
Published as a conference paper at ICLR 2024

SAS: Structured Activation Sparsification
Supplemental Material

A Detail in Trajectory Length Analysis

Network design for the Trajectory Length analysis (section 3) is illustrated infig. A1. We
evaluate the length by randomly initializing the weight 100 times and reporting their average.
We also compose the SWS network having the same sparsity, which consumes approximately
the same mult count. The SWS network uses ReLU activation.

Figure A1: Network design used for the Trajectory Length Analysis (section 3). Relative
output length with respect to the input circle length is an indicator of the network’s expressive
power; a longer length (complex trajectory) indicates more expressive power.

B Detail in SWS Network

In this paper, we propose SAS to improve the network capacity or accuracy without increas-
ing the actual mult count. Therefore, we compare the SWS in the same scenario (keeping
the mult count constant while increasing the sparsity). Specifically, we consider a base
layer consisting of matmul between activation X and weight W, where X 2 RC̄i⇥HW and
W 2 RCo⇥C̄i (eq. (1)). Using the proposed SAS, one could increase the network width for M
times while maintaining the same mult count as the base layer by utilizing the 1:M sparsity
pattern. The sparsified matrix shape is, X 2 RMC̄i⇥HW and W 2 RCo⇥MC̄i (eq. (3)). Note
that the SAS does not change the output channel dimension Co.
On the other hand, in the case of SWS, if one increases the network width for the M times
and uses the 1:M sparse pattern on weight, the mult count of the resultant network increases
by about M ⇥ M/M = M because both input and output channel is M times wider. In
the case of SWS, by using

p
M times wider network for the 1:M sparsity pattern, we can

construct the SWS network, which has roughly the same mult count as the base dense
network and SAS. More specifically, we adopt the following configuration: We use

p
M

times (instead of M times) wider input/output channel. In this configuration, we’ll have
approximately the same mult count as the base network. The network width needs to be
an integer value, and it also needs to be a multiple of M . Hence, we use the weight having
the shape of b

p
MC̄

(l)
i

e ⇥ b
p
MC

(l)
o e for the 1:M SWS network, where b·e is a rounding

operator, C̄(l)
i

, C(l)
o is the input/output channel dimension of l-th layer of the base dense

network. For the last chunk, when it does not equal to M , we use (b
p
MC̄

(l)
i

eb
p
MC

(l)
o e

13

Published as a conference paper at ICLR 2024

mod M):1 sparse pattern. This way, we construct the SWS network having approximately
the same mult count as the base dense network.
For example, consider the l-th layer of the base network consisting of convolution
with C̄i=288 (Ci=32, kernel size k=3) and Co=128. When M=8, then we have
b
p
MC̄

(l)
i

e=815 and b
p
MC

(l)
o e=181. Then mult count of the original dense layer (for

single pixel) is 288⇥64=18432, the mult count of the weight sparse layer (SWS) is 18440
(815⇥181/8=18439 with modulo 3, we use M=3 for the last chunk).

C Detail in Speed Benchmarking

On the wall-clock speed benchmarking reported in section 2.3, we adopt the opposite config-
uration as the neural network experiment. We evaluate the speed by changing the sparsity
pattern while keeping the matrix dimension unchanged to report more concrete comparisons.
Specifically, in the wall-clock speed benchmarking in fig. 3, we consider the matmul WX
where X 2 R�⇥↵ and W 2 R�⇥� which is same for dense matmul, SAS matmul, and
SWS matmul. The mult count of the three variants is the same (�⇥↵⇥�) when one does not
take the sparsity into account. By utilizing the 1:2 fine-grained (or semi-structured) sparsity
on Sparse Tensor Core, the mult count becomes half for SAS and SWS, i.e., (� ⇥ ↵⇥ �)/2.
As shown in fig. 3, we use fixed �=10240, changing ↵ = � from 10240 to 20480, which is
the same for dense matmul SAS matmul, and SWS matmul.
We want to emphasize that the scenario in this speed benchmarking (keep the same matrix
dimension) is different from the scenario for neural networks (keep the (almost) same mult
count). We adopt the different configurations to evaluate the speed in a fair setting between
SWS and SAS. In the neural network setting, one could construct the SWS network having
approximately the same mult count with the base one by using

p
M wider input/output

channel (supp. B); however, it is hard to align the mult count precisely, and the shape of
the matrices is different, which makes it hard to evaluate the overhead specific to SAS which
we are interested in (computation of index, reorder, and memory transfer for the index).
On the other hand, we can clearly evaluate this by measuring the time of the matmul of the
same-sized matrix (section 2.3).

14

Published as a conference paper at ICLR 2024

D Detail in Main Experiment

The primary experimental setup is summarized in table A1. The FLOPS and memory
footprint of the network used in the experiments are summarized in table A2
For training the SWS network, we employed the method of (Zhou et al., 2021) instead of
APEX’s Automatic SParsity1 because 1•code base of (Zhou et al., 2021)2 supports arbitrar-
ily 1 :M sparsity and 2•it allows training from scratch which enables fair comparison with
SAS.

Table A1: Experimental setup

CIFAR-10 CIFAR-100 ImageNet
Network ResNet18 ConvNeXt-B

Batch size 512 4096
Training epochs 16/↵⇥1000 600

Optimizer ERAdam (section 2.4) AdamW
Scheduler Two cycle cosine with kDecay=2.0 Zhang & Li (2020) Cosine

Initialization Kaiming-uniform He et al. (2015) Truncated Gaussian
Base width ↵ 4/8/16 2
Sparsity M ReLU/2/4/8/16 ReLU/2

CIFAR-10/CIFAR-100

The code for CIFAR-10 and CIFAR-100 is based on Pytorch lightning CIFAR10 tutorial
code3. We use a single A6000 GPU for CIFAR10 and CIFAR100 experiments. It takes a
day to train the single model.

ImageNet

The code for ImageNet is based on ConvNeXt’s (Liu et al., 2022) official code base4. We use
four A100 GPUs (each holding 256 batches) with an update frequency of four to virtually
construct the batch size of 4096. It takes about two weeks to train a single SAS model for
600 epochs (double the original 300 epochs to compensate for sparse gradient); we use the
default setup of ConvNeXt’s (Liu et al., 2022) official repository for training ImageNet-1K
(without pre-training using ImageNet-22K), only changing the original dense matmul to our
proposed SAS matmul(conv2D ! SASconv2D, and linear ! SASlinear) and training epochs
(300 ! 600). We use the original AdamW optimizer to keep the original ConvNeXt’s highly
optimized settings intact as much as possible (furthermore, in this moderate sparsity of
M=2, proposed ERAdam behaves almost identical to AdamW with warm-up). Refer to
their paper for a more detailed setup.

Table A2: FLOPS and memory footprints. Note that FLOPS and the number of
parameters and FLOPS of SWS are not precisely the same as the base dense network as
discussed in supp. B, but the difference is less than 1% for all the configurations.

Network FLOPS (all) Params (dense, SWS) Params (SAS)
ResNet18 (↵=4) 114K 731K 731K⇥M
ResNet18 (↵=8) 28K 182K 182K⇥M
ResNet18 (↵=16) 7K 46K 46K⇥M

ConvNeXt-B (↵=2) 3850M 22M 22M⇥M

1http://github.com/NVIDIA/apex
2http://github.com/NM-sparsity/NM-sparsity
3http://lightning.ai/docs/pytorch/stable/notebooks/lightning_examples
4https://github.com/facebookresearch/ConvNeXt

15

http://github.com/NVIDIA/apex
http://github.com/NM-sparsity/NM-sparsity
http://lightning.ai/docs/pytorch/stable/notebooks/lightning_examples
https://github.com/facebookresearch/ConvNeXt

Published as a conference paper at ICLR 2024

Training

During the training, SAS matmul is computed as follows: it first projects the dense/narrow
activation map into a structurally sparse/wide space by S, constructing the sparse activation
explicitly; then, it performs the conventional dense matmul. Note that it is equivalent to
the sparse matmul for efficient inference when hardware support is available, and we do
not construct the sparse matrix explicitly during inference. Still, the hardware directly
processes the narrow dense feature along with the index computed online (fig. 2). Refer to
the pseudo-code in listing 2 during training. When implemented this way, the gradient for
the wide weight W̃ could be computed using autograd mechanism.

1 def SAS_proj(x, m): # m corresponds to log2(M) in the main text
2 B, C, H, W = x.shape
3 xa = [torch.roll(x[:, None], i, dims=1) for i in range(m)]
4 ind = torch.cat([2∗∗i∗(torch.signbit(x_)) for i, x_ in enumerate(xa)], dim=2).sum(dim=2, keepdim=True)
5 x_sparse = torch.zeros([B, 2^m, C, H, W]).scatter_(1, ind, x[:, None]).view([B, (2^m)∗C, H, W])
6 return x_sparse
7 def forward(self, x): # x: input activation, m: sparsity factor (actual sparsity is 100(1−1/2^m)[%])
8 return F.conv2d(SAS_proj(x, m), self.weight, bias=self.bias, stride=....)

Listing 2: Code of SAS conv2d layer for training (PyTorch). Note: During inference, one does not
need to construct the sparse activation explicitly (L5); refer to fig. 2 for efficient infrence mechanism.

16

Published as a conference paper at ICLR 2024

E Memory Arrangement for cusparseLtMatmul

The Sparse Tensor Core and the cuSPARSELt library were originally developed to speed up
the DNN having structured weight sparsity (SWS). Our SAS improved the accuracy/compu-
tation tradeoff by using the same hardware and software library. In the case of SWS,
the index could be precomputed after training using cusparseLtSpMMACompress function of
cuSPARSELt library. Figure A2 illustrates the memory arrangement of value and index for
cusparseLtMatmul operation for NVIDIA’s Sparse Tensor Core. The value matrix follows
the index matrix. In the case of a 1:2 sparse pattern (TF32), the index is stored using 4-bit
(although it can be represented in 1-bit; Sparse Tensor Coreuse 4-bit to index a 1:2 pattern),
and ’0x4’ and ’0xe’ is assigned for indexing the first and second element, respectively.
The important note for Sparse Tensor Core is that the order of the index is not aligned
with its corresponding activation value; it needs to be reordered (L8 in listing 1), and the
reordered index Ĩ needs to be supplied to the core to get the correct result. The arrangement
depends on the size of activation matrices X (The memory arrangement in fig. A2 illustrates
the specific case when the input matrix is 64⇥ 32).

How to use the cusparseLtMatmul for SAS?

One can also use the cusparseLtSpMMACompress function for SWS to executed the SAS
matmul, 1•compute the index I using equation 3, then 2•explicitly computing the sparse
activation X̃ and finally 3•compute the reordered index Ĩ using cusparseLtSpMMACompress.
However, it is redundant and inefficient. We already have compressed activation X as an
output from the previous layer; the index I is computed cheaply. We want to reorder the
index I to get Ĩ without explicit construction of sparse activation X̃ as we discussed in the
main text (section 2.3). The problem is that NVIDIA does not provide information about
the rendering mechanism of cuSPARSELt.

Tools for digging up the reordering matrix

We developed a helper tool of cuSAS5 for finding out the rendering matrix O for arbitrary
size matrix to realize a general matmul for SAS activation. The core idea for realizing
the elucidation is impulse response of cusparseLtSpMMACompress function. Specifically, we
input the sparse activation X̃; all the odd element has a non-zero value except the (i, j)
element. Then, looking at the reordered index computed by cusparseLtSpMMACompress,
we can find the destination index (̃i, j̃) where (i, j) element in the original index should be
warped. Repeating this process for all the row-column pairs, we get the reordering matrix
O such that Ĩ = I[O]. The reordering matrix O depends only on the size of X; therefore
could be precomputed. We’ll also open-source this tool.
It is possible to implement the CUDA kernel, which runs the following operation at once
for more efficient SAS matmul; 1•checks the sign bit, 2•assign either ’0x4’ or ’0xe’, and
3•reorder.

Figure A2: Memory arrangement for cusparseLtMatmul. The index is located just after the
value. The index needs to be arranged for the execution of sparse matmul using cusparseLtMatmul.
The formatting of the index depends on the size of the matrix X in listing 1. This figure illustrate
the case for the 1:2 sparse pattern (TF32) and the input matrix size is 32⇥ 64.

5The current version supports sparse activation with a 1:2 structured pattern.

17

Published as a conference paper at ICLR 2024

F Fine-grained (semi) Structured Weight Sparsity.

NVIDIA’s SWS (NVIDIA, 2020) could speed up the matmul with weight having moderate
rate sparsity (e.g., 50%) on GPU, which is almost impossible for the unstructured sparse
pattern (section 5). They realized actual speed up by utilizing a specific pattern in their
sparsity, namely N :M structured sparsity. Suppose a typical matrix multiplication between
activation X 2 R16⇥32 and weight W 2 R32⇥8. The Dense Tensor Cores implement this
matmul by two cycles. In contrast, the Sparse Tensor Core only needs one cycle if the weight
tensor W satisfies the structured sparse pattern (fig. A3).
Our SAS could utilize the same hardware by the novel structured sparse projection mecha-
nism. With the same computational budget and on the same hardware, SAS realizes better
accuracy if one can use extra memory for storing the weight.

Figure A3: SWS matmul on Sparse Tensor Core NVIDIA (2020). Compare with our SAS
matmul mechanism in fig. 2.

18

