foster et al., 2021) and bilinear classes (Du et al., 2021).

Online Learning with Limited Adaptivity As we mentioned before, online learning with limited
adaptivity has been studied in two popular models of adaptivity constraints: the batch learning model
and the rare policy switch model.

4The number of policy switches is identical to the number of batches in the batch learning model.

3

For the batch learning model, Altschuler and Talwar (2018) proved that the optimal regret bound for
prediction-from-experts (PFE) is Õ(

√
T log n) when the number of batches B = Ω(

√
T log n), and

min(Õ(T log n/B), T) when B = O(
√
T log n), exhibiting a phase-transition phenomenon5. Here

T is the number of rounds and n is the number of actions. For general online convex optimization,
Chen et al. (2020) showed that the minimax regret bound is Õ(T/

√
B). Perchet et al. (2016) studied

batched 2-arm bandits, and Gao et al. (2019) studied the batched multi-armed bandits (MAB). Dekel
et al. (2014) proved a Ω(T/

√
B) lower bound for batched MAB, and Altschuler and Talwar (2018)

further characterized the dependence on the number of actions n and showed that the corresponding
minimax regret bound is min(Õ(T

√
n/
√
B), T). For batched linear bandits with adversarial contexts,

Han et al. (2020) showed that the minimax regret bound is Õ(
√
dT+dT/B) where d is the dimension

of the context vectors. Better rates can be achieved for batched linear bandits with stochastic contexts
as shown in Esfandiari et al. (2021); Han et al. (2020); Ruan et al. (2020).

For the rare policy switch model, the minimax optimal regret bound for PFE is O(
√
T log n) in

terms of both the expected regret (Kalai and Vempala, 2005; Geulen et al., 2010; Cesa-Bianchi et al.,
2013; Devroye et al., 2015) and high-probability guarantees (Altschuler and Talwar, 2018), where
T is the number of rounds, and n is the number of possible actions. For MAB, the minimax regret
bound has been shown to be Õ(T 2/3n1/3) by Arora et al. (2012); Dekel et al. (2014). For stochastic
linear bandits, Abbasi-Yadkori et al. (2011) proposed a rarely switching OFUL algorithm achieving
Õ(d
√
T) regret with log(T) batches. Ruan et al. (2020) proposed an algorithm achieving Õ(

√
dT)

regret with less than O(d log d log T) batches for stochastic linear bandits with adversarial contexts.

For episodic RL with finite state and action space, Bai et al. (2019) proposed an algorithm achieving
Õ(
√
H3SAT) regret with O(H3SA log(T/(AH))) local switching cost where S and A are the

number of states and actions respectively. They also provided a Ω(HSA) lower bound on the
local switching cost that is necessary for sublinear regret. For the global switching cost, Zhang
et al. (2021) proposed an MVP algorithm with at most O(SA log(KH)) global switching cost for
time-homogeneous tabular MDPs.

3 Preliminaries

3.1 Markov Decision Processes

We consider the time-inhomogeneous episodic Markov decision process, which is denoted by a tuple
M(S,A, H, {rh}h∈[H], {Ph}h∈[H]). Here S is the state space (may be infinite), A is the action
space where we allow the feasible action set to change from step to step, H is the length of each
episode, and rh : S × A → [0, 1] is the reward function for each stage h ∈ [H]. At each stage
h ∈ [H], Ph(s′|s, a) is the transition probability function which represents the probability for state s
to transit to state s′ given action a. A policy π consists of H mappings, {πh : S → A}h∈[H]. For
any policy π, we define the action-value function Qπh(s, a) and value function V πh (s) as follows:

Qπh(s, a) = rh(s, a) + Eπ
[H∑
i=h

ri(si, ai)

∣∣∣∣sh = s, ah = a

]
, V πh (s) = Qπh(s, πh(s)),

where ai ∼ πi(·|si) and si+1 ∼ Pi(·|si, ai). The optimal value function V ∗h and the optimal
action-value function Q∗h(s, a) are defined as V ∗(s) = supπ V

π
h (s) and Q∗h(s, a) = supπ Q

π
h(s, a),

respectively. For simplicity, for any function V : S → R, we denote [PV](s, a) = Es′∼P(·|s,a)V (s′).
In the online learning setting, at the beginning of k-th episode, the agent chooses a policy πk and the
environment selects an initial state sk1 , then the agent interacts with environment following policy
πk and receives states skh and rewards rh(skh, a

k
h) for h ∈ [H]. To measure the performance of the

algorithm, we adopt the following notion of the total regret, which is the summation of suboptimalities
between policy πk and optimal policy π∗:
Definition 3.1. We denote T = KH , and the regret Regret(T) is defined as

Regret(T) =

K∑
k=1

[
V ∗1 (sk1)− V π

k

1 (sk1)
]
.

5They call it B-switching budget setting, which is identical to the batch learning model.

4

3.2 Linear Function Approximation

In this work, we consider a special class of MDPs called linear MDPs (Yang and Wang, 2019; Jin
et al., 2020), where both the transition probability function and reward function can be represented
as a linear function of a given feature mapping φ : S × A → Rd. Formally speaking, we have the
following definition for linear MDPs.
Definition 3.2. M(S,A, H, {rh}h∈[H], {Ph}h∈[H]) is called a linear MDP if there exist a known

feature mapping φ(s, a) : S × A → Rd, unknown measures {µh = (µ
(1)
h , · · · , µ(d)

h)}h∈[H] over
S and unknown vectors {θh ∈ Rd}h∈[H] with maxh∈[H]{‖µh(S)‖2, ‖θh‖} ≤

√
d, such that the

following holds for all h ∈ [H]:

• For any state-action-state triplet (s, a, s′) ∈ S ×A× S, Ph(s′|s, a) = 〈φ(s, a),µh(s′)〉.

• For any state-action pair (s, a) ∈ S ×A, rh(s, a) = 〈φ(s, a),θh〉.

Without loss of generality, we also assume that ‖φ(s, a)‖2 ≤ 1 for all (s, a) ∈ S ×A.

With Definition 3.2, it is shown in Jin et al. (2020) that the action-value function can be written as a
linear function of the features.
Proposition 3.3 (Proposition 2.3, Jin et al. 2020). For a linear MDP, for any policy π, there ex-
ist weight vectors {wπ

h}h∈[H] such that for any (s, a, h) ∈ S × A × [H], we have Qπh(s, a) =

〈φ(s, a),wπ
h〉. Moreover, we have ‖wπ

h‖2 ≤ 2H
√
d for all h ∈ [H].

Therefore, with the known feature mapping φ(·, ·), it suffices to estimate the weight vectors
{wπ

h}h∈[H] in order to recover the action-value functions. This is the core idea behind almost
all the algorithms and theoretical analyses for linear MDPs.

3.3 Models for Limited Adaptivity

In this work, we consider RL algorithms with limited adaptivity. There are two typical models for
online learning with such limited adaptivity: batch learning model (Perchet et al., 2016) and rare
policy switch model (Abbasi-Yadkori et al., 2011).

For the batch learning model, the agent pre-determines the batch grids 1 = t1 < t2 < · · · < tB <
tB+1 = K + 1 at the beginning of the algorithm, where B is the number of batches. The b-th batch
consists of tb-th to (tb+1 − 1)-th episodes, and the agent follows the same policy within each batch.
The adaptivity is measured by the number of batches.

For the rare policy switch model, the agent can decide whether she wants to switch the current policy
or not. The adaptivity is measured by the number of policy switches, which is defined as

Nswitch =

K−1∑
k=1

1{πk 6= πk+1},

where πk 6= πk+1 means that there exists some (h, s) ∈ [H]× S such that πkh(s) 6= πk+1
h (s). It is

worth noting that Nswitch is identical to the global switching cost defined in (1.1).

Given a budget on the number of batches or the number of policy switches, we aim to design RL
algorithms with linear function approximation that can achieve the same regret as their full adaptivity
counterpart, e.g., LSVI-UCB (Jin et al., 2020).

4 RL in the Batch Learning Model

In this section, we consider RL with linear function approximation in the batch learning model, where
given the number of batches B, we need to pin down the batches before the agent starts to interact
with the environment.

4.1 Algorithm and Regret Analysis

We propose LSVI-UCB-Batch algorithm as displayed in Algorithm 1, which can be regarded as
a variant of the LSVI-UCB algorithm proposed in Jin et al. (2020) yet with limited adaptivity.

5

Algorithm 1 LSVI-UCB-Batch
Require: Number of batches B, confidence radius β, regularization parameter λ

1: Set b← 1, ti ← (i− 1) · bK/Bc+ 1, i ∈ [B]
2: for episode k = 1, 2, . . . ,K do
3: Receive the initial state sk1
4: if k = tb then
5: b← b+ 1, QkH+1(·, ·)← 0
6: for stage h = H,H − 1, . . . , 1 do
7: Λk

h ←
∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)> + λI

8: wk
h ← (Λk

h)−1
∑k−1
τ=1 φ(sτh, a

τ
h) · [rh(sτh, a

τ
h) + maxa∈AQ

k
h+1(sτh+1, a)]

9: Γkh(·, ·)← β · [φ(·, ·)>(Λk
h)−1φ(·, ·)]1/2

10: Qkh(·, ·)← min{φ(·, ·)>wk
h + Γkh(·, ·), H − h+ 1}+, πkh(·)← argmaxa∈AQ

k
h(·, a)

11: end for
12: else
13: Qkh ← Qk−1h , πkh ← πk−1h , ∀h ∈ [H]
14: end if
15: for stage h = 1 . . . , H do
16: Take the action akh ← πkh(skh), receive the reward rh(skh, a

k
h) and the next state skh+1

17: end for
18: end for

Algorithm 1 takes a series of batch grids {t1, . . . , tB+1} as input, where the i-th batch starts at ti
and ends at ti+1 − 1. LSVI-UCB-Batch takes the uniform batch grids as its selection of grids, i.e.,
ti = (i− 1) · bK/Bc+ 1, i ∈ [B]. By Proposition 3.3, we know that for each h ∈ [H], the optimal
value function Q∗h has the linear form 〈φ(·, ·),w∗h〉. Therefore, to estimate the Q∗h, it suffices to
estimate w∗h. At the beginning of each batch, Algorithm 1 calculates wk

h as an estimate of w∗h by
ridge regression (Line 8). Meanwhile, in order to measure the uncertainty of wk

h, Algorithm 1 sets
the estimate Qkh(·, ·) as the summation of the linear function 〈φ(·, ·),wk

h〉 and a Hoeffding-type
exploration bonus term Γkh(·, ·) (Line 10), which is calculated based on the confidence radius β. Then
it sets the policy πkh as the greedy policy with respect to Qkh. Within each batch, Algorithm 1 simply
keeps the policy used in the previous episode without updating (Line 13). Apparently, the number of
batches of Algorithm 1 is B.

Here we would like to make a comparison between our LSVI-UCB-Batch and other related algorithms.
The most related algorithm is LSVI-UCB proposed in Jin et al. (2020). The main difference between
LSVI-UCB-Batch and LSVI-UCB is the introduction of batches. In detail, when B = K, LSVI-
UCB-Batch degenerates to LSVI-UCB. Another related algorithm is the SBUCB algorithm proposed
by Han et al. (2020). Both LSVI-UCB-Batch and SBUCB take uniform batch grids as the selection
of batches. The difference is that SBUCB is designed for linear bandits, which is a special case of
episodic MDPs with H = 1.

The following theorem presents the regret bound of Algorithm 1.
Theorem 4.1. There exists a constant c > 0 such that for any δ ∈ (0, 1), if we set λ = 1, β =

cdH
√

log(2dT/δ), then under Assumption 3.2, the total regret of Algorithm 1 is bounded by

Regret(T) ≤2H

√
T log

(
2dT

δ

)
+

dHT

2B log 2
log

(
T

dH
+ 1

)

+ 4c

√
2d3H3T log

(
2dT

δ

)
log

(
T

dH
+ 1

)
with probability at least 1− δ.

Theorem 4.1 suggests that the total regret of Algorithm 1 is bounded by Õ(
√
d3H3T + dHT/B).

When B = Ω(
√
T/dH), the regret of Algorithm 1 is Õ(

√
d3H3T), which is the same as that of

LSVI-UCB in Jin et al. (2020). However, it is worth noting that LSVI-UCB needs K batches, while
Algorithm 1 only requires

√
T/dH batches, which can be much smaller than K.

6

Algorithm 2 LSVI-UCB-RareSwitch
Require: Policy switch parameter η, confidence radius β, regularization parameter λ

1: Initialize Λh = Λ0
h = λId for all h ∈ [H]

2: for episode k = 1, 2, . . . ,K do
3: Receive the initial state sk1
4: for stage h = 1, 2, · · · , H do
5: Λk

h ←
∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)> + λId

6: end for
7: if ∃h ∈ [H],det(Λk

h) > η · det(Λh) then
8: QkH+1(·, ·)← 0
9: for step h = H,H − 1, · · · , 1 do

10: Λh ← Λk
h

11: wk
h ← (Λk

h)−1
∑k−1
τ=1 φ(sτh, a

τ
h) · [rh(sτh, a

τ
h) + maxa∈AQ

k
h+1(sτh+1, a)]

12: Γkh(·, ·)← β · [φ(·, ·)>(Λk
h)−1φ(·, ·)]1/2

13: Qkh(·, ·)← min{φ(·, ·)>wk
h + Γkh(·, ·), H − h+ 1}+, πkh(·)← argmaxa∈AQ

k
h(·, a)

14: end for
15: else
16: Qkh ← Qk−1h , πkh ← πk−1h , ∀h ∈ [H]
17: end if
18: for stage h = 1 . . . , H do
19: Take the action akh ← πkh(skh), receive the reward rh(skh, a

k
h) and the next state skh+1

20: end for
21: end for

Next, we present a lower bound to show the dependency of the total regret on the number of batches
for the batch learning model.
Theorem 4.2. Suppose thatB ≥ (d−1)H/2. Then for any batch learning algorithm withB batches,
there exists a linear MDP such that the regret over the first T rounds is lower bounded by

Regret(T) = Ω(dH
√
T + dHT/B).

Theorem 4.2 suggests that in order to obtain a standard
√
T -regret, the number of batches B should

be at least in the order of Ω(
√
T), which is similar to its counterpart for batched linear bandits (Han

et al., 2020).

5 RL in the Rare Policy Switch Model

In this section, we consider the rare policy switch model, where the agent can adaptively choose the
batch sizes according to the information collected during the learning process.

5.1 Algorithm and Regret Analysis

We first present our second algorithm, LSVI-UCB-RareSwitch, as illustrated in Algorithm 2. Again,
due to the nature of linear MDPs, we only need to estimate w∗h by ridge regression, and then calculate
the optimistic action-value function using the Hoeffding-type exploration bonus Γkh(·, ·) along with
the confidence radius β. Note that the size of the bonus term in Qkh is determined by Λk

h. Intuitively
speaking, the matrix Λk

h in Algorithm 2 represents how much information has been learned about the
underlying MDP, and the agent only needs to switch the policy after collecting a significant amount
of additional information. This is reflected by the determinant of Λk

h, and the upper confidence bound
will become tighter (shrink) as det(Λk

h) increases. The determinant based criterion is similar to the
idea of doubling trick, which has been used in the rarely switching OFUL algorithm for stochastic
linear bandits (Abbasi-Yadkori et al., 2011), UCRL2 algorithm for tabular MDPs (Jaksch et al., 2010),
and UCLK/UCLK+ for linear mixture MDPs in the discounted setting (Zhou et al., 2021b,a).

As shown in Algorithm 2, for each stage h ∈ [H] the algorithm maintains a matrix Λh which is
updated at each policy switch (Line 10). For every k ∈ [K], we denote by bk the episode from which

7

the policy πk is computed. This is consistent with the one defined in Algorithm 1 in Section 4. At the
start of each episode k, the algorithm computes {Λk

h}h∈[H] (Line 5) and then compares them with
{Λh}h∈[H] using the determinant-based criterion (Line 7). The agent switches the policy if there
exists some h ∈ [H] such that det(Λk

h) has increased by some pre-determined parameter η > 1,
followed by policy evaluation (Lines 11-13). Otherwise, the algorithm retains the previous policy
(Line 16). Here the hyperparameter η controls the frequency of policy switch, and the total number
of policy switches can be bounded by a function of η.

Algorithm 2 is also a variant of LSVI-UCB proposed in Jin et al. (2020). Compared with LSVI-UCB-
Batch in Algorithm 1 for the batch learning model, LSVI-UCB-RareSwitch adaptively decides when
to switch the policy and can be tuned by the hyperparameter η and therefore fits into the rare policy
switch model.

We present the regret bound of Algorithm 2 in the following theorem.

Theorem 5.1. There exists some constant c > 0 such that for any δ ∈ (0, 1), if we set λ = 1,
β = cdH

√
log(2dT/δ) and η = (1 +K/d)

dH/B , then the number of policy switches Nswitch in
Algorithm 2 will not exceed B. Moreover, the total regret of Algorithm 2 is bounded by

Regret(T) ≤ 2H

√
T log

(
2dT

δ

)
+ 2c
√

2d3H3T ·

√(
T

dH
+ 1

) dH
B

log

(
T

dH
+ 1

)
log

(
2dT

δ

)
(5.1)

with probability at least 1− δ.

A few remarks are in order.

Remark 5.2. Algorithm 2 needs to update the value of each det(Λk
h), and thanks to the special

structure of Λk
h, this can be done efficiently by applying the matrix determinant lemma along with

the Sherman Morrison formula for efficiently updating each (Λk
h)−1. For simplicity and clarity of

the presentation, we do not include these details in the pseudo-code.

Remark 5.3. By ignoring the non-dominating term, Theorem 5.1 suggests that the total regret of
Algorithm 2 is bounded by Õ(

√
d3H3T [1 + T/(dH)]dH/B). Also, if we are allowed to choose

B, we can choose B = Ω(dH log T) to achieve Õ(
√
d3H3T) regret, which is the same as that

of LSVI-UCB in Jin et al. (2020). This also significantly improves upon Algorithm 1 when T is
sufficiently large since previously we need B = Ω(

√
T/dH). Our result exhibits a trade-off between

the total regret bound and the number of policy switches, i.e., as the adaptivity budget B increases,
the regret bound decreases. This will also be reflected by the numerical results later in Section 6.

Remark 5.4. Concurrent to our work, Gao et al. (2021) proposed an algorithm with B =
Ω(dH log T) policy switches. Note that B = Ω(dH log T) corresponds to choosing η to be a
constant, which can be viewed as a special case of our algorithm. Their algorithm does not adapt to
different values of budget B. Also, they did not study the batch learning model (Section 4) which we
think is of equally important practical interest.

Remark 5.5. Gao et al. (2021) established a lower bound, which claims that any rare policy switch
RL algorithm suffers a linear regret when B = õ(dH). However, unlike our lower bound for the
batch learning model (Theorem 4.2), their result does not provide a fine-grained regret lower bound
for arbitrary adaptivity constraint B. It remains an open problem to establish such kind of lower
bound for the rare policy switch model.

6 Numerical Experiment

In this section, we provide numerical experiments to support our theory. We run our algorithms,
LSVI-UCB-Batch and LSVI-UCB-RareSwitch, on a synthetic linear MDP given in Example 6.1, and
compare them with the fully adaptive baseline, LSVI-UCB (Jin et al., 2020).

Example 6.1 (Hard-to-learn linear MDP, Zhou et al. 2021b). Let d > 0 be some integer and
δ ∈ (0, 1) be a constant. The state space S = {0, 1} consists of two states, and the action space
A = {±1}d−3 contains 2d−3 actions where each action is represented by a (d − 3)-dimensional

8

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Re
gr

et

random
fully adaptive
B = 50
B = 40
B = 30
B = 10

(a) LSVI-UCB-Batch

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Re
gr

et

random
fully adaptive

= 4
= 8
= 16
= 32

(b) LSVI-UCB-RareSwitch

Figure 1: Plot of average regret (Regret(T)/K) v.s. the number of episodes. The results are averaged
over 50 rounds of each algorithm, and the error bars are chosen to be [20%, 80%] empirical confidence
intervals.

vector a. For each state-action pair (s,a) ∈ S ×A, the feature vector is given by

φ(s, a) =

{
(−a>, 1− δ, δ)> s = 0,

(0, . . . , 0, δ, 1− δ) s = 1.
(6.1)

For each h ∈ [H], let γh ∈ {±δ/(d− 2)}d−2 and define the corresponding vector-valued measure as

µh(s) =

{
(γ>h , 1, 0)> s = 0

(−γ>h , 0, 1)> s = 1
. (6.2)

Finally, we set θh ≡ (0, . . . , 0,−δ/(1− 2δ), (1− δ)/(1− 2δ)) ∈ Rd for all h ∈ [H].

It is straightforward to verify that the feature vectors in (6.1) and the vector-valued measures in (6.2)
constitute a valid linear MDP such that, for all a ∈ A and h ∈ [H],

rh(s,a) = 1{s = 1}, Ph(s′|s,a) =


1− δ − 〈a, γh〉 (s, s′) = (0, 0),

δ + 〈a,γh〉 (s, s′) = (0, 1),

δ (s, s′) = (1, 0),

1− δ (s, s′) = (1, 1).

In our experiment6, we set H = 10, K = 2500, δ = 0.35 and d = 13, thus A contains 1024 actions.
Now we apply our algorithms, LSVI-UCB-Batch and LSVI-UCB-RareSwitch, to this linear MDP
instance, and compare their performance with the fully adaptive baseline LSVI-UCB (Jin et al.,
2020) under different parameter settings. In detail, for LSVI-UCB-Batch, we run the algorithm for
B = 10, 20, 30, 40, 50 respectively; for LSVI-UCB-RareSwitch, we set η = 2, 4, 8, 16, 32. We plot
the average regret (Regret(T)/K) against the number of episodes in Figure 1. In addition to the
regret of the proposed algorithms, we also plot the regret of a uniformly random policy (i.e., choosing
actions uniformly randomly in each step) as a baseline.

From Figure 1, we can see that for LSVI-UCB-Batch, when B ≈
√
K, it achieves a similar regret as

the fully adaptive LSVI-UCB as it collects more and more trajectories. For LSVI-UCB-RareSwitch,
a constant value of η yields a similar order of regret compared with LSVI-UCB as suggested by
Theorem 5.1. By comparing Figure 1(a) and 1(b), we can see that the performance of LSVI-UCB-
RareSwitch is consistently close to that of the fully-adaptive LSVI-UCB throughout the learning
process, while the performance gap between LSVI-UCB-Batch and LSVI-UCB is small only when k
is large. This suggests a better adaptivity of LSVI-UCB-RareSwitch than LSVI-UCB-Batch, which
only updates the policy at prefixed time steps, thus being not adaptive enough.

6All experiments are performed on a PC with Intel i7-9700K CPU.

9

Moreover, we can also see the trade-off between the regret and the adaptivity level: with more
limited adaptivity (smaller B or larger η) the regret gap between our algorithms and the fully adaptive
LSVI-UCB becomes larger. These results indicate that our algorithms can indeed achieve comparable
performance as LSVI-UCB, even under adaptivity constraints. This corroborates our theory.

7 Conclusions

In this work, we study online RL with linear function approximation under the adaptivity constraints.
We consider both the batch learning model and the rare policy switch models and propose two
new algorithms LSVI-UCB-Batch and LSVI-UCB-RareSwitch for each setting. We show that
LSVI-UCB-Batch enjoys an Õ(

√
d3H3T + dHT/B) regret and LSVI-UCB-RareSwitch enjoys

an Õ(
√
d3H3T [1 + T/(dH)]dH/B) regret. Compared with the fully adaptive LSVI-UCB algo-

rithm (Jin et al., 2020), our algorithms can achieve the same regret with a much fewer number of
batches/policy switches. We also prove the regret lower bound for the batch learning learning model,
which suggests that the dependency on B in LSVI-UCB-Batch is tight.

For the future work, we would like to prove the regret lower bound for the rare policy switching
model that explicitly depends on the given adaptivity budget B.

Acknowledgments and Disclosure of Funding

We would like to thank the anonymous reviewers for their helpful comments. Part of this work was
done when DZ and QG participated the Theory of Reinforcement Learning program at the Simons
Institute for the Theory of Computing in Fall 2020. DZ and QG are partially supported by the
National Science Foundation CAREER Award 1906169, IIS-1904183 and AWS Machine Learning
Research Award. The views and conclusions contained in this paper are those of the authors and
should not be interpreted as representing any funding agencies.

References
ABBASI-YADKORI, Y., PÁL, D. and SZEPESVÁRI, C. (2011). Improved algorithms for linear

stochastic bandits. In Advances in Neural Information Processing Systems, vol. 24.

ALTSCHULER, J. and TALWAR, K. (2018). Online learning over a finite action set with limited
switching. In Conference On Learning Theory. PMLR.

ARORA, R., DEKEL, O. and TEWARI, A. (2012). Online bandit learning against an adaptive
adversary: from regret to policy regret. arXiv preprint arXiv:1206.6400 .

AYOUB, A., JIA, Z., SZEPESVARI, C., WANG, M. and YANG, L. (2020). Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning. PMLR.

BAI, Y., XIE, T., JIANG, N. and WANG, Y.-X. (2019). Provably efficient q-learning with low
switching cost. In Advances in Neural Information Processing Systems, vol. 32.

CAI, Q., YANG, Z., JIN, C. and WANG, Z. (2020). Provably efficient exploration in policy
optimization. In International Conference on Machine Learning. PMLR.

CESA-BIANCHI, N., DEKEL, O. and SHAMIR, O. (2013). Online learning with switching costs and
other adaptive adversaries. In Advances in Neural Information Processing Systems, vol. 26.

CHEN, L., YU, Q., LAWRENCE, H. and KARBASI, A. (2020). Minimax regret of switching-
constrained online convex optimization: No phase transition. In Advances in Neural Information
Processing Systems, vol. 33.

DEKEL, O., DING, J., KOREN, T. and PERES, Y. (2014). Bandits with switching costs: T 2/3 regret.
In Proceedings of the forty-sixth annual ACM symposium on Theory of computing.

DEVROYE, L., LUGOSI, G. and NEU, G. (2015). Random-walk perturbations for online combinato-
rial optimization. IEEE Transactions on Information Theory 61 4099–4106.

10

DU, S. S., KAKADE, S. M., LEE, J. D., LOVETT, S., MAHAJAN, G., SUN, W. and WANG, R.
(2021). Bilinear classes: A structural framework for provable generalization in rl. In International
Conference on Machine Learning. PMLR.

DU, S. S., KAKADE, S. M., WANG, R. and YANG, L. F. (2020). Is a good representation
sufficient for sample efficient reinforcement learning? In International Conference on Learning
Representations.

ESFANDIARI, H., KARBASI, A., MEHRABIAN, A. and MIRROKNI, V. (2021). Regret bounds for
batched bandits. In Proceedings of the AAAI Conference on Artificial Intelligence.

FOSTER, D. J., RAKHLIN, A., SIMCHI-LEVI, D. and XU, Y. (2021). Instance-dependent complexity
of contextual bandits and reinforcement learning: A disagreement-based perspective. In Conference
on Learning Theory.

GAO, M., XIE, T., DU, S. S. and YANG, L. F. (2021). A provably efficient algorithm for linear
markov decision process with low switching cost. arXiv preprint arXiv:2101.00494 .

GAO, Z., HAN, Y., REN, Z. and ZHOU, Z. (2019). Batched multi-armed bandits problem. In
Advances in Neural Information Processing Systems, vol. 32.

GEULEN, S., VÖCKING, B. and WINKLER, M. (2010). Regret minimization for online buffering
problems using the weighted majority algorithm. In COLT. Citeseer.

HAN, Y., ZHOU, Z., ZHOU, Z., BLANCHET, J., GLYNN, P. W. and YE, Y. (2020). Sequential batch
learning in finite-action linear contextual bandits. arXiv preprint arXiv:2004.06321 .

HE, J., ZHOU, D. and GU, Q. (2021). Logarithmic regret for reinforcement learning with linear
function approximation. In International Conference on Machine Learning. PMLR.

JAGHARGH, M. R. K., KRAUSE, A., LATTANZI, S. and VASSILVTISKII, S. (2019). Consistent
online optimization: Convex and submodular. In The 22nd International Conference on Artificial
Intelligence and Statistics.

JAKSCH, T., ORTNER, R. and AUER, P. (2010). Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research 11 1563–1600.

JIA, Z., YANG, L., SZEPESVARI, C. and WANG, M. (2020). Model-based reinforcement learning
with value-targeted regression. In Learning for Dynamics and Control. PMLR.

JIN, C., YANG, Z., WANG, Z. and JORDAN, M. I. (2020). Provably efficient reinforcement learning
with linear function approximation. In Conference on Learning Theory. PMLR.

KALAI, A. and VEMPALA, S. (2005). Efficient algorithms for online decision problems. Journal of
Computer and System Sciences 71 291–307.

LATTIMORE, T., SZEPESVARI, C. and WEISZ, G. (2020). Learning with good feature representations
in bandits and in rl with a generative model. In International Conference on Machine Learning.
PMLR.

NEU, G. and PIKE-BURKE, C. (2020). A unifying view of optimism in episodic reinforcement
learning. In Advances in Neural Information Processing Systems, vol. 33.

PERCHET, V., RIGOLLET, P., CHASSANG, S., SNOWBERG, E. ET AL. (2016). Batched bandit
problems. The Annals of Statistics 44 660–681.

RUAN, Y., YANG, J. and ZHOU, Y. (2020). Linear bandits with limited adaptivity and learning
distributional optimal design. arXiv preprint arXiv:2007.01980 .

WANG, R., SALAKHUTDINOV, R. R. and YANG, L. (2020). Reinforcement learning with general
value function approximation: Provably efficient approach via bounded eluder dimension. In
Advances in Neural Information Processing Systems, vol. 33.

11

WANG, Y., WANG, R., DU, S. S. and KRISHNAMURTHY, A. (2021). Optimism in reinforcement
learning with generalized linear function approximation. In International Conference on Learning
Representations.

YANG, L. and WANG, M. (2019). Sample-optimal parametric q-learning using linearly additive
features. In International Conference on Machine Learning.

YANG, Z., JIN, C., WANG, Z., WANG, M. and JORDAN, M. I. (2020). On function approximation
in reinforcement learning: Optimism in the face of large state spaces. In Advances in Neural
Information Processing Systems, vol. 33.

ZANETTE, A., LAZARIC, A., KOCHENDERFER, M. and BRUNSKILL, E. (2020). Learning near
optimal policies with low inherent bellman error. In International Conference on Machine Learning.
PMLR.

ZHANG, Z., JI, X. and DU, S. S. (2021). Is reinforcement learning more difficult than bandits? a
near-optimal algorithm escaping the curse of horizon. In Conference on Learning Theory. PMLR.

ZHOU, D., GU, Q. and SZEPESVARI, C. (2021a). Nearly minimax optimal reinforcement learning
for linear mixture markov decision processes. In Conference on Learning Theory. PMLR.

ZHOU, D., HE, J. and GU, Q. (2021b). Provably efficient reinforcement learning for discounted
mdps with feature mapping. In International Conference on Machine Learning. PMLR.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] The

goal of our paper is to develop general algorithms and theoretical analyses for RL with
linear function approximation under adaptivity constraints. In this regard, we believe
there are no societal impacts because this paper is mainly a theoretical work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A] We do not use any
existing assets.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

12

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Our work does not involve human subjects.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

102 103

Episode

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Av
er

ag
e

Re
gr

et

random
fully adaptive
B = 50
B = 40
B = 30
B = 10

(a) LSVI-UCB-Batch

102 103

Episode

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Av
er

ag
e

Re
gr

et

random
fully adaptive

= 4
= 8
= 16
= 32

(b) LSVI-UCB-RareSwitch

Figure 2: Plot of average regret (Regret(T)/K) v.s. the number of episodes in log-scale. The results
are averaged over 50 rounds of each algorithm, and the error bars are chosen to be [20%, 80%]
empirical confidence intervals.

A Additional Details on the Numerical Experiments

A.1 Log-scaled Plot of the Average Regret

We also provide log-scaled plot of the average regret in Figure 2. We can see that the slope of the
average regret curves for our proposed algorithms is similar to that of the fully adaptive LSVI-UCB,
all indicating an Õ(1/

√
T) scaling.

A.2 Misspecified Linear MDP

We also empirically evaluate our algorithms on linear MDP with different levels of misspecification.
In particular, based on the linear MDP instance constructed in Example 6.1, we follow the definition
of ζ-approximate linear MDP in Jin et al. (2020), and consider a corrupted transition given by

Ph(s′|0, a) = (1− f(a))φ(0, a)>µh(s′) + f(a)1{s′ = g(a)}

where f : A → [0, ζ], ζ ∈ (0, 1) and g : A → S are unknown. The two additional functions, f
and g, can be constructed by random sampling before running the algorithms, and the magnitude of
ζ ∈ (0, 1) characterizes the level of model misspecification. All the other components of the model
and the experiment configurations remain the same as those in Section 6.

Under this misspecified model with levels ζ = 0.05, 0.1, 0.2, 0.4, we run LSVI-UCB-Batch with
B = 50 and LSVI-UCB-RareSwitch with η = 8 respectively. We plot the average regret of the
algorithms in Figure 3. We can see that our algorithms can still achieve a reasonably good performance
under considerable levels of model misspecification.

B Proofs of Theorem 4.1

In this section we prove Theorem 4.1

For simplicity, we use bk to denote the batch tb satisfying tb ≤ k < tb+1. Let Γkh(·, ·) be β ·
[φ(·, ·)>(Λk

h)−1φ(·, ·)]1/2 for any h ∈ [H], k ∈ [K]. First, we need the following lemma which
gives Regret(T) a high probability upper bound that depends on the summation of bonuses.

Lemma B.1. With probability at least 1− δ, the total regret of Algorithm 1 satisfies

Regret(T) ≤
K∑
k=1

H∑
h=1

min
{
H, 2Γbkh (skh, a

k
h)
}

+ 2H

√
T log

(
2dT

δ

)
.

14

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

Re
gr

et

= 0.00
= 0.05
= 0.10
= 0.20
= 0.40

(a) LSVI-UCB-Batch (B = 50)

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

Re
gr

et

= 0.00
= 0.05
= 0.10
= 0.20
= 0.40

(b) LSVI-UCB-RareSwitch (η = 8)

Figure 3: Plot of average regret (Regret(T)/K) v.s. the number of episodes for a misspecified linear
MDP. The results are averaged over 50 rounds of each algorithm, and the error bars are chosen to be
[20%, 80%] empirical confidence intervals.

Lemma B.1 suggests that in order to bound the total regret, it suffices to bound the summation of
the ‘delayed’ bonuses Γbkh (skh, a

k
h), in contrast to the per-episode bonuses Γkh(skh, a

k
h) for all k ∈ [K].

The superscript bk suggests that instead of using all the information up to the current episode k,
Algorithm 1 can only use the information before the current batch bk due to its batch learning nature.
How to control the error induced by batch learning is the main difficulty in our analysis. To tackle
this difficulty, we first need an upper bound for the summation of per-episode bonuses Γkh(skh, a

k
h).

Lemma B.2. Let β be selected as Theorem 4.1 suggests. Then the summation of all the per-episode
bonuses is bounded by

K∑
k=1

H∑
h=1

Γkh(skh, a
k
h) ≤ β

√
2dHT log

(
T

dH
+ 1

)
.

It is worth noting that the per-episode bonuses are not generated from our algorithm, but instead are
some virtual terms that we introduce to facilitate our analysis. Equipped with Lemma B.2, we only
need to bound the difference between delayed bonuses and per-episode bonuses. We consider all the
indices (k, h) ∈ [K] × [H]. The next lemma suggests that considering the ratio between delayed
bonuses and per-episode bonuses, the ‘bad’ indices, where the ratio is large, only appear few times.
This is also the key lemma of our analysis.

Lemma B.3. Define the set C as follows

C = {(k, h) : Γbkh (skh, a
k
h)/Γkh(skh, a

k
h) > 2},

then we have |C| ≤ dHK log(K/d+ 1)/(2B log 2).

With all the above lemmas, we now begin to prove our main theorem.

Proof of Theorem 4.1. Suppose the event defined in Lemma B.1 holds. Then by Lemma B.1 we have
that

Regret(T) ≤
H∑
h=1

K∑
k=1

min
{
H, 2Γbkh (skh, a

k
h)
}

︸ ︷︷ ︸
I

+2H

√
T log

(
2dT

δ

)
(B.1)

15

holds with probability at least 1 − δ. Next, we are going to bound I . Let C be the set defined in
Lemma B.3. Then we have

I =
∑

(k,h)∈C

min
{
H, 2Γbkh (skh, a

k
h)
}

+
∑

(k,h)/∈C

min
{
H, 2Γbkh (skh, a

k
h)
}

≤ H|C|+ 4
∑

(k,h)/∈C

Γkh(skh, a
k
h)

≤ H|C|+ 4

H∑
h=1

K∑
k=1

Γkh(skh, a
k
h), (B.2)

where the first inequality holds due to the definition of C, and the second one holds trivially. Therefore,
substituting (B.2) into (B.1), the regret can be bounded by

Regret(T) ≤ 2H

√
T log

(
2dT

δ

)
+H|C|+ 4

H∑
h=1

K∑
k=1

Γkh(skh, a
k
h)

≤ 2H

√
T log

(
2dT

δ

)
+

dHT

2B log 2
log

(
T

dH
+ 1

)
(B.3)

+ 4c

√
2d3H3T log

(
2dT

δ

)
log

(
T

dH
+ 1

)
,

where the second inequality holds due to Lemmas B.2 and B.3 and the fact that T = KH . This
completes the proof.

B.1 Proof of Lemma B.1

The following two lemmas in Jin et al. (2020) characterize the quality of the estimates given by the
LSVI-UCB-type algorithms.
Lemma B.4 (Lemma B.5, Jin et al. 2020). With probability at least 1 − δ, we have Qkh(s, a) ≥
Q∗h(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K].
Lemma B.5 (Lemma B.4, Jin et al. 2020). There exists some constant c such that if we set β =
cdH

√
log(dT/δ), then for any fixed policy π we have for all (s, a, h, k) ∈ S ×A× [H]× [K] that∣∣∣φ(s, a)>(wbk

h −wπ
h)−

(
Ph(V bkh+1 − V

π
h+1)

)
(s, a)

∣∣∣ ≤ β√φ(s, a)>(Λbk
h)−1φ(s, a)

with probability at least 1− δ.

Proof of Lemma B.1. By Lemma B.4, we have Qkh(s, a) ≥ Q∗h(s, a) for all (s, a, h, k) ∈ S ×
A × [H] × [K] on some event E such that P(E) ≥ 1 − δ/2. In the following argument, all
statements would be conditioned on the event E . Then by the definition of V k1 we know that
V k1 (s) = maxa∈AQ

k
1(s, a) ≥ maxa∈AQ

∗
1(s, a) = V ∗1 (s) for all (s, k) ∈ S × [K]. Therefore, we

have

Regret(T) =

K∑
k=1

[
V ∗1 (sk1)− V π

k

1 (sk1)
]
≤

K∑
k=1

[
V k1 (sk1)− V π

k

1 (sk1)
]

=

K∑
k=1

[
V bk1 (sk1)− V π

k

1 (sk1)
]
.

Note that

V bkh (skh)− V π
k

h (skh) = Qbkh (skh, a
k
h)−Qπ

k

h (skh, a
k
h),

which together with the definition of Qbkh and Lemma B.5 implies that

V bkh (skh)− V π
k

h (skh) ≤ φ(skh, a
k
h)>wbk

h − φ(skh, a
k
h)>wπk

h + Γbkh (skh, a
k
h)

≤
[
Ph
(
V bkh+1 − V

πk

h+1

)]
(skh, a

k
h) + 2Γbkh (skh, a

k
h),

16

where the first inequality holds due to the algorithm design, the second one holds due to Lemma B.5.
Meanwhile, notice that 0 ≤ V bkh (skh)− V ∗h (skh) ≤ V bkh (skh)− V πk

h (skh) ≤ H , then we have

V bkh (skh)− V π
k

h (skh) ≤ min
{
H,
[
Ph
(
V bkh+1 − V

πk

h+1

)]
(skh, a

k
h) + 2Γbkh (skh, a

k
h)
}

≤
[
Ph
(
V bkh+1 − V

πk

h+1

)]
(skh, a

k
h) + min

{
H, 2Γbkh (skh, a

k
h)
}

= V bkh+1(skh+1)− V π
k

h+1(skh+1) + min
{
H, 2Γbkh (skh, a

k
h)
}

+
[
Ph
(
V bkh+1 − V

πk

h+1

)]
(skh, a

k
h)−

(
V bkh+1(skh+1)− V π

k

h+1(skh+1)
)
,

where the second inequality holds since V bkh+1 − V π
k

h+1 ≥ 0. Recursively expand the above inequality,
and we have

V bk1 (sk1)− V π
k

1 (sk1) =

H∑
h=1

{[
Ph
(
V bkh+1 − V

πk

h+1

)]
(skh, a

k
h)−

(
V bkh+1(skh+1)− V π

k

h+1(skh+1)
)}

+

H∑
h=1

min
{
H, 2Γbkh (skh, a

k
h)
}
.

Therefore, the total regret can be bounded as follows

Regret(T) ≤
K∑
k=1

H∑
h=1

{[
Ph
(
V bkh+1 − V

πk

h+1

)]
(skh, a

k
h)−

(
V bkh+1 − V

πk

h+1

)
(skh+1)

}
+

K∑
k=1

H∑
h=1

min
{
H, 2Γbkh (skh, a

k
h)
}
.

Note that conditional on Fk,h,1, V bkh+1 and V π
k

h+1 are both deterministic, while skh+1 follows the
distribution Ph(·|skh, akh). Therefore, the first term on the RHS is a sum of a martingale difference
sequence such that each summand has absolute value at most 2H . Applying Azuma-Hoeffding
inequaliy yields

K∑
k=1

H∑
h=1

{[
Ph
(
V bkh+1 − V

πk

h+1

)]
(skh, a

k
h)−

(
V bkh+1 − V

πk

h+1

)
(skh+1)

}
≤ 2H

√
T log

(
2dT

δ

)
,

with probability at least 1 − δ/2. By a union bound over the event E and the convergence of the
martingale, with probability at least 1− δ, we have

Regret(T) ≤ 2H

√
T log

(
2dT

δ

)
+

K∑
k=1

H∑
h=1

min
{
H, 2Γbkh (skh, a

k
h)
}
.

B.2 Proof of Lemma B.2

We need the following lemma to bound the sum of the bonus terms.
Lemma B.6 (Lemma 11, Abbasi-Yadkori et al. 2011). Let {φt}∞t=1 be an Rd−valued sequence.
Meanwhile, let Λ0 ∈ Rd×d be a positive-definite matrix and Λt = Λ0 +

∑t−1
i=1 φiφ

>
i . It holds for

any t ∈ Z+ that
t∑
i=1

min{1,φ>i Λ−1i φi} ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

Moreover, assuming that ‖φi‖2 ≤ 1 for all i ∈ Z+ and λmin(Λ0) ≥ 1, it holds for any t ∈ Z+ that

log

(
det(Λt+1)

det(Λ1)

)
≤

t∑
i=1

φ>i Λ−1i φi ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

17

Proof of Lemma B.2. We can bound the summation of Γkh(skh, a
k
h) as follows:

H∑
h=1

K∑
k=1

Γkh(skh, a
k
h) ≤

H∑
h=1

√√√√K ·
K∑
k=1

[Γkh(skh, a
k
h)]2 = β

√
K

H∑
h=1

√√√√ K∑
k=1

φ(skh, a
k
h)>[Λk

h]−1φ(skh, a
k
h),

where the inequality holds due to Cauchy-Schwarz inequality. Furthermore, by Lemma B.6, we have

K∑
k=1

φ(skh, a
k
h)>[Λk

h]−1φ(skh, a
k
h) ≤ 2 log

(
det ΛK+1

h

det Λ1
h

)
≤ 2d log(K/d+ 1),

where the second inequality holds due to Lemma C.1. That finishes our proof.

B.3 Proof of Lemma B.3

Proof of Lemma B.3. First, let Ch denote the indices k where (k, h) ∈ C, then we have |C| =∑H
h=1 |Ch|. Next we bound |Ch| for each h. For each k ∈ Ch, suppose tb ≤ k < tb+1, then we have

bk = tb and

log det(Λ
tb+1

h)− log det(Λtb
h) ≥ log det(Λk

h)− log det(Λbk
h) ≥ 2 log(Γbkh (skh, a

k
h)/Γkh(skh, a

k
h)) > 2 log 2,

where the first inequality holds since Λ
tb+1

h � Λk
h, the second inequality holds due to Lemma C.2,

the third one holds due to the definition of Ch. Thus, let Ĉh denote the set

Ĉh = {b ∈ [B] : log det(Λ
tb+1

h)− log det(Λtb
h) > 2 log 2},

we have |Ch| ≤ bK/Bc · |Ĉh|. In the following we bound |Ĉh|. Now we consider the sequence
{log det(Λ

tb+1

h)− log det(Λtb
h)}. It is easy to see log det(Λ

tb+1

h)− log det(Λtb
h) ≥ 0, therefore

2 log 2|Ĉh| ≤
∑
b∈Ĉh

[log det(Λ
tb+1

h)− log det(Λtb
h)] ≤

B∑
b=1

[log det(Λ
tb+1

h)− log det(Λtb
h)]. (B.4)

Meanwhile, we have
B∑
b=1

[log det(Λ
tb+1

h)− log det(Λtb
h)] = log det(Λ

tB+1

h) = log det(ΛK+1
h) ≤ d log(K/d+ 1),

(B.5)

where the last inequality holds due to Lemma C.1. Therefore, (B.4) and (B.5) suggest that |Ĉh| ≤
d log(K/d+ 1)/(2 log 2). Finally, we bound |C| as follows, which ends our proof.

|C| =
H∑
h=1

|Ch| ≤
H∑
h=1

K/B · |Ĉh| ≤ dHK log(K/d+ 1)/(2B log 2).

C Proof of Theorem 5.1

Now we provide the proof of Theorem 5.1. We continue to use the notions that have been introduced
in Section 4. We first give an upper bound on the determinant of Λk

h.

Lemma C.1. Let {Λk
h, (k, h) ∈ [K] × [H]} be as defined in Algorithms 1 and 2. Then for all

h ∈ [H] and k ∈ [K], we have det(Λk
h) ≤ (λ+ (k − 1)/d)d.

Proof. Note that

tr(Λk
h) = tr(λId) +

k−1∑
τ=1

tr
(
φ(sτh, a

τ
h)φ(sτh, a

τ
h)>
)

= λd+

k−1∑
τ=1

‖φ(sτh, a
τ
h)‖22 ≤ λd+ k − 1,

18

where the inequality follows from the assumption that ‖φ(s, a)‖2 ≤ 1 for all (s, a) ∈ S ×A. Since
Λk
h is positive semi-definite, by inequality of arithmetic and geometric means, we have

det(Λk
h) ≤

(
tr(Λk

h)

d

)d
≤
(
λ+

k − 1

d

)d
.

This finishes the proof.

Next lemma provides a determinant-based upper bound for the ratio between the norms ‖ · ‖A and
‖ · ‖B, where A � B.

Lemma C.2 (Lemma 12, Abbasi-Yadkori et al. 2011). Suppose A,B ∈ Rd×d are two posi-
tive definite matrices satisfying that A � B, then for any x ∈ Rd, we have ‖x‖A ≤ ‖x‖B ·√

det(A)/ det(B).

The switching cost of Algorithm 2 is characterized in the following lemma.
Lemma C.3. For any η > 1 and λ > 0, the global switching cost of Algorithm 2 is bounded by

Nswitch ≤
dH

log η
log

(
1 +

K

λd

)
.

Proof. Let {k1, k2, · · · , kNswitch} be the episodes where the algorithm updates the policy, and we also
define k0 = 0. Then by the determinant-based criterion (Line 7), for each i ∈ [Nswitch] there exists at
least one h ∈ [H] such that

det(Λki
h) > η · det(Λ

ki−1

h).

By the definition of Λk
h (Line 5), we know that Λj1

h � Λj2
h for all j1 ≥ j2 and h ∈ [H]. Thus we

further have
H∏
h=1

det(Λki
h) > η ·

H∏
h=1

det(Λ
ki−1

h).

Applying the above inequality for all i ∈ [Nswitch] yields
H∏
h=1

det
(
Λ
kNswitch
h

)
> ηNswitch ·

H∏
h=1

det(Λ0
h) = ηNswitchλdH ,

as we initialize Λ0
h to be λId. While by Lemma C.1, we have

H∏
h=1

det
(
Λ
kNswitch
h

)
≤

H∏
h=1

det(ΛK
h) ≤

(
λ+

K

d

)dH
.

Therefore, combining the above two inequalities, we obtain that

Nswitch ≤
dH

log η
log

(
1 +

K

λd

)
.

This completes the proof.

We now begin to prove our main theorem.

Proof of Theorem 5.1. First, substituting the choice of η and λ = 1 into the bound in Lemma C.3
yields that Nswitch ≤ B.

Next, we bound the regret of Algorithm 2. The result of Lemma B.1 still holds here, thus it suffices
to bound the summation of the bonus terms Γbkh (skh, a

k
h). Note that bk ≤ k, and thus Λk

h � Λbk
h for

all (h, k) ∈ [H]× [K]. Then by Lemma C.2 we have

Γbkh (skh, a
k
h)

Γkh(skh, a
k
h)
≤

√
det(Λk

h)

det(Λbk
h)
≤ √η (C.1)

19

for all (h, k) ∈ [H]× [K], where the second inequality holds due to the algorithm design. Hence, we
have

K∑
k=1

H∑
h=1

Γbkh (skh, a
k
h) ≤ √η

K∑
k=1

H∑
h=1

Γkh(skh, a
k
h) ≤ β

√
2ηdHT log

(
T

dH
+ 1

)
,

where the second inequality follows from Lemma B.2. Therefore, we conclude by Lemma B.1 that

Regret(T) ≤ 2c

√
2ηd3H3T log

(
T

dH
+ 1

)
log

(
2dT

δ

)
+ 2H

√
T log

(
2dT

δ

)
(C.2)

holds with probability at least 1 − δ. Finally, substituting the choice of η into (C.2) finishes our
proof.

D Proofs of Theorem 4.2

In this section, we prove the lower bound for the batch learning model.

Proof of Theorem 4.2. We prove the Ω(dH
√
T) and Ω(dHT/B) lower bounds separately. The first

term has been proved in Theorem 5.6, (Zhou et al., 2021a). In the remaining of this proof, we prove
the second term. We consider a class of MDPs parameterized by γ ∈ Γ ⊂ R2dH , where Γ is defined
as follows

Γ =
{

(b>1,1, · · · ,b>H,d)> : bi,j ∈ {(0, 1)>, (1, 0)>}
}
.

The MDP is defined as follows. The states space S consist of has d+ 1 states x0, · · · , xd, and the
action space A contains two actions a1 = (0, 1)>,a2 = (1, 0)>. For any γ = (b>1,1, · · · ,b>H,d)>,
the feature mapping is defined as

φ(x0,aj) = (1, 0, · · · , 0︸ ︷︷ ︸
2d

)>, φ(xi,aj) = (1, 0, · · · , 0︸ ︷︷ ︸
2i−2

,a>j , 0, · · · , 0︸ ︷︷ ︸
2d−2i

)> ∈ R2d+1

for every i ∈ [d] and j ∈ {1, 2}. We further define the vector-valued measures as

µγ
h(x0) = (1,−b>h,1, · · · ,−b>h,d)

>, µγ
h(xi) = (0, · · · , 0︸ ︷︷ ︸

2i−1

,b>h,i, 0, · · · , 0︸ ︷︷ ︸
2d−2i

)>

for every i ∈ [d], j ∈ {1, 2} and h ∈ [H]. Finally, for each h ∈ [H], we define

θh = (0, 1, · · · , 1︸ ︷︷ ︸
2d

)> ∈ R2d+1.

Thereby, for each h ∈ [H], the transition Pγ
h is defined as Pγ

h(s′|s,a) = 〈φ(s,a),µγ
h(s′)〉, and the

reward function is rh(s,a) = 〈φ(s,a),θh〉 for all (s,a) ∈ S × A. It is straightforward to see that
the reward satisfies rh(x0,a) = 0 and rh(xi,a) = 1 for i ∈ [d] and all a ∈ A. In addition, the
starting state can be x0 or xi.

Based on the above definition, we have the following transition dynamic:

• x0 is an absorbing state.

• For any i ∈ [d], xi can only transit to x0 or xi.

• For any episode starting from x0, there is no regret.

• For any episode starting from some xi with i ∈ [d], suppose h is the first stage where the
agent did not choose the "right" action a = bh,i, then the regret for this episode is H − h.

Now we show that for any deterministic algorithm7, there exists a γ ∈ Γ such that the regret is lower
bounded by dHT/B. Suppose 1 = t1 < · · · < tB+1 = K + 1. We can treat all episodes in the same

7The lower bound of random algorithms is lower bounded by the lower bound of deterministic algorithms
according to Yao’s minimax principle.

20

batch as copies of one episode, because all actions taken by the agent, transitions and rewards are the
same. When B ≥ dH , there exists C = {c1,1, · · · , cH,d} ⊂ [B] with |C| = dH such that∑

h∈[H]

∑
j∈[d]

(tch,j+1 − tch,j
) ≥ dHK

B
.

For simplicity, we denote the i-th batch as the collection of episodes {ti, · · · , ti+1 − 1}. Now we
carefully pick the starting state si0 for the episodes in the i-th batch.

• For any batch whose starting episode does not belong to C, we set the starting states of the
episodes in this batch as x0. In other words, for i /∈ C, we set sti0 = · · · = s

ti+1−1
0 = x0.

• For any batch whose starting episode lies in C, for i = ch,j ∈ C, we set s
tch,j

0 = · · · =

s
tch,j+1−1
0 = xj .

We consider the regret over batches c1,i, · · · , cH,i. Since the algorithm, transition and reward are all
deterministic, then the environment can predict the agent’s selection. Specifically, suppose the agent
will always take action a at h-th stage in the episodes belonging to the ch,j-th batch, where h ≤ H/2.
Then the environment selects bh,j as (1, 1)> − a, i.e., the other action. Therefore, the agent will
always pick the “wrong" action when she firstly visits state xj at h-th stage, which occurs at least
H − h ≥ H/2 regret. Moreover, since for the batch learning model, all the actions are decided at
the beginning of each batch, then the H/2 regret will last (tch,j+1 − tch,j

) episodes. Taking the
summation, we have

Regret(T) ≥ H

2
·
∑
h∈[H]

∑
j∈[d]

(tch,j+1 − tch,j
) ≥ dHT

2B
.

Finally, replacing d by (d− 1)/2, we can convert our feature mapping from a (2d+ 1)-dimensional
vector to a d-dimensional vector and complete the proof.

21

	Introduction
	Related Works
	Preliminaries
	Markov Decision Processes
	Linear Function Approximation
	Models for Limited Adaptivity

	RL in the Batch Learning Model
	Algorithm and Regret Analysis

	RL in the Rare Policy Switch Model
	Algorithm and Regret Analysis

	Numerical Experiment
	Conclusions
	Additional Details on the Numerical Experiments
	Log-scaled Plot of the Average Regret
	Misspecified Linear MDP

	Proofs of Theorem 4.1
	Proof of Lemma B.1
	Proof of Lemma B.2
	Proof of Lemma B.3

	Proof of Theorem 5.1
	Proofs of Theorem 4.2

