
A Notation

In this section, we explicitly summarize the notation. We intended to introduce all terms when needed.
However, due to the symbiosis of Graph Neural Networks (GNNs), adversarial robustness, adversarial
attacks, adversarial defenses, large-scale optimization, and robust statistics we inevitably need a large
number of different symbols. We give the important symbols in Table A.1. Recall that we formulate
GNNs as a recursive transformation and aggregation over the features/embedding of the neighboring
nodes (with a potentially weighted/normalized adjacency matrix A), i.e.

h
(l)
v = �(l)

h
AGG(l)

n⇣
Avu,h

(l�1)
u W (l)

⌘
, 8u 2 N0(v)

oi
(A.1)

Asymptotics. To describe the growth of a function f(n) and similarly the complexity of algorithms,
we use f(n) = O(g(n)) and f(n) = ⇥(g(n)) (here n does not denote the number of nodes).
Roughly speaking, f(n) = O(g(n)) means that the growth is upper bounded (up to constant factors)
and f(n) = ⇥(g(n)) means that f(n) grows as fast as g(n). While we do not give a formal definition,
we quickly want to recall the well-known facts (that hold under certain conditions which are naturally
fulfilled in our applications/analysis):

lim
n!1

f(n)

g(n)
< 1) f(n) = O(g(n)) (A.2)

0 < lim
n!1

f(n)

g(n)
< 1) f(n) = ⇥(g(n)) (A.3)

Table A.1: Here we list the most important symbols used in this work.

k typically used as the threshold in some top k operation/sparsification
d number of dimension / features (e.g. X is of shape n⇥ d)
AGG some aggregation (e.g. sum, max, Soft Median, ...)
uv> two (column) vectors constructing a rank-1 matrix
G = (A,X) the (attributed) graph
n number of nodes
m number of edges
A (clean) adjacency matrix (shape n⇥ n)
a weights of a row/neighborhood given by the (weighted) adjacency

matrix
X features / node attributes as a matrix (shape n⇥ d)
x X features / node attributes as a set
N(i) the (direct) neighbors of node i
D the degree matrix of a graph
⇧ Stationary distribution of a random walk with restarts / Personalized

Page Rank (PPR) matrix, here ⇧ = ↵(I � (1� ↵)D�1A)�1

f✓(A,X) Graph Neural Network (GNN) for node classification
✓ (all) model parameters
W weight matrix (contained in ✓)
h embeddings / hidden state
�(h) some (nonlinear) activation function
softmax(h) the softmax operation/activation
T temperature parameter to control the steepness of the softmax
s the weight vector of a softmax operation
p,pi probability/confidence scores predicted for an arbitrary node i: p =

f✓(A,X)
z, zi logits / pre-softmax activation predicted for an arbitrary node i: z =

f✓(A,X) (overloaded notation)
y, yi label (ground truth)
L (target) loss
L0/1 0/1 loss corresponding to the accuracy
L
0 surrogate loss

l typically the layer index, e.g. �(l)(h(l�1)) is the l-th layer activation

14

L number of layers
C set of classes
c we typically use c while iterating the classes
c⇤ denotes the target class / ground truth
V+ set of correctly classified nodes
 classification margin in the confidence space = minc 6=c⇤ pc⇤ � pc
Ã (perturbed) adjacency matrix, e.g. during/after an attack
� budget of an attack
✏ relative budget usually w.r.t. the number of edges m, i.e. � = ✏ ·m
↵ learning rate
t index of epoch, i.e. t 2 {0, . . . , E}

E number of epochs
Eres. number of epochs with resampling of the random block (see Algo. 1)
⇧(. . .) A projection in projected gradient descent
P perturbations Ã = A� P
p in context of PR-BCD, p corresponds to the current subset/block Pit
i indices representing the current block in GR-BCD/PR-BCD
� exclusive or operation if inputs are binary. If inputs are floats: Aij �

pij = Aij + pij if Aij = 0 and Aij � pij otherwise
⇧criterion(X) project operation w.r.t. some “criterion”
X and X inputs in the context of the analysis of the Soft Median (matrix and set

notation)
µ(X) some location estimate based on the inputs X
X̃✏ and X̃✏ perturbed feature matrix used in breakdown point analysis (matrix and

set notation)
c the cost/distances of the input instances to the dimension-wise median
� the element-wise multiplication
C the normalization of the weighted Soft Median

B Surrogate Losses

Hereinafter, we supplement the elaborations and experiments of the main part focusing on the
surrogate losses. For the proof of Proposition 1 we refer to § B.4. We give a full definition of the
losses in Table B.1. To simplify notation, we define the losses for a single node (except for MCE)
and denote the correct class with c⇤. Note that V+ is the set of correctly classified nodes, p is the
vector of confidence scores, and z is the vector with logits.

Table B.1: Correspondence of global losses and their fulfilled properties corresponding to § 2. “+”
means that the property is obeyed and “-” that it is violated. Nevertheless, we add the subjective
category “o” to denote if the loss is partially / approximately consistent with the property. NCE is
the acronym for non-target class CE, and elu stands for Exponential Linear Unit (smooth ReLU
relaxation elu(z) = min[↵ · (exp(z)� 1), ReLU(z)] with ↵ = 1 in all our experiments

).

Category/Group # Loss \Properties ! (I) (II) (A) (B)

(1) focus on negative
margins

CE = �zc⇤ + log(
P

c2C exp(zc)) - + - o
margin = maxc 6=c⇤ zc � zc⇤ - - - -

(2) focus on
high-confidence
nodes

CW = min(maxc 6=c⇤ zc � zc⇤ , 0) + - + -
NCE = maxc 6=c⇤ zc � log(

P
c02C exp(zc0)) o + + o

elu margin = �elu(maxc 6=c⇤ zc⇤ � zc) o - + o
(3) focus on nodes close

to decision boundary
MCE = �1

|V+|
P

i2V+ zi,c⇤ � log(
P

c2C exp(zi,c)) + + + o
tanh margin = � tanh(maxc 6=c⇤ zc⇤ � zc) o + + +

Ma et al. [27] propose a black-box attack based on a random-walk importance score. They select
1% of nodes based on some centrality score and then gradually increase the feature perturbation of
the selected nodes. They report that their (initial) black-box attack based on this importance score is
only effective for low budgets. Since they propose their attack based on an analysis of a white-box

15

attack, they conclude that this is due to a mismatch between accuracy and CW. First, note that their
definition of the CW loss is what we call margin loss: margin = maxc 6=c⇤ zc � zc⇤ . Instead, we
follow Xu et al. [43] CW = min(maxc 6=c⇤ zc � zc⇤ , 0) (see Eq. 6 in [43] with  = 0).

In summary, their finding is largely unrelated to our observations for the following reasons: (1) They
select a fixed number of nodes (1%) and observe that for severe feature perturbations the loss changes
but the accuracy does not. So it seems like that if the perturbation budget of the attacked nodes is
large enough then the predictions of the whole receptive field are successfully flipped. Instead, our
study is exclusively for structure perturbations. (2) They study how to spread the perturbed nodes
over the graph. Instead, we discuss that e.g. with CE most of the budget is spent on nodes that are
wrongly classified in the clean graph (Properties I and A). (3) In contrast to Ma et al. [27], we also
consider the fact that e.g. the CW loss comes with the risk of unsuccessfully spending all/too much
budget on high-confidence nodes (Properties II and B).

B.1 Learning Dynamics

The necessity of studying the surrogate losses originates from an unexpected behavior of the Cross
Entropy (CE) loss and accuracy during an attack. In some cases, the loss increases significantly
while the accuracy stays constant or even increases. Similarly, the so-called Carlini-Wagner (CW)
loss [6, 43] is very noisy over the epochs t during a global attack (e.g. see Fig. B.1 (e)). Besides the
violation of Definition 1 and 2, we hypothesize that the CW is inappropriate due to the effect on the
optimization dynamics as we quickly explained in § 2. We now first discuss the learning curves and
then come back to the phenomenon.

In Fig. B.1, we show the loss and accuracy during an attack for a large subset of datasets (see Table 1).
Here, we study a single-layer GCN on a directed graph since this comes with a 1-to-1 correspondence
between modified edges and attacked nodes. Especially for small budgets, the (CE) can increase while
the accuracy does not decline. This shows the mismatch between (CE) and accuracy. In Fig. B.1 (a-c),
one can see that in the first epochs the accuracy reduces but then recovers almost to the clean accuracy
during the attack. This happens despite the monotonic increase of the CE loss. In Fig. B.2, we see
that a similar, slightly-weaker behavior also holds for the common case of a two-layer / three-layer
GCN on an undirected graph. That the observed effects appear to be weaker can be attributed to (1)
the fact that an undirected edge always influences both nodes and (2) the diffusion through multiple
message-passing steps.

Now we come back to the phenomenon that the node’s prediction can oscillate around the decision
boundary (as pointed out in § 2). The main reason is the zero gradient if < 0 in the MCE (and
CW) loss: CW = min(maxc 6=c⇤ zc � zc⇤ , 0). To fully explain the reasons we need to dive into the
PGD update and project step in epoch t: 5

pt = ⇧E[Bernoulli(pt)]� [pt�1 + ↵t�1rL(pt�1, . . .)] . (B.1)

We can rewrite this expression to

pt = ⇧[0,1](pt�1 +↵trL(pt�1, . . .)| {z }
gradient update

�⌘t1| {z }
correction

) (B.2)

where ⇧[0,1] clamps the values to the range [0, 1] () pt 2 [0, 1]b) and ⌘t is chosen s.t.
E[Bernoulli(pt)]  � (i.e.

P
⇧[0,1](pt)  �). There are two competing terms: 1) the gradi-

ent update ↵t�1rL(pt�1, . . .) and 2) the correction ⌘t1 (typically lowers all weights in pt). For
reasonable parameter choices, the potential perturbations in pt are competing since our budget is
limited (i.e. to maximize the loss we would like to flip more edges than budget we have). Then, after
some epochs (t > t0), we will have ⌘t > 0 and subtract ⌘t from each element in pt�1.

Now if we choose a loss L (e.g. CW or MCE loss) that has zero gradient, as soon as a node v is
misclassified (v < 0), the responsible edge(s) will not benefit from a "gradient update" anymore but
⌘t > 0 is still subtracted. So after some iterations node v will be again correctly classified since the
required edge flips in pt lost weight/strength. This leads to instability.

The symptoms are particularly visible in Figure 9e for the CW loss (after t0 = 25 epochs the accuracy
oscillates around 0.7). Moreover, the accuracy for the CW loss (Figure 9 d-f and Figure 10 d-f) are
noisier than for the CE or tanh margin losses (other subfigures).

16

0 200 400

Epoch t

1.1

1.2

1.3

Su
rr.

lo
ss

L
0

0.635

0.640

0.645

A
cc

ur
ac

y

(a) CE, Cora ML

0 200 400

Epoch t

0.8

0.9

1.0

Su
rr.

lo
ss

L
0

0.68

0.69

0.70

A
cc

ur
ac

y

(b) CE, Pubmed

0 200 400

Epoch t

2

4

Su
rr.

lo
ss

L
0

0.550

0.575

0.600

A
cc

ur
ac

y

(c) CE, arXiv

0 200 400

Epoch t

�2.0

�1.8

Su
rr.

lo
ss

L
0

0.63

0.64

A
cc

ur
ac

y

(d) CW, Cora ML

0 200 400

Epoch t

�1.7

�1.6

�1.5

Su
rr.

lo
ss

L
0

0.69

0.70

A
cc

ur
ac

y

(e) CW, Pubmed

0 200 400

Epoch t

�3

�2

�1

Su
rr.

lo
ss

L
0

0.5

0.6

A
cc

ur
ac

y

(f) CW, arXiv

0 200 400

Epoch t

�0.3

�0.2

Su
rr.

lo
ss

L
0

0.55

0.60

0.65

A
cc

ur
ac

y

(g) tanh margin, Cora ML

0 200 400

Epoch t

�0.35

�0.30

�0.25

Su
rr.

lo
ss

L
0

0.60

0.65

0.70

A
cc

ur
ac

y
(h) tanh margin, Pubmed

0 200 400

Epoch t

�0.2

0.0

0.2

Su
rr.

lo
ss

L
0

0.4

0.5

0.6

A
cc

ur
ac

y

(i) tanh margin, arXiv

Figure B.1: PGD attack on a single layer GCN with directed graph and ✏ = 0.01.

0 200 400

Epoch t

0.8

1.0

Su
rr.

lo
ss

L
0

0.78

0.80

A
cc

ur
ac

y

(a) CE, Cora ML

0 200 400

Epoch t

0.6

0.7

Su
rr.

lo
ss

L
0

0.725

0.750

0.775

A
cc

ur
ac

y

(b) CE, Pubmed

0 200 400

Epoch t

1

2

Su
rr.

lo
ss

L
0

0.60

0.65

0.70

A
cc

ur
ac

y
(c) CE, arXiv

0 200 400

Epoch t

�4.0

�3.5

Su
rr.

lo
ss

L
0

0.79

0.80

A
cc

ur
ac

y

(d) CW, Cora ML

0 200 400

Epoch t

�2.0

�1.8

�1.6

Su
rr.

lo
ss

L
0

0.765

0.770

A
cc

ur
ac

y

(e) CW, Pubmed

0 200 400

Epoch t

�1.5

�1.0

Su
rr.

lo
ss

L
0

0.5

0.6

0.7

A
cc

ur
ac

y

(f) CW, arXiv

0 200 400

Epoch t

�0.6

�0.5

Su
rr.

lo
ss

L
0

0.70

0.75

0.80

A
cc

ur
ac

y

(g) tanh margin, Cora ML

0 200 400

Epoch t

�0.5

�0.4

Su
rr.

lo
ss

L
0

0.65

0.70

0.75

A
cc

ur
ac

y

(h) tanh margin, Pubmed

0 200 400

Epoch t

�0.4

�0.2

0.0

Su
rr.

lo
ss

L
0

0.5

0.6

0.7

A
cc

ur
ac

y

(i) tanh margin, arXiv

Figure B.2: PGD attack (no fine tuning) on a single layer GCN with undirected graph graph and
✏ = 0.01.

17

B.2 What Nodes Are Being Attacked?

In Fig. B.3, B.4, B.5 and B.6, we show the distribution for different datasets and budgets. Here we
underline that our findings are consistent for these variations in the experiment setup. These plots
essentially show the same thing as similarly to Fig. 2 for more configurations. However, instead
of bar plots we show density plots since they allow more nuanced conclusions. We distinguish
again between a directed and undirected graph. With CE we mostly attack nodes with a negative
margin. For example in plot Fig. B.4 (a), the distribution for the attacked nodes is extremely spiky
(at (= �1)) leading to a failing kernel density estimate. On the contrary, CW attacks correctly
classified nodes proportionally to the clean distribution, and our tanh margin focuses on nodes close
to the decision boundary. We see that our observation holds over a wide range of datasets and budgets.
All the stated observations are particularly clear if we consider tiny budgets and a directed graph. In
the undirected case, using the CE and tanh margin also target confident nodes. Similarly to before, we
attribute this effect to (1) the fact that on an undirected graph an edge always influences both nodes
and (2) the diffusion via the recursive message passing. For large budgets and an undirected graph
the differences between the losses become less significant. Simultaneously, an increasing budget
becomes less realistic for many applications.

In Fig. B.7, which is similar to Fig. 6, we provide larger budgets and more datasets. As long as
the budget is sufficiently small, our observations hold: (1) for the greedy FGSM attack the MCE
is the strongest loss and (2) for the projected gradient descent attacks (PGD and our PR-BCD) the
tanh margin outperforms other losses. With larger budgets, the elu margin seems to be a particularly
strong choice. Note that the elu margin diverges for ! 1 but, in contrast to the CW, it is smooth
and encourages confident misclassifications (see Fig. 5). We hypothesize that for sufficiently large
budgets, it makes sense to incentivize first attacking high-confidence nodes instead of nodes close
to the decision boundary since those are presumably the most difficult to convert. However, such
large budgets (e.g. ✏ > 0.25) are not realistic for most applications. On arXiv, the elu margin is
already slightly stronger than the tanh margin for ✏ > 0.075. This is probably largely driven by the
fact that we only attack 29% of nodes (i.e. the test set) while the budget is calculated relatively to
all edges. Hence, in comparison to Cora ML, Citeseer, or Pubmed, we effectively have a four times
larger budget per attacked node.

18

Test nodes (clean) Att. nodes (clean) Att. nodes (pert.)

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(a) CE, ✏ = 0.001, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(b) CE, ✏ = 0.01, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(c) CE, ✏ = 0.1, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(d) CW, ✏ = 0.001, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(e) CW, ✏ = 0.01, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

4

D
en

si
ty

(f) CW, ✏ = 0.1, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(g) tanh margin, ✏ = 0.001, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(h) tanh margin, ✏ = 0.01, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(i) tanh margin, ✏ = 0.1, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(j) CE, ✏ = 0.001, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(k) CE, ✏ = 0.01, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(l) CE, ✏ = 0.1, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(m) CW, ✏ = 0.001, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(n) CW, ✏ = 0.01, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

4

D
en

si
ty

(o) CW, ✏ = 0.1, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(p) tanh margin, ✏ = 0.001, un.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(q) tanh margin, ✏ = 0.01, un.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(r) tanh margin, ✏ = 0.1, un.

Figure B.3: Distribution of nodes attacked before/after PGD attack on Vanilla GCN on Cora ML.

19

Test nodes (clean) Att. nodes (clean) Att. nodes (pert.)

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(a) CE, ✏ = 0.001, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(b) CE, ✏ = 0.01, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(c) CE, ✏ = 0.1, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(d) CW, ✏ = 0.001, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(e) CW, ✏ = 0.01, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(f) CW, ✏ = 0.1, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(g) tanh margin, ✏ = 0.001, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(h) tanh margin, ✏ = 0.01, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(i) tanh margin, ✏ = 0.1, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

0.5

1.0

D
en

si
ty

(j) CE, ✏ = 0.001, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

0.5

1.0

D
en

si
ty

(k) CE, ✏ = 0.01, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

0.5

1.0

D
en

si
ty

(l) CE, ✏ = 0.1, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(m) CW, ✏ = 0.001, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(n) CW, ✏ = 0.01, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(o) CW, ✏ = 0.1, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

0.5

1.0

D
en

si
ty

(p) tanh margin, ✏ = 0.001, un.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

0.5

1.0

D
en

si
ty

(q) tanh margin, ✏ = 0.01, und.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

0.5

1.0

D
en

si
ty

(r) tanh margin, ✏ = 0.1, und.

Figure B.4: Distribution of nodes attacked before/after PGD attack on Vanilla GCN on Citeseer.

20

Test nodes (clean) Att. nodes (clean) Att. nodes (pert.)

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(a) CE, ✏ = 0.001, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(b) CE, ✏ = 0.01, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(c) CE, ✏ = 0.1, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(d) CW, ✏ = 0.001, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(e) CW, ✏ = 0.01, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(f) CW, ✏ = 0.1, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

4

D
en

si
ty

(g) tanh margin, ✏ = 0.001, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(h) tanh margin, ✏ = 0.01, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(i) tanh margin, ✏ = 0.1, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(j) CE, ✏ = 0.001, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(k) CE, ✏ = 0.01, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(l) CE, ✏ = 0.1, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

D
en

si
ty

(m) CW, ✏ = 0.001, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(n) CW, ✏ = 0.01, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

4

D
en

si
ty

(o) CW, ✏ = 0.1, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(p) tanh margin, ✏ = 0.001, un.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(q) tanh margin, ✏ = 0.01, und.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(r) tanh margin, ✏ = 0.1, und.

Figure B.5: Distribution of nodes attacked before/after PGD attack on Vanilla GCN on Pubmed.

21

Test nodes (clean) Att. nodes (clean) Att. nodes (pert.)

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(a) CE, ✏ = 0.001, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(b) CE, ✏ = 0.01, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(c) CE, ✏ = 0.1, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(d) CW, ✏ = 0.001, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(e) CW, ✏ = 0.01, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(f) CW, ✏ = 0.1, directed

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

D
en

si
ty

(g) tanh margin, ✏ = 0.001, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

D
en

si
ty

(h) tanh margin, ✏ = 0.01, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0.0

2.5

5.0

7.5

D
en

si
ty

(i) tanh margin, ✏ = 0.1, dir.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(j) CE, ✏ = 0.001, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(k) CE, ✏ = 0.01, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(l) CE, ✏ = 0.1, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

D
en

si
ty

(m) CW, ✏ = 0.001, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

4

D
en

si
ty

(n) CW, ✏ = 0.01, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

2

4

D
en

si
ty

(o) CW, ✏ = 0.1, undirected

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(p) tanh margin, ✏ = 0.001, un.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

D
en

si
ty

(q) tanh margin, ✏ = 0.01, und.

�1.0 �0.5 0.0 0.5 1.0

Class. margin

0

1

2

D
en

si
ty

(r) tanh margin, ✏ = 0.1, und.

Figure B.6: Distribution of nodes attacked before/after PGD attack on Vanilla GCN on arXiv.

22

B.3 Impact of Surrogate Losses on Attack Strength

In Table B.2 and Table B.3, we additionally evaluate how the different losses perform for other
models than the Vanilla GCN. Baring a few exceptions, we conclude that our analysis and choice of
losses is model agnostic and that our claims and observations hold also for the other architectures.

CE margin CW NCE elu margin MCE tanh margin

0.0 0.2 0.4 0.6 0.8 1.0

Frac. edges ✏

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
dv

.a
cc

ur
ac

y

(a) FGSM - Cora ML

0.0 0.2 0.4 0.6 0.8 1.0

Frac. edges ✏

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
dv

.a
cc

ur
ac

y
(b) PGD - Cora ML

0.0 0.2 0.4 0.6 0.8 1.0

Frac. edges ✏

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
dv

.a
cc

ur
ac

y

(c) FGSM - Citeseer

0.0 0.2 0.4 0.6 0.8 1.0

Frac. edges ✏

0.2

0.3

0.4

0.5

0.6

0.7

A
dv

.a
cc

ur
ac

y

(d) PGD - Citeseer

0.00 0.05 0.10 0.15 0.20 0.25

Frac. edges ✏

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
dv

.a
cc

ur
ac

y

(e) PR-BCD - Pubmed

0.00 0.05 0.10 0.15 0.20 0.25

Frac. edges ✏

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
dv

.a
cc

ur
ac

y

(f) PR-BCD - arXiv ML

Figure B.7: Comparison of the losses on a Vanilla GCN attacked with a greedy attack and a projected
gradient / coordinate descent algorithm. ✏ denotes the fraction of edges perturbed (relative to the
clean graph). The lower the adversarial accuracy the better the loss.

23

Table B.2: Adversarial accuracy comparing the conventional losses with our losses over the different
architectures on Cora ML (transfer attack). ✏ denotes the fraction of edges perturbed.

Architecture

Soft
Median
GDC

Soft
Median
PPRGo

Vanilla
GCN

Vanilla
GDC

Vanilla
PPRGo

Soft
Medoid
GDC

Jaccard
GCN RGCN

F
G

S
M

✏
=

0.
01

CE 0.813 ± 0.002 0.816 ± 0.000 0.814 ± 0.004 0.826 ± 0.002 0.818 ± 0.002 0.810 ± 0.003 0.806 ± 0.003 0.807 ± 0.002
margin 0.820 ± 0.001 0.820 ± 0.001 0.813 ± 0.003 0.825 ± 0.003 0.818 ± 0.002 0.816 ± 0.002 0.804 ± 0.003 0.804 ± 0.002
CW 0.820 ± 0.001 0.819 ± 0.001 0.814 ± 0.003 0.826 ± 0.003 0.818 ± 0.001 0.816 ± 0.002 0.805 ± 0.003 0.804 ± 0.003
NCE 0.822 ± 0.001 0.820 ± 0.001 0.818 ± 0.003 0.831 ± 0.003 0.822 ± 0.002 0.818 ± 0.002 0.809 ± 0.002 0.807 ± 0.003
elu margin 0.821 ± 0.001 0.819 ± 0.001 0.814 ± 0.003 0.826 ± 0.003 0.817 ± 0.002 0.817 ± 0.002 0.804 ± 0.003 0.804 ± 0.002
MCE 0.811 ± 0.002 0.813 ± 0.001 0.795 ± 0.004 0.811 ± 0.003 0.807 ± 0.001 0.808 ± 0.002 0.791 ± 0.003 0.794 ± 0.000

tanh margin 0.806 ± 0.001 0.811 ± 0.001 0.801 ± 0.003 0.810 ± 0.003 0.803 ± 0.002 0.807 ± 0.003 0.794 ± 0.002 0.796 ± 0.001

✏
=

0.
05

CE 0.779 ± 0.001 0.789 ± 0.000 0.771 ± 0.004 0.776 ± 0.001 0.781 ± 0.002 0.776 ± 0.001 0.768 ± 0.003 0.764 ± 0.001
margin 0.799 ± 0.002 0.803 ± 0.001 0.751 ± 0.004 0.763 ± 0.004 0.774 ± 0.001 0.799 ± 0.002 0.748 ± 0.003 0.745 ± 0.003
CW 0.804 ± 0.002 0.804 ± 0.000 0.757 ± 0.004 0.775 ± 0.005 0.779 ± 0.001 0.805 ± 0.003 0.754 ± 0.003 0.752 ± 0.002
NCE 0.811 ± 0.002 0.812 ± 0.000 0.776 ± 0.002 0.794 ± 0.006 0.791 ± 0.001 0.809 ± 0.002 0.770 ± 0.002 0.767 ± 0.004
elu margin 0.801 ± 0.001 0.802 ± 0.001 0.750 ± 0.003 0.766 ± 0.005 0.773 ± 0.001 0.803 ± 0.002 0.746 ± 0.002 0.745 ± 0.001
MCE 0.784 ± 0.001 0.792 ± 0.000 0.713 ± 0.003 0.738 ± 0.004 0.754 ± 0.002 0.784 ± 0.003 0.722 ± 0.002 0.719 ± 0.004
tanh margin 0.767 ± 0.001 0.783 ± 0.001 0.717 ± 0.002 0.726 ± 0.001 0.737 ± 0.003 0.772 ± 0.002 0.720 ± 0.002 0.718 ± 0.005

✏
=

0.
1

CE 0.753 ± 0.002 0.764 ± 0.001 0.736 ± 0.004 0.740 ± 0.002 0.749 ± 0.003 0.751 ± 0.001 0.735 ± 0.003 0.729 ± 0.002
margin 0.776 ± 0.001 0.780 ± 0.001 0.696 ± 0.004 0.708 ± 0.006 0.728 ± 0.001 0.780 ± 0.003 0.703 ± 0.004 0.691 ± 0.003
CW 0.792 ± 0.002 0.787 ± 0.002 0.709 ± 0.005 0.735 ± 0.007 0.744 ± 0.001 0.792 ± 0.003 0.710 ± 0.004 0.704 ± 0.003
NCE 0.793 ± 0.002 0.792 ± 0.001 0.731 ± 0.004 0.751 ± 0.007 0.760 ± 0.002 0.796 ± 0.003 0.731 ± 0.003 0.727 ± 0.005
elu margin 0.788 ± 0.002 0.783 ± 0.002 0.693 ± 0.004 0.717 ± 0.007 0.732 ± 0.002 0.791 ± 0.003 0.698 ± 0.003 0.695 ± 0.002
MCE 0.769 ± 0.002 0.778 ± 0.001 0.641 ± 0.003 0.672 ± 0.005 0.724 ± 0.003 0.773 ± 0.005 0.661 ± 0.002 0.654 ± 0.007

tanh margin 0.733 ± 0.001 0.765 ± 0.001 0.653 ± 0.002 0.665 ± 0.000 0.690 ± 0.003 0.744 ± 0.003 0.662 ± 0.003 0.660 ± 0.006

✏
=

0.
25

CE 0.687 ± 0.000 0.709 ± 0.002 0.660 ± 0.003 0.665 ± 0.002 0.681 ± 0.002 0.687 ± 0.002 0.664 ± 0.002 0.657 ± 0.001
margin 0.729 ± 0.003 0.741 ± 0.002 0.555 ± 0.008 0.580 ± 0.006 0.648 ± 0.004 0.738 ± 0.005 0.586 ± 0.007 0.557 ± 0.003
CW 0.769 ± 0.003 0.765 ± 0.001 0.568 ± 0.010 0.625 ± 0.011 0.689 ± 0.003 0.777 ± 0.004 0.598 ± 0.006 0.577 ± 0.002
NCE 0.764 ± 0.003 0.758 ± 0.002 0.609 ± 0.008 0.637 ± 0.008 0.687 ± 0.002 0.771 ± 0.003 0.629 ± 0.006 0.603 ± 0.008
elu margin 0.756 ± 0.004 0.754 ± 0.002 0.535 ± 0.009 0.586 ± 0.008 0.664 ± 0.004 0.765 ± 0.003 0.576 ± 0.006 0.544 ± 0.001
MCE 0.750 ± 0.003 0.762 ± 0.001 0.509 ± 0.005 0.575 ± 0.009 0.683 ± 0.003 0.762 ± 0.005 0.557 ± 0.001 0.535 ± 0.015

tanh margin 0.679 ± 0.002 0.733 ± 0.002 0.541 ± 0.001 0.554 ± 0.001 0.610 ± 0.002 0.690 ± 0.005 0.551 ± 0.001 0.553 ± 0.007

P
G

D

✏
=

0.
01

CE 0.813 ± 0.002 0.814 ± 0.001 0.815 ± 0.004 0.824 ± 0.002 0.815 ± 0.001 0.810 ± 0.002 0.805 ± 0.003 0.805 ± 0.002
margin 0.820 ± 0.002 0.820 ± 0.001 0.816 ± 0.003 0.830 ± 0.003 0.819 ± 0.002 0.816 ± 0.002 0.806 ± 0.003 0.807 ± 0.002
CW 0.821 ± 0.002 0.820 ± 0.001 0.818 ± 0.003 0.833 ± 0.003 0.820 ± 0.001 0.817 ± 0.002 0.809 ± 0.003 0.810 ± 0.002
NCE 0.821 ± 0.001 0.820 ± 0.001 0.821 ± 0.003 0.834 ± 0.004 0.821 ± 0.001 0.818 ± 0.002 0.811 ± 0.003 0.812 ± 0.002
elu margin 0.820 ± 0.002 0.820 ± 0.001 0.816 ± 0.003 0.832 ± 0.003 0.819 ± 0.001 0.818 ± 0.002 0.807 ± 0.003 0.807 ± 0.002
MCE 0.817 ± 0.001 0.815 ± 0.001 0.808 ± 0.002 0.824 ± 0.004 0.813 ± 0.001 0.813 ± 0.002 0.800 ± 0.002 0.803 ± 0.001
tanh margin 0.809 ± 0.001 0.811 ± 0.001 0.797 ± 0.003 0.808 ± 0.002 0.800 ± 0.002 0.810 ± 0.002 0.792 ± 0.003 0.792 ± 0.000

✏
=

0.
05

CE 0.775 ± 0.002 0.786 ± 0.001 0.767 ± 0.003 0.773 ± 0.002 0.771 ± 0.001 0.777 ± 0.002 0.761 ± 0.002 0.759 ± 0.001
margin 0.804 ± 0.001 0.808 ± 0.000 0.778 ± 0.003 0.790 ± 0.004 0.789 ± 0.002 0.803 ± 0.002 0.773 ± 0.003 0.773 ± 0.002
CW 0.810 ± 0.001 0.810 ± 0.000 0.784 ± 0.003 0.795 ± 0.004 0.798 ± 0.001 0.808 ± 0.002 0.779 ± 0.003 0.773 ± 0.003
NCE 0.814 ± 0.001 0.812 ± 0.001 0.796 ± 0.003 0.809 ± 0.004 0.806 ± 0.001 0.810 ± 0.002 0.790 ± 0.003 0.788 ± 0.003
elu margin 0.808 ± 0.001 0.809 ± 0.001 0.780 ± 0.003 0.797 ± 0.006 0.793 ± 0.001 0.806 ± 0.003 0.777 ± 0.002 0.775 ± 0.002
MCE 0.800 ± 0.001 0.801 ± 0.002 0.760 ± 0.004 0.776 ± 0.004 0.783 ± 0.002 0.801 ± 0.002 0.762 ± 0.003 0.762 ± 0.000
tanh margin 0.779 ± 0.002 0.787 ± 0.001 0.726 ± 0.004 0.740 ± 0.002 0.748 ± 0.002 0.782 ± 0.003 0.730 ± 0.003 0.725 ± 0.005

✏
=

0.
1

CE 0.745 ± 0.002 0.762 ± 0.002 0.720 ± 0.003 0.724 ± 0.002 0.733 ± 0.002 0.748 ± 0.001 0.720 ± 0.003 0.719 ± 0.001
margin 0.786 ± 0.002 0.789 ± 0.001 0.733 ± 0.003 0.743 ± 0.006 0.753 ± 0.001 0.787 ± 0.002 0.730 ± 0.003 0.724 ± 0.004
CW 0.799 ± 0.001 0.799 ± 0.000 0.751 ± 0.003 0.767 ± 0.006 0.776 ± 0.001 0.796 ± 0.002 0.752 ± 0.003 0.745 ± 0.004
NCE 0.804 ± 0.001 0.805 ± 0.000 0.769 ± 0.004 0.786 ± 0.004 0.789 ± 0.002 0.801 ± 0.001 0.765 ± 0.003 0.758 ± 0.005
elu margin 0.802 ± 0.001 0.797 ± 0.001 0.742 ± 0.004 0.765 ± 0.006 0.767 ± 0.001 0.797 ± 0.002 0.743 ± 0.003 0.732 ± 0.004
MCE 0.792 ± 0.002 0.791 ± 0.001 0.736 ± 0.003 0.751 ± 0.005 0.775 ± 0.000 0.793 ± 0.002 0.737 ± 0.003 0.732 ± 0.002
tanh margin 0.758 ± 0.002 0.769 ± 0.001 0.662 ± 0.003 0.679 ± 0.002 0.704 ± 0.001 0.759 ± 0.003 0.673 ± 0.002 0.671 ± 0.007

✏
=

0.
25

CE 0.684 ± 0.001 0.692 ± 0.001 0.618 ± 0.003 0.626 ± 0.002 0.641 ± 0.003 0.688 ± 0.002 0.624 ± 0.003 0.617 ± 0.001
margin 0.744 ± 0.003 0.748 ± 0.003 0.601 ± 0.007 0.638 ± 0.005 0.671 ± 0.003 0.752 ± 0.004 0.621 ± 0.004 0.599 ± 0.004
CW 0.779 ± 0.003 0.778 ± 0.002 0.666 ± 0.008 0.707 ± 0.007 0.744 ± 0.002 0.778 ± 0.004 0.681 ± 0.007 0.661 ± 0.006
NCE 0.774 ± 0.002 0.773 ± 0.000 0.667 ± 0.005 0.700 ± 0.007 0.731 ± 0.000 0.777 ± 0.002 0.679 ± 0.004 0.659 ± 0.006
elu margin 0.776 ± 0.003 0.774 ± 0.001 0.631 ± 0.007 0.679 ± 0.008 0.725 ± 0.002 0.775 ± 0.004 0.656 ± 0.005 0.635 ± 0.004
MCE 0.772 ± 0.003 0.777 ± 0.002 0.660 ± 0.006 0.694 ± 0.007 0.752 ± 0.002 0.778 ± 0.003 0.666 ± 0.005 0.664 ± 0.003
tanh margin 0.716 ± 0.004 0.739 ± 0.001 0.537 ± 0.003 0.567 ± 0.005 0.632 ± 0.002 0.727 ± 0.004 0.560 ± 0.001 0.547 ± 0.011

24

Table B.3: Adversarial accuracy comparing the conventional losses with our losses over the different
architectures on Citeseer (transfer attack). ✏ denotes the fraction of edges perturbed.

Architecture

Soft
Median
GDC

Soft
Median
PPRGo

Vanilla
GCN

Vanilla
GDC

Vanilla
PPRGo

Soft
Medoid
GDC

Jaccard
GCN RGCN

F
G

S
M

✏
=

0.
01

CE 0.705 ± 0.002 0.712 ± 0.006 0.710 ± 0.002 0.699 ± 0.001 0.720 ± 0.005 0.705 ± 0.003 0.716 ± 0.004 0.681 ± 0.005
margin 0.708 ± 0.002 0.712 ± 0.006 0.704 ± 0.003 0.694 ± 0.002 0.720 ± 0.006 0.707 ± 0.003 0.712 ± 0.005 0.673 ± 0.005
CW 0.708 ± 0.002 0.712 ± 0.006 0.705 ± 0.003 0.694 ± 0.002 0.720 ± 0.006 0.707 ± 0.002 0.711 ± 0.005 0.673 ± 0.005
NCE 0.709 ± 0.002 0.714 ± 0.006 0.707 ± 0.003 0.696 ± 0.002 0.722 ± 0.006 0.708 ± 0.003 0.714 ± 0.005 0.675 ± 0.006
elu margin 0.708 ± 0.002 0.712 ± 0.006 0.704 ± 0.003 0.694 ± 0.002 0.719 ± 0.006 0.706 ± 0.003 0.711 ± 0.005 0.673 ± 0.005
MCE 0.703 ± 0.003 0.712 ± 0.006 0.695 ± 0.003 0.686 ± 0.001 0.715 ± 0.006 0.702 ± 0.002 0.707 ± 0.004 0.672 ± 0.004

tanh margin 0.702 ± 0.002 0.710 ± 0.006 0.698 ± 0.003 0.685 ± 0.000 0.710 ± 0.005 0.701 ± 0.003 0.708 ± 0.005 0.672 ± 0.004

✏
=

0.
05

CE 0.688 ± 0.003 0.699 ± 0.006 0.681 ± 0.002 0.664 ± 0.002 0.698 ± 0.004 0.688 ± 0.003 0.693 ± 0.004 0.654 ± 0.004
margin 0.701 ± 0.002 0.701 ± 0.008 0.654 ± 0.004 0.639 ± 0.003 0.691 ± 0.008 0.700 ± 0.003 0.672 ± 0.007 0.622 ± 0.004
CW 0.702 ± 0.002 0.703 ± 0.008 0.658 ± 0.004 0.646 ± 0.002 0.692 ± 0.008 0.702 ± 0.004 0.677 ± 0.005 0.626 ± 0.004
NCE 0.706 ± 0.002 0.705 ± 0.008 0.673 ± 0.004 0.661 ± 0.001 0.699 ± 0.007 0.706 ± 0.003 0.687 ± 0.006 0.635 ± 0.005
elu margin 0.703 ± 0.002 0.702 ± 0.008 0.655 ± 0.004 0.642 ± 0.002 0.689 ± 0.008 0.703 ± 0.003 0.674 ± 0.005 0.624 ± 0.004
MCE 0.695 ± 0.002 0.697 ± 0.006 0.633 ± 0.003 0.622 ± 0.002 0.677 ± 0.008 0.694 ± 0.004 0.663 ± 0.004 0.622 ± 0.003

tanh margin 0.681 ± 0.002 0.693 ± 0.006 0.636 ± 0.003 0.630 ± 0.002 0.667 ± 0.005 0.685 ± 0.003 0.664 ± 0.005 0.622 ± 0.003

✏
=

0.
1

CE 0.666 ± 0.003 0.684 ± 0.007 0.648 ± 0.002 0.631 ± 0.003 0.669 ± 0.005 0.670 ± 0.004 0.666 ± 0.003 0.621 ± 0.004
margin 0.688 ± 0.003 0.692 ± 0.007 0.600 ± 0.003 0.579 ± 0.004 0.648 ± 0.008 0.689 ± 0.004 0.632 ± 0.006 0.574 ± 0.003
CW 0.693 ± 0.003 0.694 ± 0.007 0.602 ± 0.003 0.589 ± 0.004 0.660 ± 0.008 0.695 ± 0.003 0.639 ± 0.005 0.581 ± 0.004
NCE 0.699 ± 0.002 0.697 ± 0.008 0.628 ± 0.003 0.621 ± 0.001 0.678 ± 0.008 0.700 ± 0.003 0.656 ± 0.005 0.593 ± 0.005
elu margin 0.693 ± 0.002 0.693 ± 0.008 0.596 ± 0.002 0.581 ± 0.004 0.655 ± 0.008 0.696 ± 0.003 0.634 ± 0.004 0.575 ± 0.003
MCE 0.676 ± 0.002 0.685 ± 0.007 0.574 ± 0.004 0.562 ± 0.003 0.644 ± 0.009 0.682 ± 0.003 0.622 ± 0.006 0.568 ± 0.005

tanh margin 0.663 ± 0.003 0.683 ± 0.006 0.569 ± 0.005 0.568 ± 0.004 0.621 ± 0.006 0.672 ± 0.004 0.609 ± 0.005 0.569 ± 0.006

✏
=

0.
25

CE 0.616 ± 0.003 0.652 ± 0.007 0.570 ± 0.003 0.555 ± 0.005 0.614 ± 0.006 0.624 ± 0.005 0.606 ± 0.004 0.551 ± 0.003
margin 0.659 ± 0.004 0.663 ± 0.010 0.486 ± 0.001 0.463 ± 0.006 0.577 ± 0.008 0.668 ± 0.006 0.550 ± 0.000 0.473 ± 0.006
CW 0.682 ± 0.002 0.674 ± 0.009 0.500 ± 0.003 0.495 ± 0.014 0.615 ± 0.007 0.686 ± 0.003 0.569 ± 0.002 0.478 ± 0.003
NCE 0.681 ± 0.002 0.676 ± 0.008 0.521 ± 0.004 0.519 ± 0.012 0.613 ± 0.006 0.689 ± 0.003 0.585 ± 0.004 0.487 ± 0.004
elu margin 0.677 ± 0.002 0.670 ± 0.008 0.471 ± 0.004 0.460 ± 0.012 0.595 ± 0.008 0.685 ± 0.004 0.553 ± 0.002 0.455 ± 0.005

MCE 0.658 ± 0.002 0.671 ± 0.009 0.448 ± 0.003 0.439 ± 0.005 0.605 ± 0.009 0.675 ± 0.004 0.545 ± 0.003 0.461 ± 0.008
tanh margin 0.631 ± 0.002 0.666 ± 0.007 0.447 ± 0.005 0.456 ± 0.006 0.548 ± 0.005 0.649 ± 0.003 0.511 ± 0.002 0.462 ± 0.012

P
G

D

✏
=

0.
01

CE 0.705 ± 0.002 0.712 ± 0.006 0.710 ± 0.003 0.699 ± 0.001 0.720 ± 0.005 0.703 ± 0.002 0.714 ± 0.005 0.680 ± 0.005
margin 0.707 ± 0.002 0.712 ± 0.006 0.706 ± 0.004 0.694 ± 0.002 0.719 ± 0.006 0.707 ± 0.003 0.714 ± 0.006 0.675 ± 0.005
CW 0.708 ± 0.002 0.712 ± 0.006 0.708 ± 0.003 0.697 ± 0.001 0.721 ± 0.006 0.707 ± 0.003 0.715 ± 0.005 0.677 ± 0.005
NCE 0.708 ± 0.002 0.714 ± 0.006 0.709 ± 0.003 0.700 ± 0.002 0.723 ± 0.006 0.708 ± 0.003 0.716 ± 0.005 0.679 ± 0.006
elu margin 0.708 ± 0.002 0.713 ± 0.006 0.707 ± 0.003 0.696 ± 0.002 0.720 ± 0.006 0.707 ± 0.003 0.714 ± 0.005 0.677 ± 0.006
MCE 0.706 ± 0.002 0.712 ± 0.006 0.704 ± 0.003 0.694 ± 0.000 0.720 ± 0.006 0.706 ± 0.003 0.713 ± 0.004 0.675 ± 0.005
tanh margin 0.703 ± 0.002 0.711 ± 0.006 0.696 ± 0.003 0.685 ± 0.000 0.712 ± 0.006 0.703 ± 0.003 0.706 ± 0.005 0.670 ± 0.005

✏
=

0.
05

CE 0.689 ± 0.002 0.697 ± 0.007 0.677 ± 0.002 0.661 ± 0.002 0.695 ± 0.005 0.689 ± 0.005 0.688 ± 0.004 0.647 ± 0.003
margin 0.702 ± 0.002 0.702 ± 0.007 0.670 ± 0.003 0.654 ± 0.002 0.693 ± 0.007 0.701 ± 0.003 0.688 ± 0.004 0.642 ± 0.004
CW 0.704 ± 0.002 0.707 ± 0.006 0.676 ± 0.002 0.661 ± 0.001 0.707 ± 0.007 0.702 ± 0.002 0.693 ± 0.004 0.646 ± 0.005
NCE 0.706 ± 0.002 0.708 ± 0.007 0.686 ± 0.002 0.676 ± 0.001 0.708 ± 0.005 0.705 ± 0.003 0.700 ± 0.004 0.654 ± 0.005
elu margin 0.704 ± 0.002 0.703 ± 0.007 0.678 ± 0.001 0.660 ± 0.002 0.698 ± 0.005 0.705 ± 0.002 0.693 ± 0.004 0.649 ± 0.005
MCE 0.696 ± 0.001 0.702 ± 0.006 0.669 ± 0.002 0.645 ± 0.003 0.700 ± 0.006 0.698 ± 0.003 0.688 ± 0.004 0.639 ± 0.006
tanh margin 0.686 ± 0.002 0.700 ± 0.005 0.643 ± 0.002 0.627 ± 0.001 0.675 ± 0.004 0.688 ± 0.002 0.666 ± 0.004 0.629 ± 0.003

✏
=

0.
1

CE 0.663 ± 0.001 0.681 ± 0.006 0.643 ± 0.003 0.622 ± 0.001 0.664 ± 0.005 0.665 ± 0.004 0.662 ± 0.003 0.621 ± 0.002
margin 0.691 ± 0.002 0.696 ± 0.008 0.634 ± 0.006 0.615 ± 0.002 0.668 ± 0.008 0.690 ± 0.004 0.661 ± 0.006 0.606 ± 0.004
CW 0.697 ± 0.001 0.701 ± 0.007 0.654 ± 0.002 0.635 ± 0.005 0.691 ± 0.005 0.698 ± 0.003 0.676 ± 0.005 0.620 ± 0.005
NCE 0.697 ± 0.002 0.702 ± 0.008 0.663 ± 0.002 0.647 ± 0.004 0.691 ± 0.007 0.700 ± 0.002 0.681 ± 0.005 0.624 ± 0.006
elu margin 0.700 ± 0.002 0.699 ± 0.008 0.646 ± 0.002 0.626 ± 0.003 0.684 ± 0.006 0.699 ± 0.003 0.670 ± 0.004 0.612 ± 0.006
MCE 0.687 ± 0.001 0.691 ± 0.007 0.641 ± 0.002 0.605 ± 0.006 0.684 ± 0.006 0.690 ± 0.003 0.666 ± 0.005 0.614 ± 0.005
tanh margin 0.675 ± 0.002 0.692 ± 0.007 0.594 ± 0.002 0.581 ± 0.003 0.649 ± 0.003 0.677 ± 0.003 0.630 ± 0.003 0.589 ± 0.004

✏
=

0.
25

CE 0.617 ± 0.005 0.653 ± 0.008 0.565 ± 0.003 0.544 ± 0.001 0.605 ± 0.008 0.627 ± 0.006 0.594 ± 0.004 0.550 ± 0.002
margin 0.660 ± 0.004 0.671 ± 0.009 0.543 ± 0.000 0.512 ± 0.004 0.610 ± 0.006 0.670 ± 0.005 0.593 ± 0.004 0.522 ± 0.005
CW 0.682 ± 0.002 0.685 ± 0.009 0.597 ± 0.006 0.575 ± 0.010 0.670 ± 0.006 0.687 ± 0.004 0.636 ± 0.005 0.557 ± 0.005
NCE 0.683 ± 0.001 0.681 ± 0.008 0.581 ± 0.002 0.571 ± 0.007 0.651 ± 0.006 0.688 ± 0.003 0.623 ± 0.002 0.541 ± 0.007
elu margin 0.681 ± 0.002 0.681 ± 0.009 0.560 ± 0.005 0.541 ± 0.010 0.650 ± 0.007 0.687 ± 0.003 0.612 ± 0.003 0.537 ± 0.005
MCE 0.670 ± 0.004 0.681 ± 0.008 0.581 ± 0.002 0.548 ± 0.007 0.665 ± 0.007 0.677 ± 0.006 0.624 ± 0.004 0.552 ± 0.004
tanh margin 0.649 ± 0.002 0.671 ± 0.006 0.496 ± 0.003 0.486 ± 0.002 0.590 ± 0.007 0.658 ± 0.004 0.553 ± 0.004 0.497 ± 0.006

B.4 Proof of Proposition 1

Proposition 1 Let L0 be the surrogate for the 0/1 loss L0/1 used to attack a node classification algo-
rithm f✓(A,X) with a global budget �. Suppose we greedily attack nodes in order of @L0/@zc⇤(0) 
@L0/@zc⇤(1)  · · ·  @L0/@zc⇤(l) until the budget is exhausted � <

Pl+1
i=0 �i. Under Assumptions

1 & 2, we then obtain the global optimum of maxÃ s.t. kÃ�Ak0<� L0/1(f✓(Ã,X)) if L0 has the
properties (I) @L

0/@zc⇤ | <0 = 0 and (II) @L
0/@zc⇤ | 0 < @L0/@zc⇤ | 1 for any 0 < 0 < 1.

We can easily see that the greedy algorithm obeying the attack order 0  0  1  · · ·  u  . . .
obtains the optimal solution by an exchange argument. Since g(i) is strictly increasing and does not
change the order, we can simply omit it. Let us suppose we are given the optimal plan ⇢⇤ and the
greedy solution has the plan ⇢. Suppose ⇢⇤ would contain one or more nodes for that w > u instead
of q  u. We know that w � q and hence �w � �q . Thus, replacing w by q would either lead to
the an equally good or even better solution (contradiction!). Hence, the greedy plan ⇢ is at least as
good as the optimal plan ⇢⇤. The solution is unique except for ties s.t. 0  i = j  u.

Consequently, a surrogate loss L0 that leads to the order above will yield the global optimum as well.
The order is preserved if (compare with Definition 1):

25

(I) @L0/@zc⇤ | <0 = 0

(II) @L0/@zc⇤ | 0 < @L0/@zc⇤ | 1 for any 0 < 0 < 1 (i.e. @L0/@zc⇤ is strictly concave for positive
inputs)

From property (II) follows that @L0/@zc⇤ is minimal for ! 0+. ⇤

B.5 Alternative Version of Proposition 1

Here we state an alternative version of Proposition 1 if we relax Assumption 2 s.t. it only needs to
hold in expectation.

Assumption 2 The expected budget required to change the prediction of node i increases with the
margin: E[�i| i] = g(| i|) for some increasing function g(| i|) � 1.

Proposition 1 Let L0 be the surrogate for the 0/1 loss L0/1 used to attack a node classification
algorithm f✓(A,X) with a global budget �. Additionally to Assumptions 1 and 2, suppose the
adversary perturbs the chosen node until it is misclassified. We then obtain the global optimum of

max
Ã s.t. kÃ�Ak0�

E[L0/1(f✓(Ã,X))]

through greedily attacking the nodes in order @L0

@zc⇤
(0) 

@L0

@zc⇤
(1)  · · · 

@L0

@zc⇤
(l) until the

budget is exhausted � 
Pl+1

i=0 �i, if L0 has the properties (I)
@L0

@zc⇤
| <0 = 0 and (II)

@L0

@zc⇤
| 0 <

@L0

@zc⇤
| 1 for any 0  0 < 1.

Assumption 2 only needs to hold for a small fraction of nodes with low i. For the empirical
distribution of a two-layer GCN on Cora ML, E[�i| i] = 1 and Var[�i| i] = 0 for the 22.9% nodes
with lowest margin i. Hence,

max
Ã s.t. kÃ�Ak0�

E[L0/1(f✓(Ã,X))] ⇡ max
Ã s.t. kÃ�Ak0�

L0/1(f✓(Ã,X))

for small �.

C Scalable Attacks

We start with some general remarks on L0 Projected Gradient Descent in § C.1. Then we give more
details on our attacks PR-BCD and GR-BCD (§ C.2). In § C.3, we conclude this section with the
derivation and complexity of the update of PPR scores (required for attacking PPRGo).

C.1 L0 Projected Gradient Descent

For L0 Projected Gradient Descent (L0-PGD) we largely follow Xu et al. [43]. In fact, theirs is a
special case of our PR-BCD (with the exceptions detailed below). To recover the (L0-PGD), one
solely needs to select all possible indices in line 3 in Algo. 1 and drop lines 10-14.

As discussed in § 3, we aim to solve:

max
P s.t. P2{0,1}n⇥n,

P
P�

L(f✓(A� P ,X)) . (C.1)

where we explicitly model the perturbations P 2 {0, 1}n⇥n (Pij = 1 denotes an edge flip).
For the sake of optimizing P with first-order/gradient methods we relax it from {0, 1}(n⇥n) to
[0, 1](n⇥n). In words, during the attack we allow a weighted adjacency matrix where the weights
of P at the same time represent the probability to flip this edge in the last step of the attack. The
sampling P ⇠ Bernoulli(pt) s.t.

P
P  � is required to obtain a binary perturbed adjacency

matrix in the end: Ã 2 {0, 1}(n⇥n). Note that we overload � (besides its binary XOR meaning) s.t.
Aij � pij = Aij + pij if Aij = 0 and Aij � pij otherwise.

Projection. Recall that after each gradient update, the projection ⇧E[Bernoulli(p)]�(p) adjusts the
probability mass such that E[Bernoulli(p)] =

P
i2b pi  � and that p 2 [0, 1]. Specifically, the

26

projection operation

⇧E[Bernoulli(p)]�(p) =

⇢
⇧[0,1](p) if 1>⇧[0,1](p)  �
⇧[0,1](p� �1) s.t. 1>⇧[0,1](p� �1) = � otherwise

(C.2)

where ⇧[0,1](p) is simply clamping the values to the interval [0, 1] and � originates from the Lagrange
formulation of the constrained optimization problem. � can be efficiently calculated with the bisection
method in log2[max(p)�min(p�1)/⇠] steps with the admissible error ⇠. In contrast to Xu et al. [43], we
additionally limit the number of steps to account for numerical instabilities on very large graphs.

Sampling solution. To retrieve a discrete and valid perturbed adjacency matrix in the last step, we
sample P ⇠ Bernoulli(pt) s.t.

P
P  �. Xu et al. [43] propose to sample for 20 times and reject

all samples that violate the constraint. To eliminate the case that no solution was found and for
improved attack strength (at the cost of a potential bias), we take the top-� values of p instead of
sampling in the first iteration of this “rejection sampling” procedure. In case of ties, we take the
preceding sample.

Learning rate. To obtain a constant learning rate regardless of the budget, we scale a “base” learning
rate (hyperparameter) by the budget. When using the PR-BCD attack (which we discuss next), we
use the block size b/n2 as an additional scaling factor and then apply the square root.

C.2 Projected and Greedy Randomized Block Coordinate Descent

We first give some implementation details on our Projected Randomized Block Coordinate Descent
(PR-BCD). Then we formally introduce Greedy Randomized Block Coordinate Descent (GR-BCD).

Sampling w/o replacement. As it turns out, even sampling w/o replacement i0 2 {0, 1, . . . , n2
�1}b,

which we need to determine the current block, is not easily parallelizable if one just has O(b) memory
and, hence, rather slow on modern GPUs. For this reason, we simply sample with replacement and
afterward drop the duplicates. This comes at the cost of not having a block with exactly b elements.
Especially on large graphs, the difference is rather small, although, collisions do exist. For a proper
analysis, we refer to well-studied problems such as the Birthday Paradox or hash sets/tables.

Representing zeros. We require that all elements in p have a small, negligible non-zero value, i.e.
must not be exactly zero. This affects the initialization and the projection procedure. We require it
for two reasons: (1) we can easily “detect” edge removals (pi must be subtracted instead of added)
and (2) some sparse operations implicitly remove edges of zero weight.

GR-BCD. The biggest pitfall while aiming for maximum scalability is that we do not desire a runtime
of O(m). Instead, we solely want to iterate a constant number of steps (epochs) E. We simply
achieve this through defining a schedule �t for t 2 {1, 2, . . . , E} where

PE
t=1 �t = �. In our

experiments, we distribute the budget evenly and leave more complicated alternatives for future work.
For the pseudo code of GR-BCD see Algorithm 2.

Advantages and limitations. Our GR-BCD shares many commonalities with PR-BCD but does
not require a learning rate ↵t, heuristic h(. . .), and Eres. since we resample in each epoch. Another
advantage is that we do not require b > �, which makes it more scalable than PR-BCD. However,
since PR-BCD is scalable itself, in our experiments, we always kept the same block sizes for both
attacks for improved comparability of results. GR-BCD’s biggest drawback is its much slower
learning dynamics. That is if an edge is flipped it is rarely flipped back. This is particularly important
if one does not attack a GCN / designs an adaptive attack (see § F.3).

C.3 Derivation and Complexity of Personalized Page Rank Update

In the following, we discuss how we can attack a single node on PPRGo using PR-BCD (i.e. a local
attack). Since PPRGo avoids a recursive message passing scheme, relying on the PPR scores, we
need an efficient, differentiable procedure to update the PPR scores given the perturbation of the
adjacency matrix. We further limit the perturbations to the incoming edges. Perturbing adjacent
edges is the most effective attack [50]. To update the PPR scores of a directed graph for a node in ⇧,
we use the Sherman-Morrison formula

(B + uv>)�1 = B�1
�

B�1uv>B�1

1 + v>B�1u
(C.3)

27

Algorithm 2 Greedy Randomized Block Coordinate Descent (GR-BCD)
1: Input: Gr. (A,X), lab. y, GNN f✓(·), loss L
2: Parameter: block size b, schedule �t for t 2 {1, 2, . . . , E}
3: Draw w/o replacement i02{0, 1, . . . , n2 � 1}b
4: Initialize zeros for p0 2 Rb

5: initialize Â A
6: for t 2 {1, 2, . . . , E} do

7: ŷ f✓(Â� pt�1,X)
8: Flip arg top-�t(rit�1L(ŷ,y)) edges in Â
9: maskres. h(pt)

10: pt[maskres.] 0
11: Resample it[maskres.]
12: Return Â

for rank one update uv> of the inverse of an invertible matrix B 2 Rn⇥n. The rank one uv> update
in general has shape [n⇥n] and therefore comes with space complexity O(n2) and the update via the
Sherman-Morrison formula has O(n3). Since we use row normalization with PPRGo, we can attack
the PPR scores via updating a single row ⇧̃i of the adjacency matrix A (including normalization)
and obtain the gradient for the b potentially non-zero entries in p.

We can write the closed-form local PPR update as:

⇧̃i = ↵
h
I � (1� ↵)D�1A+ uv>

i�1

i
= ↵

✓
⇧

0
i �

⇧
0
iiv⇧

0

1 + v⇧0
:i

◆
(C.4)

where ⇧
0 = (I � (1 � ↵)D�1A)�1 = ↵�1

⇧ and we choose uj = 08j 6= i and ui = 1. For
PPR we need e.g. a row stochastic matrix and hence need to normalize the adjacency matrix, also
accounting for the prospective update. This implies that through an alteration of b entries in the
i-th row of the unnormalized adjacency matrix, we need to adjust every entry of this row to obtain
the normalized adjacency matrix. We can simply achieve this through adding the normalized row
(Dii +

P
p)�1(Ai + p) after the alteration and subtract its original entries D�1

ii Ai. Putting this
together, the rank one update of the i-th row results in v = (Dii +

P
p)�1(Ai + p) � D�1

ii Ai

where p is a sparse vector with at most b non-zero elements.

With dense matrices, this would leave us with a complexity of O(bn) due to the vector-matrix product
v⇧0. We follow Bojchevski et al. [5] and use the top-k-sparsified PPR ⇧

(k) instead of ⇧ with at
most k entries per row. Since v has at most b non-zero entries, most columns in the slice ⇧

(k)
v 6=0 only

contain zero elements. Thus, we can equivalently write v⇧0 as a dense vector matrix product of
shapes [1, b] and [b, r], where r is the number of non-zero columns in the rows ⇧0

it
. Recall that it

are the indices of epoch t and that b � |it|. If we assume randomly distributed ones, the probability
of a non-zero entry is k/n. Hence we can model P (

P
⇧

(k)
v 6=0,j) = Bin(b, k/n) for column j and

analogously

E[r] = n · P
⇣X

⇧
(k)
v 6=0,j > 0

⌘

= n
h
1� P

⇣X
⇧

(k)
v 6=0,j = 0

⌘i

= n

"
1�

✓
1�

k

n

◆b
#

=
nb

� (n� k)b

nb�1
.

(C.5)

For an appropriate choice of k ⌧ n, the expected number of non-zero rows is E[r] = O(bk). The
stronger asymptotic relation E[r] = ⇥(bk) (and more strict alternatives) holds, but we omit this
discussion for simplicity. Instead, we refer to Fig. C.1 for an illustration. In summary, the complexity
of v⇧0 and our local attack on PPRGo is O(bk). Please note that in contrast to the global PR-BCD
attack, this includes the (Soft Median) PPRGo, and therefore is much more scalable. In practice, we
observed slightly lower values for r than predicted by the relation above. We hypothesize that this is

28

due to the fact that many rows contain less than k non-zero elements (depending on the approximation
of the PPR scores) but that our assumption of randomly distributed non-zero elements holds.

106 1010

103

104

105

106

107

N
on

-z
er

o
ro

w
s
E[
r]

k = 64

106 1010

k = 128

106 1010

k = 256

Number of nodes n

k · b
b = 1e2

b = 1e3

b = 1e4

b = 1e5

Figure C.1: E[r] = nb�(n�k)b

nb�1 for different (practical) values of k and b.

To obtain a local attack we simply need to change lines 3 and 13 of Algo. 1 to sample only indices i0 2

{0, 1, . . . , n�1}. Further, we either keep line 6 if we attack e.g. GCN [24] or update ⇧̃i as described
in Eq. 4. We simply use a margin loss in logit space since we only have a local budget. After the
attack and before applying the victim model the last time, we recalculate the PPR score for the target
node based on the perturbed graph structure. The difference between the margin in the best epoch
and after recalculating the PPR scores is usually negligible and shows that the approximation holds.

D Scalable Defense

We first formally define the breakdown point. Then in § D.1, we give the proof of Theorem 1 and in
§ D.2 we extend the discussion to the weighted Soft Median.

Breakdown point. Many metrics have been proposed that capture the robustness of a point estimate
/ aggregation with different flavors. One of the most widely used properties is the breakdown point.
The (finite-sample) breakdown point captures the minimal fraction ✏ = m/n so that the result of the
location estimator µ(X) can be arbitrarily placed [15]:

✏⇤(t,X) = min
1mn

(
m

n
: sup

X̃✏

kµ(X)� µ(X̃✏)k = 1

)
(D.1)

In this section we use m and n differently than in the rest of the paper: m denotes the number of
perturbed inputs and n the number of inputs of the aggregation µ(X) (or number of rows in X).

D.1 Proof of Theorem 1

Theorem 1 Let X = {x1, . . . ,xn} be a collection of points in Rd with finite coordinates and
temperature T 2 [0,1). Then the Soft Median location estimator (Eq. 6) has the finite sample
breakdown point of ✏⇤(µSoft Median,X) = 1/nb(n+1)/2c (asympt. limn!1 ✏⇤(µSoftMedian,X) = 0.5).

Let X̃✏ be decomposable such that X̃✏ = X̃(c)
✏ [X̃(p)

✏ and X̃(c)
✏ \ X̃(p)

✏ = ;. Here X̃(c)
✏ denotes the

clean and X̃(p)
✏ the perturbed inputs. We now have to find the minimal fraction of outliers ✏ for which

supX̃✏
kµSoftMedian(X̃✏)k < 1 does not hold anymore. According to Eq. D.1, if we now want to

arbitrarily perturb the Soft Median, we must kx̃vk ! 1, 9 v 2 X̃(p)
✏ . Next we analyze the influence

of this instance on Eq. 6 (w.l.o.g. we omit the factor
p
D):

ŝvx̃v =
exp

�
�

1
T kx̄� x̃vk

x̃vP

i2X̃(c)
✏

exp
�
�

1
T kx̄� xik

+
P

j2X̃(p)
✏

exp
�
�

1
T kx̄� xjk

29

Instead of limkx̃vk!1 ŝvxv , we can equivalently derive the limit for the numerator and the denom-
inator independently, as long as the denominator does not approach 0 which is easy to show (the
denominator is > 0 and  |X̃✏|). With limkx̃vk!1 we denote the fact that the statements holds
regardless how we achieve that the norm approaches infinity:

lim
kx̃vk!1

��� exp
⇢
�

1

T
kx̄� x̃vk

�
x̃v

��� =

⇢
0, if limkx̃vk!1 kx̄� x̃vk = 0
1, otherwise

Please note that limx!1 xe�x/a = 0 for a 2 [0,1). As long as ✏ < 0.5, we know that for each
dimension the perturbed dimension-wise median must be still within the range of the clean points.
Or in other words, the perturbed median lays within the smallest possible hypercube around the
original clean data X. As long as ✏ < 0.5 we have that limkx̃vk!1 kx̄ � x̃vk = 0. Consequently,
kµ(X)� µ(X̃✏)k = 1 can only be true if m/n � 0.5 for T 2 [0,1). ⇤

D.2 Weighted Soft Median

It is easy to show that our proof also holds in the weighted case. Recall that we denote the weights
of the neighbors with a. We extract from the weighted/normalized adjacency matrix (compare with
Eq. A.1). Given that a computer program represents numbers with limited precision, we do not
provide an elaborate proof for weights in R. Instead, we can convert a weighted problem into an
unweighted, if we can find the greatest common divisor gcd(a) = gcd([a1 . . . an]). Once we
found a gcd, we can use it to determine the factor of replications for each instance s.t. the relations to
not change. For more details we refer to [18].

D.3 Empirical Error

Similar to the finding in [18], we observe our Soft Median comes with a lower error if facing
perturbed inputs (see Fig. D.1 which reproduce and complement Fig. 2 in [18]). Here we plot
the error kt(X) � t(X̃)k2, for 50 samples from a centered (tSoftMedian(X) = 0) bivariate normal
distribution. The adversary is a point mass perturbation on the first axis over increasing fraction of
outlier ✏.

0.00 0.25 0.50

Fraction of outliers ✏

100

102

k
t(
X
)
�

t(
X̃
)k

2

(a) absolute bias

0.00 0.25 0.50

Fraction of outliers ✏

10�1

100

(b) relative bias

Soft Median (T = 1)
dim-wise Median
closest to dim.-w. Median
sample mean
Soft Medoid (T = 50)

Figure D.1: Empirical error for a point mass perturbation. We reproduce Figure 2 in [18] and add our
Soft Median.

D.4 Improving Provable Robustness

Similarly to the Soft Medoid in [18, 32], in Table D.1, we show that the Soft Median can improve
the certified robustness. Here we apply randomized smoothing [4] and obtain a significantly greater
provable adversarial robustness. In the subsequent table, we show the "Accumulated certificates"
obtained by randomized smoothing (same setup as in Table 2 in [18]). Even though our defense does
not come with an adversarial robustness guarantee, we show that it can lead to increased provable
robustness.

30

Table D.1: Certified robustness with randomized smoothing [4] following the setup of [18].
Accumulated certificate Add & Del. Add. Del. Accuracy

Cora ML

Soft Median GDC 5.7 0.66 4.9 0.833

Vanilla GCN 1.84 0.21 4.41 0.823
Soft Medoid GDC 5.5 0.64 4.78 0.814

Citeseer

Soft Median GDC 4.43 0.57 4.31 0.728

Vanilla GCN 1.24 0.11 3.88 0.710
Soft Medoid GDC 3.64 0.49 4.33 0.705

E Theoretical Complexities

In the following, we summarize the theoretical complexities approaches we use in our experiments.
We assume that the number of features and hidden neurons is negligible in comparison to e.g. the
number of nodes. k denotes the GDC/PPRGo hyperparameter for top-k-sparsification of the PPR
matrix, n is the number of nodes, and m is the number of edges. We try to keep the overview simple
and e.g. only list the most important hyperparameters. If a model preprocesses the adjacency matrix,
we report the time complexities for preprocessing and GNN separately. For the attacks, we report the
additional complexity (i.e. GNN excluded). We also use b for the block size, � as the budget, and E
for the number of epochs. We chose b = O(m) for global attacks. In Table E.1 and Table E.2, we list
the theoretical complexities of the used models and global attacks respectively.

Table E.1: Theoretical complexities of the models and defenses.
Architecture Memory Complexity Time Complexity (all nodes)

Soft Median GDC O(k · n) O(n) +O(k · n)
Soft Median PPRGo O(k) O(n) +O(k · n)
Vanilla GCN O(m) O(m)
Vanilla GDC O(k · n) O(n) +O(k · n)
Vanilla PPRGo O(k) O(n) +O(k · n)
Soft Medoid GDC O(k2 · n) O(n) +O(k2 · n)
SVD GCN O(n2) O(m) +O(n2)
Jaccard GCN O(m) O(n2) +O(m)
RGCN O(m) O(m)

Table E.2: Theoretical complexities of the global attacks.

Global Attack
Memory

Complexity
Time Complexity Details

PR-BCD O(b) O(E · b log(b)) b � �
GR-BCD O(b) O(E · b) b � �

E
FGSM O(n2) O(� · n2)
PGD O(n2) O(E · n2)
DICE O(�) O(�)

For the local complexities in Table E.3 we distinguish between the complexities with and without
GNN.

We now continue with a discussion of SGA’s complexity. The space complexity of SGA is largely
driven by two factors: (a) edge deletions are considered for the entire receptive field of the attacked
node, and (b) the edge insertions are considered to the top � nodes of the second most likely class.

To determine the top � for (b) one needs to obtain the gradient w.r.t. to the edge connecting to the
nodes of the second most likely class. For some graphs this requires to check O(n) nodes. Even
though this can be done iteratively or in batches.

31

Table E.3: Theoretical complexities of the local attacks.
Local Attack Memory Complexity Time Complexity

Complexity of GNN excluded included excluded included

PR-BCD O(b) O(m) O(E · b log(b)) O(E ·m)
PR-BCD (with PPRGo) - O(b · k) - O(E · b log(b))
Nettack O(�) O(m) O(� · n) O(E ·m)
SGA (with SGC) - O(m) - O(E ·m)
DICE O(�) O(m) O(�) O(E ·m)
DICE (with PPRGo) - O(�) - O(E ·�)

It is even more challenging to obtain the gradient towards the edges for (a). This is simply due to
the recursive nature of GNNs. For example, in a graph that approximately follows a power-law
distribution, there will be some nodes with very high degree. Thus, for a moderate number of message
passing steps and with high-degree nodes in the neighborhood, this subgraph might span a large
fraction of nodes. Hence, in the worst case, the number of edges we need to consider scales with
O(m). Note this is the same limitation we describe in § 3 when we say that “we are limited by
the scalability of the attacked GNN”. Hence, we also experience this if attacking a GCN locally on
datasets larger than Products. This was our main motivation to also consider PPRGo.

F Empirical Evaluation

In § F.1 we start with a more thorough description of the experiment setup and in § F.2 we give
insights into the time and memory cost. We conclude with additional experiments using our global
attack and local attack in § F.3 and § F.4, respectively. While our local PR-BCD attack is adaptive
since it does not rely on a surrogate model, our global attacks are not adaptive and transfer the
attack from a Vanilla GCN (common practice presumably because many defenses/baselines are not
differentiable, e.g. see [16, 18, 41, 48]). Nevertheless, we also experiment with direct, adaptive
attacks on our defense Soft Median GCN in § F.3 or more specifically Table F.4.

F.1 Setup

Datasets. We use the common Cora ML [2] and Citeseer [28] for a comprehensive comparison
of the state-of-the-art attacks and defenses (most baselines do not scale further). For large scale
experiments, we use PubMed [33] as well as arXiv, Products and Papers 100M of the recent Open
Graph Benchmark [21]. Since most approaches rely on graphs of similar size as PubMed for their
“large-scale” experiments, we scale the global attack by more than 100 times (number of nodes), or
by factor 15,000 if counting the possible adjacency matrix entries (see Table F.1). We scale our local
attack to Papers 100M which has 111 million nodes, outscaling previous local attacks by a factor of
500. For a detailed overview see Table F.1.

Table F.1: Statistics of the used datasets (extension of Table 1). For the dense adjacency matrix
we assume that each elements is represented by 4 bytes. In the sparse case we use two 8 byte
integer pointers and a 4 bytes float value. For Cora ML, Citeseer and PubMed we extract the largest
connected component.

Dataset License #Features d #Nodes n #Edges e
#Possible

edges n2
Average

degree e/n Size (dense) Size (sparse)

Cora ML [2] N/A 2,879 2,810 15,962 7.896E+06 5.68 31.58 MB 319.24 kB
Citeseer [28] N/A 3,703 2,110 7,336 4.452E+06 3.48 17.81 MB 146.72 kB
PubMed [33] N/A 500 19,717 88,648 3.888E+08 4.50 1.56 GB 1.77 MB
arXiv [21] ODC-BY 128 169,343 1,166,243 2.868E+10 6.89 114.71 GB 23.32 MB
Products [21] Amazon 100 2,449,029 123,718,280 5.998E+12 50.52 23.99 TB 2.47 GB
Papers 100M [21] ODC-BY 128 111,059,956 1,615,685,872 1.233E+16 14.55 49.34 PB 32.31 GB

Attacks. We compare our global attacks PR-BCD and GR-BCD (§ 3) with PGD [43], and greedy
FGSM (similar to Dai et al. [14]) attacks. The greedy FGSM-like attack is the dense equivalent of
our GR-BCD attack with the exception of flipping one edge at a time. Regardless of the scale of the

32

https://opendatacommons.org/licenses/by/
https://s3.amazonaws.com/amazon-reviews-pds/license.txt
https://opendatacommons.org/licenses/by/

datasets, we also compare to the global DICE [37] attack. DICE is a greedy, randomized black-box
attack that flips one randomly determined entry in the adjacency matrix at a time. An edge is deleted
if both nodes share the same label and an edge is added if the labels of the nodes differ. We ensure
that a single node does not become disconnected. Moreover, we use 60% of the budget to add new
edges and otherwise remove edges. We compare our local PR-BCD (§ 3) with Nettack [50]. Nettack
perturbs the adjacency matrix greedily exploiting the properties of the linearized GCN surrogate.

Defenses. We compare our Soft Median architectures with state-of-the-art defenses [16, 18, 41, 48].
Following [18], we use the GDC/PPR preprocessing [25] in combination with our Soft Median. The
SVD GCN [16] uses a (dense) low-rank approximation (here rank 50) of the adjacency matrix to filter
adversarial perturbations. RGCN [48] models the neighborhood aggregation via Gaussian distribution
to filter outliers, and Jaccard GCN [41] filters edges based on attribute dissimilarity (here threshold
0.01). For the Soft Medoid GDC, we use the temperature T = 0.5 as it is a good compromise
between accuracy and robustness (except for arXiv where we choose T = 5.0). For more details
about the Soft Medoid GDC see § 4.

Checkpointing. Empirically, almost 30 GB are required to train a three-layer GCN on Products (our
largest dataset for global attacks) using sparse matrices. However, obtaining the gradient, e.g. towards
the perturbation vector/matrix, requires extra memory. We notice that most operations in modern
GNNs only depend on the neighborhood size (i.e. a row in the adjacency matrix). As proposed
by Chen et al. [12], the gradient is obtainable with sublinear memory cost via checkpointing. The idea
is to discard some intermediate results in the forward phase (that would be cached) and recompute
them in the backward phase. Specifically, we chunk some operations (e.g. matrix multiplication)
within the message passing step to successfully scale to larger graphs. This allows us to attack a
three-layer GCN on Products with full GPU acceleration.

Hyperparameters. For full details we refer to our code and configuration. We run every experiment
for three random seeds (unless otherwise stated) except for the largest dataset Papers100M.

Models: We typically train for at most 3000 epochs with early stopping and patience of 300. We
use a learning rate of 0.01 and a weight decay of 0.001 for all models (except PPRGo and SGC).
On all datasets, we use a restart probability of 0.15 (except arXiv 0.1) for GDC and sparsify the
adjacency by selecting the top 64 edges in each row. For the remaining configuration, we closely
follow the setup of Geisler et al. [18] on Cora, Citeseer, and Pubmed. On arXiv as well as Products
we follow Hu et al. [21] but still train for 3000 epochs with early-stopping patience of 300 and use
three layers / message passing steps. We only deviate from the standard configuration for the PPRGo
models as they are more sensitive to the hyperparameter choice. We use checkpointing for the Soft
Medoid and Soft Median GDC on arXiv and for all models on Products. For the Soft Medoid and
Soft Median GDC, we lower the number of layers and hidden dimensions such that they fit in the
GPU memory. We determine the optimal temperature/parameters of our Soft Median GDC/PPRGo
through a rudimentary grid search. On the small datasets, we typically end up with either T = 0.2 or
T = 0.5. The larger the dataset, the larger the best temperature becomes (this effect is even stronger
in combination with PPRGo). For the largest dataset Papers100M, we plot and analyze the influence
of the temperature in Fig. F.3.

Attacks: For the global attacks GR-BCD and PR-BCD, we run the attack for 500 epochs (100 epochs
fine-tuning with PR-BCD). We choose a block size b of 1,000,000, 2,500,000, 10,000,000 for Cora
ML/Citeseer, Pubmed and arXiv/Products, respectively. For our local PR-BCD, we also attack for
500 epochs on Cora ML and Citeseer but observe that for Products and Papers100M 30 epochs are
sufficient. Respectively, we choose a block size b of 10,000, 10,000, 20,000 and 2,500. We select the
learning rates such that the budget requirement is met.

F.2 Time and Memory Cost

We present the time and memory cost for our global PR-BCD in Table F.2 and for our local PR-BCD
in Table F.32. In all cases, our attack is reasonably fast and comes with a low memory footprint. We
refer to Fig. 1 for a comparison with the dense PGD attack. Note that a global PGD attack on arXiv
would require around 1 TB (see Fig. 1) while our PR-BCD only requires around 4 GB while still

2Note that the numbers presented here are slightly more pessimistic than in the main part since here we
report the runtime/memory consumption including preprocessing and postprocessing steps. We will make this
consistent in a future version of this paper.

33

Table F.2: Time cost and memory cost of our global PR-BCD attack on a Vanilla GCN.

Dataset Block size b Max GPU memory \ GB Duration of epoch \ s

Cora ML 1,000,000 0.34 0.12
PubMed 2,500,000 0.89 0.32
arXiv 10,000,000 4.29 1.55

Table F.3: Time cost and memory cost of our local PR-BCD attack on PPRGo.

Dataset Architecture (victim) Block size b
Max GPU

memory \ GB

Duration of

epoch \ s

Cora ML Soft Median PPRGo 10,000 0.08 0.49
Vanilla PPRGo 10,000 0.12 0.52

Citeseer Soft Median PPRGo 10,000 0.08 0.39
Vanilla PPRGo 10,000 0.14 0.47

Products Soft Median PPRGo 20,000 5.58 4.29
Vanilla PPRGo 20,000 6.07 3.26

Papers 100M Soft Median PPRGo 2,500 2.85 14.66
Vanilla PPRGo 2,500 2.81 14.82

being effective (see Table F.2). In Table F.3 we see that with a proper choice of the block size b once
can attack a massive dataset on a reasonably sized GPU. Moreover, our Soft Medoid PPRGo and the
Vanilla PPRGo come with a comparable runtime and memory consumption.

F.3 Global Attacks

We compare the robustness of the models over different attack budgets in Fig. F.1 (similarly to Fig. 7).
In Table F.5, we give a detailed overview of how each model’s accuracy declines for all benchmarked
attacks. More importantly, in Table F.4, we provide the results for an adaptive attack.

Table F.4: Adversarial accuracy using direct, adaptive attacks and our Soft Median GDC with
the vanilla baselines. We show the adversarial accuracy and the clean test accuracy (last column).
We highlight the strongest defense in bold as the attacks perform similarly. Our approaches are
underlined.

Dataset Attack GR-BCD

Frac. edges ✏ 0.01 0.05 0.10 0.25 0.50 1.00

Cora ML

Soft Median GDC 0.807 ± 0.002 0.773 ± 0.002 0.749 ± 0.001 0.692 ± 0.004 0.648 ± 0.002 0.603 ± 0.001

Vanilla GCN 0.789 ± 0.003 0.699 ± 0.003 0.619 ± 0.004 0.475 ± 0.004 0.333 ± 0.003 0.148 ± 0.005
Vanilla GDC 0.808 ± 0.002 0.749 ± 0.003 0.703 ± 0.003 0.623 ± 0.005 0.513 ± 0.005 0.396 ± 0.007

Citeseer

Soft Median GDC 0.705 ± 0.001 0.687 ± 0.002 0.664 ± 0.001 0.626 ± 0.003 0.582 ± 0.001 0.536 ± 0.004

Vanilla GCN 0.689 ± 0.002 0.618 ± 0.001 0.554 ± 0.001 0.410 ± 0.003 0.265 ± 0.002 0.105 ± 0.008
Vanilla GDC 0.679 ± 0.001 0.626 ± 0.002 0.588 ± 0.006 0.504 ± 0.003 0.421 ± 0.003 0.309 ± 0.007

Attack PR-BCD

Frac. edges ✏ 0.01 0.05 0.10 0.25 0.50 1.00

Cora ML

Soft Median GDC 0.796 ± 0.002 0.735 ± 0.002 0.690 ± 0.002 0.615 ± 0.003 0.564 ± 0.005 0.523 ± 0.005

Vanilla GCN 0.792 ± 0.003 0.704 ± 0.004 0.635 ± 0.005 0.478 ± 0.003 0.309 ± 0.005 0.141 ± 0.005
Vanilla GDC 0.799 ± 0.002 0.711 ± 0.003 0.645 ± 0.005 0.532 ± 0.006 0.457 ± 0.005 0.400 ± 0.006

Citeseer

Soft Median GDC 0.692 ± 0.002 0.650 ± 0.002 0.615 ± 0.003 0.548 ± 0.005 0.494 ± 0.006 0.446 ± 0.008

Vanilla GCN 0.689 ± 0.002 0.621 ± 0.003 0.560 ± 0.004 0.429 ± 0.007 0.282 ± 0.012 0.127 ± 0.009
Vanilla GDC 0.670 ± 0.001 0.591 ± 0.004 0.515 ± 0.002 0.374 ± 0.003 0.264 ± 0.007 0.194 ± 0.006

Adaptive, global attack. In Table F.5, we compare our Soft Median GDC to a Vanilla GCN (and
Vanilla GDC as ablation). We make two major observations: (1) our Soft Median GDC outperforms
the baselines by a large margin over all budgets ✏ > 0.01; (2) while in the previous experiments
the greedy attacks (FGSM or GR-BCD) seemed to perform on par (sometimes even stronger) with
PGD as well as PR-BCD, this does not hold if we attack Vanilla GDC or our Soft Median GDC.
This implies that for a Vanilla GCN the gradient on the clean edges is an excellent indicator for the

34

effectiveness of an edge flip. Moreover and with no surprise, transfer attacks can provide a false
impression of robustness. We want to emphasize that for GNNs most defenses were not studied using
an adaptive attack (e.g. see [16, 18, 41, 48]). We now compare the performance with an MLP that
achieves around 60% on Cora ML [34]. With GR-BCD we hit 60% adversarial accuracy for ✏ = 1
but for the PR-BCD we already drop below it somewhere in [0.25, 0.5]. Note that the Vanilla GCN
already drops below the MLP performance ✏ ⇡ 0.1. For large budgets (e.g. ✏ = 1.0), our Soft Median
GDC has a four to five times higher adversarial accuracy than a Vanilla GCN.

Unfortunately, we are not aware of an efficient PPR implementation (large fraction of nodes at
once) that allows us to backpropagate through it. Moreover, our Soft Median would lose a lot of
its robustness, if we removed the PPR diffusion (GDC). Hence, we are limited to a calculation of
the PPR scores with the matrix inverse. This is not scalable (runtime complexity O(n3)) and the
inverse of a sparse matrix is not sparse in general (space complexity O(n2)). For this reason, we can
only use an adaptive, global attack on Soft Median GDC on sufficiently small datasets. For adaptive
attacks at scale, we refer to the local attacks in § 5 and § F.4.

Soft Median GDC
Soft Median PPRGo

Vanilla GCN
Vanilla GDC

Vanilla PPRGo
Soft Medoid GDC

SVD GCN

0.0 0.1 0.2

Frac. edges ✏

0.5

0.6

0.7

0.8

A
dv

.a
cc

ur
ac

y

(a) Cora ML: FGSM

0.0 0.1 0.2

Frac. edges ✏

0.5

0.6

0.7

0.8

A
dv

.a
cc

ur
ac

y

(b) Cora ML: GR-BCD

0.0 0.1 0.2

Frac. edges ✏

0.6

0.7

0.8

A
dv

.a
cc

ur
ac

y

(c) Cora ML: PGD

0.0 0.1 0.2

Frac. edges ✏

0.5

0.6

0.7

0.8

A
dv

.a
cc

ur
ac

y

(d) Cora ML: PR-BCD

0.0 0.1 0.2

Frac. edges ✏

0.4

0.5

0.6

0.7

A
dv

.a
cc

ur
ac

y

(e) Citeseer: GR-BCD

0.0 0.1 0.2

Frac. edges ✏

0.5

0.6

0.7

A
dv

.a
cc

ur
ac

y

(f) Citeseer: PR-BCD

0.00 0.05 0.10

Frac. edges ✏

0.6

0.7

A
dv

.a
cc

ur
ac

y

(g) Pubmed: GR-BCD

0.00 0.05 0.10

Frac. edges ✏

0.65

0.70

0.75
A

dv
.a

cc
ur

ac
y

(h) Pubmed: PR-BCD

0.00 0.05 0.10

Frac. edges ✏

0.4

0.6

A
dv

.a
cc

ur
ac

y

(i) arXiv: GR-BCD

0.00 0.05 0.10

Frac. edges ✏

0.2

0.4

0.6

A
dv

.a
cc

ur
ac

y

(j) arXiv: PR-BCD

0.00 0.05 0.10

Frac. edges ✏

0.6

0.7

A
dv

.a
cc

ur
ac

y

(k) Products: GR-BCD

0.00 0.05 0.10

Frac. edges ✏

0.5

0.6

0.7

A
dv

.a
cc

ur
ac

y

(l) Products: PR-BCD

Figure F.1: Adversarial accuracy for the budget ✏ as a fraction of edges. The lower the adversarial
accuracy, the stronger the attack or weaker the defense. The higher the adversarial accuracy, the
stronger the defense or weaker the attack. Here we provide more detail than in Fig. 7.

35

Ta
bl

e
F.

5:
C

om
pa

rin
g

at
ta

ck
s

(tr
an

sf
er

fr
om

Va
ni

lla
G

C
N

)a
nd

de
fe

ns
es

.W
e

sh
ow

th
e

ad
ve

rs
ar

ia
la

cc
ur

ac
y

an
d

th
e

cl
ea

n
te

st
ac

cu
ra

cy
(la

st
co

lu
m

n)
.W

e
hi

gh
lig

ht
th

e
s
tr

o
n

g
e
s
t

d
e
fe

n
s
e

in
bo

ld
as

th
e

at
ta

ck
s

pe
rf

or
m

si
m

ila
rly

.
A

m
or

e
nu

an
ce

d
hi

gh
lig

ht
in

g
is

gi
ve

n
fo

rt
he

st
ro

ng
es

ta
tta

ck
fo

re
ac

h
ar

ch
ite

ct
ur

e
an

d
bu

dg
et

.
O

ur
ap

pr
oa

ch
es

ar
e

un
de

rli
ne

d.

A
tt

a
c
k

D
I
C

E
F

G
S

M
G

R
-B

C
D

P
G

D
P

R
-B

C
D

A
c
c
.

Fr
ac

.e
dg

es
✏

0.
05

0.
1

0.
05

0.
1

0.
05

0.
1

0.
05

0.
1

0.
05

0.
1

CoraML

So
ft

M
ed

ia
n

G
D

C
0.

81
6
±

0.
00

2
0.

81
3
±

0.
00

2
0.

78
4
±

0.
00

1
0.

76
9
±

0.
00

2
0.

78
3
±

0.
00

1
0.

76
5
±

0.
00

1
0.

77
9
±

0.
00

2
0.

75
8
±

0.
00

2
0.

77
7
±

0.
00

0
0.

75
2
±

0.
00

2
0.

82
4
±

0.
00

2
So

ft
M

ed
ia

n
PP

R
G

o
0.

81
4
±

0.
00

2
0.

80
4
±

0.
00

1
0
.7

9
2
±

0
.0

0
0

0
.7

7
8
±

0
.0

0
1

0
.7

9
3
±

0
.0

0
2

0
.7

8
1
±

0
.0

0
2

0.
78

7
±

0.
00

1
0.

76
9
±

0.
00

1
0
.7

8
7
±

0
.0

0
2

0
.7

7
0
±

0
.0

0
1

0.
82

1
±

0.
00

1
Va

ni
lla

G
C

N
0.

81
7
±

0.
00

3
0.

80
9
±

0.
00

4
0.

71
3
±

0.
00

3
0.

64
1
±

0.
00

3
0.

69
7
±

0.
00

3
0.

62
2
±

0.
00

3
0.

72
6
±

0.
00

4
0.

66
2
±

0.
00

3
0.

71
3
±

0.
00

3
0.

64
5
±

0.
00

2
0.

82
7
±

0.
00

3
Va

ni
lla

G
D

C
0
.8

3
0
±

0
.0

0
3

0
.8

1
9
±

0
.0

0
2

0.
73

8
±

0.
00

4
0.

67
2
±

0.
00

5
0.

73
7
±

0.
00

3
0.

67
7
±

0.
00

5
0.

74
0
±

0.
00

2
0.

67
9
±

0.
00

2
0.

73
9
±

0.
00

3
0.

67
4
±

0.
00

4
0
.8

4
2
±

0
.0

0
3

Va
ni

lla
PP

R
G

o
0.

81
6
±

0.
00

2
0.

80
7
±

0.
00

1
0.

75
4
±

0.
00

2
0.

72
4
±

0.
00

3
0.

75
8
±

0.
00

2
0.

72
6
±

0.
00

2
0.

74
8
±

0.
00

2
0.

70
4
±

0.
00

1
0.

74
8
±

0.
00

3
0.

70
0
±

0.
00

2
0.

82
6
±

0.
00

2
Va

ni
lla

G
AT

0.
76

3
±

0.
00

2
0.

72
5
±

0.
00

3
0.

74
1
±

0.
00

1
0.

68
8
±

0.
00

2
0.

74
3
±

0.
00

0
0.

69
9
±

0.
00

1
0.

73
1
±

0.
00

2
0.

68
3
±

0.
00

3
0.

73
8
±

0.
00

1
0.

67
7
±

0.
00

2
0.

80
6
±

0.
00

1
So

ft
M

ed
oi

d
G

D
C

0.
81

4
±

0.
00

2
0.

80
9
±

0.
00

2
0.

78
4
±

0.
00

3
0.

77
3
±

0.
00

5
0.

78
6
±

0.
00

2
0.

77
5
±

0.
00

3
0.

78
2
±

0.
00

3
0.

75
9
±

0.
00

3
0.

78
3
±

0.
00

1
0.

76
1
±

0.
00

3
0.

81
9
±

0.
00

2
SV

D
G

C
N

0.
76

6
±

0.
00

5
0.

75
2
±

0.
00

3
0.

77
0
±

0.
00

6
0.

75
1
±

0.
00

7
0.

76
9
±

0.
00

4
0.

75
5
±

0.
00

6
0.

75
3
±

0.
00

4
0.

71
9
±

0.
00

5
0.

75
7
±

0.
00

4
0.

72
4
±

0.
00

6
0.

78
1
±

0.
00

5
Ja

cc
ar

d
G

C
N

0.
80

9
±

0.
00

3
0.

80
3
±

0.
00

3
0.

72
2
±

0.
00

2
0.

66
1
±

0.
00

2
0.

71
9
±

0.
00

1
0.

66
4
±

0.
00

1
0.

73
0
±

0.
00

3
0.

67
3
±

0.
00

2
0.

72
5
±

0.
00

1
0.

66
7
±

0.
00

3
0.

81
8
±

0.
00

3
R

G
C

N
0.

80
8
±

0.
00

2
0.

79
6
±

0.
00

3
0.

71
9
±

0.
00

4
0.

65
4
±

0.
00

7
0.

72
5
±

0.
00

2
0.

66
5
±

0.
00

5
0.

72
5
±

0.
00

5
0.

67
1
±

0.
00

7
0.

72
4
±

0.
00

3
0.

66
4
±

0.
00

4
0.

81
9
±

0.
00

2

Citeseer

So
ft

M
ed

ia
n

G
D

C
0.

70
6
±

0.
00

1
0.

69
9
±

0.
00

1
0.

69
5
±

0.
00

2
0.

67
6
±

0.
00

2
0.

68
8
±

0.
00

2
0.

68
1
±

0.
00

2
0.

68
6
±

0.
00

2
0.

67
5
±

0.
00

2
0.

68
3
±

0.
00

2
0.

66
7
±

0.
00

3
0.

70
8
±

0.
00

2
So

ft
M

ed
ia

n
PP

R
G

o
0.

70
9
±

0.
00

6
0.

70
0
±

0.
00

6
0.

69
7
±

0.
00

6
0.

68
5
±

0.
00

7
0
.6

9
9
±

0
.0

0
6

0
.6

9
0
±

0
.0

0
6

0
.7

0
0
±

0
.0

0
5

0
.6

9
2
±

0
.0

0
7

0
.6

9
9
±

0
.0

0
7

0
.6

8
7
±

0
.0

0
6

0.
71

6
±

0.
00

6
Va

ni
lla

G
C

N
0.

70
8
±

0.
00

3
0.

70
2
±

0.
00

2
0.

63
3
±

0.
00

3
0.

57
4
±

0.
00

4
0.

61
6
±

0.
00

1
0.

55
0
±

0.
00

1
0.

64
3
±

0.
00

2
0.

59
4
±

0.
00

2
0.

62
5
±

0.
00

4
0.

56
8
±

0.
00

4
0.

71
6
±

0.
00

3
Va

ni
lla

G
D

C
0.

69
4
±

0.
00

1
0.

68
7
±

0.
00

2
0.

62
2
±

0.
00

2
0.

56
2
±

0.
00

3
0.

61
8
±

0.
00

3
0.

56
0
±

0.
00

4
0.

62
7
±

0.
00

1
0.

58
1
±

0.
00

3
0.

61
4
±

0.
00

5
0.

56
2
±

0.
00

4
0.

70
7
±

0.
00

1
Va

ni
lla

PP
R

G
o

0
.7

1
9
±

0
.0

0
5

0
.7

0
8
±

0
.0

0
6

0.
67

7
±

0.
00

8
0.

64
4
±

0.
00

9
0.

68
1
±

0.
00

5
0.

66
2
±

0.
00

4
0.

67
5
±

0.
00

4
0.

64
9
±

0.
00

3
0.

67
2
±

0.
00

6
0.

64
4
±

0.
00

7
0
.7

2
6
±

0
.0

0
6

Va
ni

lla
G

AT
0.

58
2
±

0.
00

6
0.

54
4
±

0.
00

4
0.

57
1
±

0.
01

1
0.

52
0
±

0.
01

1
0.

57
7
±

0.
00

8
0.

52
7
±

0.
00

4
0.

57
4
±

0.
00

4
0.

52
2
±

0.
00

5
0.

58
4
±

0.
01

2
0.

52
4
±

0.
00

6
0.

64
7
±

0.
01

2
So

ft
M

ed
oi

d
G

D
C

0.
70

4
±

0.
00

4
0.

70
1
±

0.
00

2
0.

69
4
±

0.
00

4
0.

68
2
±

0.
00

3
0.

69
1
±

0.
00

3
0.

68
3
±

0.
00

2
0.

68
8
±

0.
00

2
0.

67
7
±

0.
00

3
0.

68
8
±

0.
00

4
0.

67
5
±

0.
00

3
0.

70
8
±

0.
00

3
SV

D
G

C
N

0.
63

5
±

0.
01

1
0.

62
3
±

0.
01

2
0.

63
2
±

0.
01

2
0.

61
7
±

0.
01

2
0.

63
3
±

0.
01

2
0.

61
5
±

0.
01

1
0.

63
0
±

0.
01

0
0.

59
9
±

0.
01

3
0.

62
6
±

0.
01

3
0.

60
4
±

0.
00

9
0.

64
6
±

0.
01

2
Ja

cc
ar

d
G

C
N

0.
71

6
±

0.
00

5
0.

70
8
±

0.
00

4
0.

66
3
±

0.
00

4
0.

62
2
±

0.
00

6
0.

65
4
±

0.
00

4
0.

61
6
±

0.
00

3
0.

66
6
±

0.
00

4
0.

63
0
±

0.
00

3
0.

65
0
±

0.
00

5
0.

60
9
±

0.
00

5
0.

72
1
±

0.
00

5
R

G
C

N
0.

67
6
±

0.
00

6
0.

66
3
±

0.
00

6
0.

62
2
±

0.
00

3
0.

56
8
±

0.
00

5
0.

62
4
±

0.
00

5
0.

58
4
±

0.
00

4
0.

62
9
±

0.
00

3
0.

58
9
±

0.
00

4
0.

62
8
±

0.
00

4
0.

58
3
±

0.
00

6
0.

68
6
±

0.
00

5

PubMed

So
ft

M
ed

ia
n

G
D

C
0.

76
1
±

0.
00

2
0.

75
2
±

0.
00

3
-

-
0.

72
1
±

0.
00

4
0.

69
3
±

0.
00

5
-

-
0.

73
0
±

0.
00

5
0.

70
8
±

0.
00

5
0.

76
9
±

0.
00

2
So

ft
M

ed
ia

n
PP

R
G

o
0.

76
4
±

0.
00

1
0.

75
2
±

0.
00

2
-

-
0.

72
3
±

0.
00

0
0
.6

9
4
±

0
.0

0
1

-
-

0.
72

7
±

0.
00

0
0.

69
2
±

0.
00

0
0.

77
6
±

0.
00

2
Va

ni
lla

G
C

N
0.

76
6
±

0.
00

3
0.

75
1
±

0.
00

2
-

-
0.

66
1
±

0.
00

3
0.

59
2
±

0.
00

4
-

-
0.

68
6
±

0.
00

4
0.

62
0
±

0.
00

3
0
.7

8
1
±

0
.0

0
3

Va
ni

lla
G

D
C

0.
76

6
±

0.
00

3
0.

74
8
±

0.
00

2
-

-
0.

68
0
±

0.
00

4
0.

62
0
±

0.
00

5
-

-
0.

69
6
±

0.
00

4
0.

64
5
±

0.
00

5
0.

78
1
±

0.
00

2
Va

ni
lla

PP
R

G
o

0.
71

7
±

0.
00

1
0.

72
1
±

0.
00

7
-

-
0.

71
4
±

0.
00

1
0.

67
3
±

0.
00

2
-

-
0.

70
4
±

0.
00

7
0.

65
8
±

0.
00

4
0.

76
5
±

0.
00

8
So

ft
M

ed
oi

d
G

D
C

0
.7

6
6
±

0
.0

0
3

0
.7

5
6
±

0
.0

0
3

-
-

0.
72

2
±

0.
00

4
0.

69
3
±

0.
00

5
-

-
0
.7

3
2
±

0
.0

0
4

0
.7

1
1
±

0
.0

0
5

0.
77

4
±

0.
00

3

arXiv

So
ft

M
ed

ia
n

G
D

C
0.

64
5
±

0.
00

2
0.

62
9
±

0.
00

2
-

-
0.

50
4
±

0.
00

3
0.

46
2
±

0.
00

1
-

-
0.

47
9
±

0.
00

2
0.

42
0
±

0.
00

5
0.

66
6
±

0.
00

2
So

ft
M

ed
ia

n
PP

R
G

o
0.

66
9
±

0.
00

1
0.

65
4
±

0.
00

1
-

-
0
.6

0
6
±

0
.0

0
1

0
.5

8
9
±

0
.0

0
2

-
-

0.
59

8
±

0.
00

1
0.

56
7
±

0.
00

2
0.

68
4
±

0.
00

1
Va

ni
lla

G
C

N
0
.6

9
0
±

0
.0

0
4

0
.6

7
1
±

0
.0

0
4

-
-

0.
36

1
±

0.
00

3
0.

29
2
±

0.
00

5
-

-
0.

35
1
±

0.
00

3
0.

23
5
±

0.
00

6
0
.7

0
6
±

0
.0

0
4

Va
ni

lla
G

D
C

0.
67

2
±

0.
00

1
0.

64
8
±

0.
00

1
-

-
0.

44
6
±

0.
00

1
0.

39
0
±

0.
00

1
-

-
0.

39
9
±

0.
00

1
0.

29
7
±

0.
00

3
0.

70
1
±

0.
00

1
Va

ni
lla

PP
R

G
o

0.
68

0
±

0.
00

2
0.

66
2
±

0.
00

2
-

-
0.

57
1
±

0.
00

1
0.

54
3
±

0.
00

2
-

-
0.

55
8
±

0.
00

3
0.

50
7
±

0.
00

2
0.

69
9
±

0.
00

2
So

ft
M

ed
oi

d
G

D
C

0.
55

4
±

0.
00

4
0.

54
3
±

0.
00

3
-

-
0.

48
2
±

0.
00

1
0.

46
0
±

0.
00

1
-

-
0.

49
0
±

0.
00

2
0.

46
0
±

0.
00

2
0.

56
7
±

0.
00

4

Products

So
ft

M
ed

ia
n

G
D

C
0.

63
7
±

0.
00

0
0.

62
4
±

0.
00

0
-

-
0.

60
5
±

0.
00

0
0.

59
7
±

0.
00

0
-

-
0.

59
9
±

0.
00

1
0.

58
0
±

0.
00

1
0.

65
6
±

0.
00

0
So

ft
M

ed
ia

n
PP

R
G

o
0.

72
5
±

0.
00

1
0
.7

1
2
±

0
.0

0
1

-
-

0
.7

2
1
±

0
.0

0
1

0
.7

0
8
±

0
.0

0
1

-
-

0.
71

6
±

0.
00

1
0.

69
5
±

0.
00

1
0.

74
9
±

0.
00

1
Va

ni
lla

G
C

N
0.

71
7
±

0.
00

2
0.

68
8
±

0.
00

2
-

-
0.

58
6
±

0.
00

2
0.

53
8
±

0.
00

2
-

-
0.

49
5
±

0.
00

2
0.

46
5
±

0.
00

1
0.

75
1
±

0.
00

2
Va

ni
lla

G
D

C
0.

69
3
±

0.
00

0
0.

66
1
±

0.
00

0
-

-
0.

59
4
±

0.
00

1
0.

56
8
±

0.
00

1
-

-
0.

55
4
±

0.
00

2
0.

52
1
±

0.
00

1
0.

73
6
±

0.
00

1
Va

ni
lla

PP
R

G
o

0
.7

2
7
±

0
.0

0
2

0.
71

1
±

0.
00

2
-

-
0.

71
3
±

0.
00

3
0.

69
9
±

0.
00

4
-

-
0.

69
6
±

0.
00

3
0.

67
2
±

0.
00

4
0
.7

5
7
±

0
.0

0
2

36

F.4 Local Attacks

We present additional results for the local attacks. In Fig. F.2 we complement Fig. 8 with the
additional dataset Citeseer and more budgets on Products as well as Papers100M. For the experiments
on the undirected Cora ML and Citeseer, we treat the graph as if it was directed during the attack and
symmetrize it afterward. Despite this approximation, our attack remains strong.

Table F.6: Attack success rates for the local attacks. Our approaches are underlined. For the attack a
higher value is better and for the defence a lower value is better. We highlight the strongest defense

in bold.

Dataset Attack PR-BCD

Frac. edges ✏, �i = ✏di 0.10 0.25 0.50 1.00

Cora ML

Soft Median PPRGo 0.125 ± 0.003 0.208 ± 0.003 0.333 ± 0.004 0.417 ± 0.004

Vanilla PPRGo 0.133 ± 0.003 0.317 ± 0.004 0.425 ± 0.004 0.583 ± 0.004
Vanilla GCN 0.292 ± 0.004 0.375 ± 0.004 0.642 ± 0.004 0.958 ± 0.002

Citeseer

Soft Median PPRGo 0.058 ± 0.002 0.242 ± 0.004 0.358 ± 0.004 0.517 ± 0.004

Vanilla PPRGo 0.058 ± 0.002 0.333 ± 0.004 0.492 ± 0.004 0.600 ± 0.004
Vanilla GCN 0.125 ± 0.003 0.417 ± 0.004 0.658 ± 0.004 0.850 ± 0.003

Products

Soft Median PPRGo 0.108 ± 0.003 0.083 ± 0.002 0.142 ± 0.003 0.250 ± 0.004

Vanilla PPRGo 0.683 ± 0.004 0.858 ± 0.003 0.925 ± 0.002 0.950 ± 0.002
Vanilla GCN 0.883 ± 0.003 0.950 ± 0.002 0.992 ± 0.001 0.992 ± 0.001

Papers 100M
Soft Median PPRGo 0.250 ± 0.011 0.325 ± 0.012 0.275 ± 0.011 0.300 ± 0.011

Vanilla PPRGo 0.900 ± 0.007 0.925 ± 0.007 0.875 ± 0.008 0.975 ± 0.004

Dataset Attack Nettack

Frac. edges ✏, �i = ✏di 0.10 0.25 0.50 1.00

Cora ML

Soft Median PPRGo 0.058 ± 0.002 0.125 ± 0.003 0.217 ± 0.003 0.317 ± 0.004

Vanilla PPRGo 0.092 ± 0.002 0.258 ± 0.004 0.358 ± 0.004 0.475 ± 0.004
Vanilla GCN 0.208 ± 0.003 0.367 ± 0.004 0.533 ± 0.004 0.917 ± 0.002

Citeseer

Soft Median PPRGo 0.042 ± 0.002 0.150 ± 0.003 0.308 ± 0.004 0.458 ± 0.004

Vanilla PPRGo 0.050 ± 0.002 0.300 ± 0.004 0.433 ± 0.004 0.608 ± 0.004
Vanilla GCN 0.133 ± 0.003 0.425 ± 0.004 0.667 ± 0.004 0.858 ± 0.003

Dataset Attack DICE

Frac. edges ✏, �i = ✏di 0.10 0.25 0.50 1.00

Products

Soft Median PPRGo 0.017 ± 0.001 0.017 ± 0.001 0.008 ± 0.001 0.100 ± 0.003

Vanilla PPRGo 0.108 ± 0.003 0.167 ± 0.003 0.250 ± 0.004 0.308 ± 0.004
Vanilla GCN 0.183 ± 0.003 0.233 ± 0.004 0.267 ± 0.004 0.467 ± 0.004

Papers 100M
Soft Median PPRGo 0.150 ± 0.009 0.125 ± 0.008 0.125 ± 0.008 0.100 ± 0.008

Vanilla PPRGo 0.075 ± 0.007 0.100 ± 0.008 0.200 ± 0.010 0.350 ± 0.012

In Table F.6, we give an alternative metric to assess our attack PR-BCD and defense Soft Median
PPRGo. Here we compare the attack success rate. A “success” stands for a change of prediction in
the course of the attack. On the upside, the attack success rate is less susceptible to the distribution of
the clean margin (especially if comparing different models). On the downside, the attack success
rate is not as fine-grained as comparing the margins. We see that our PR-BCD is stronger in most
cases (i.e. the attack success rate is higher). Moreover, our Soft Median PPRGo beats all baselines
for every budget except two cases for small budgets with the random, weak DICE attack.

The temperature hyperparameter T . Last, we study how the temperature affects the robustness of
the Soft Median PPRGo model (see Fig. F.3). Similarly to [18], we observe that for large values it
performs comparably to the vanilla model. If we lower the temperature the robustness increases at the
cost of a slightly lower clean accuracy. If we set the temperature too low, the accuracy still declines
but also does the robustness. This shows the trade-off between clean accuracy and robustness. Hence,
one needs to carefully choose a good temperature for the application at hand. A good strategy is
to (1) tune a vanilla model to meet the desired predictive performance and (2) successively decay
the temperature (starting high) until the robustness is decreasing or until the drop in predictive
performance exceeds the application-specific threshold.

37

PR-BCD
Soft Median PPRGo

Nettack
Vanilla PPRGo

DICE
Vanilla GCN

0.25 0.5 1.0
Frac. edges ✏, �i = ✏di

�1.0

�0.5

0.0

0.5

1.0

A
dv

.m
ar

gi
n
 ̃

(a) Cora ML

0.25 0.5 1.0
Frac. edges ✏, �i = ✏di

�1.0

�0.5

0.0

0.5

1.0

A
dv

.m
ar

gi
n
 ̃

(b) Citeseer

0.1 0.25 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

A
dv

.m
ar

gi
n
 ̃

0.1 0.25 0.5 1.0

Frac. edges ✏, �i = ✏di

(c) Products (left) & Papers100M (right)

Figure F.2: Adversarial classification margins ̃i of the attacked nodes. This figure extends Fig. 8
with an additional dataset and more budgets. In (a) and (b), we compare our local PR-BCD attack
with Nettack [50] on (undirected) Cora ML and Citeseer. In (c), we show the results on the (directed)
large-scale datasets Products (2.5 million nodes) and Papers 100M (111 million nodes), respectively.
Our Soft Medoid PPRGo resists the attacks much better than the baselines.

✏ = 0.05 ✏ = 0.1 ✏ = 0.25 ✏ = 0.5 Accuracy

T = 20.0 T = 50.0 T = 100.0 T = 200.0 T = 500.0 Vanilla

�1.0

�0.5

0.0

0.5

1.0

A
dv

.m
ar

gi
n
 ̃

0.52

0.54

0.56

A
cc

ur
ac

y

Figure F.3: Adversarial classification margins ̃i (left y axis) and clean accuracy (right y axis) over
the temperature and for different budgets on Papers100M (111 million nodes). We see that the clean
accuracy increases if the temperature increases. The robustness decreases for very low and large
temperatures. There is a sweet spot for maximum robustness in between.

F.5 Relationship of Graph Size and GNNs Robustness

We now analyze the results of PR-BCD w.r.t. the graph size. We start comparing the global attacks
with a budget of ✏ = 0.1 for the Vanilla GCN model. We observe a relative drop in the adversarial

38

accuracy by 22% on Cora, 67 % on arXiv, and 38% on Products. On the larger graphs, the degradation
of the accuracy is much larger which indicates a relationship between the adversarial robustness
and the size of the graph. This relationship seems to persist for architectures other than GCN as
well. Of course, this comparison neglects the characteristics of the dataset itself (e.g. in contrast to
Cora ML, arXiv’s test set is smaller and it contains continuous features). However, the trend that
large graphs are more fragile becomes more radical if we consider local attacks. For local attacks on
large graphs, we observe that even small budgets suffice to fool almost all nodes. On small graphs,
PPRGo already seems to be quite an effective defense in comparison to a Vanilla GCN (see Fig. 8). In
contrast, without our Soft Median and particularly on the large graphs, it is easy to flip the prediction
of basically every node (also compare with Table F.6). We leave a detailed and rigorous study of this
relationship for future work.

G Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See § 3 and § 4.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See § 1.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] For losses see
§ 2 and for the breakdown point of the Soft Median see § D.1.

(b) Did you include complete proofs of all theoretical results? [Yes] For proofs see § B.4
and § D.1.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See § 5.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] We give brief summary in the main paper and full details in § F.1.
(c) Did you report error bars (e.g., with respect to the random seed after running exper-

iments multiple times)? [Yes] They are either presented in the main text or in the
respective section in the appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See § F.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] E.g. see Table 1.
(b) Did you mention the license of the assets? [Yes] We give available information in

§ F.1.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Our code will be open sourced presumably MIT-licensed.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

39

	Introduction
	Surrogate Losses for Global Attacks
	Scalable Attacks
	Scalable Defense
	Empirical Evaluation
	Conclusion
	Notation
	Surrogate Losses
	Learning Dynamics
	What Nodes Are Being Attacked?
	Impact of Surrogate Losses on Attack Strength
	Proof of Proposition 1
	Alternative Version of Proposition 1

	Scalable Attacks
	L0 Projected Gradient Descent
	Projected and Greedy Randomized Block Coordinate Descent
	Derivation and Complexity of Personalized Page Rank Update

	Scalable Defense
	Proof of Theorem 1
	Weighted Soft Median
	Empirical Error
	Improving Provable Robustness

	Theoretical Complexities
	Empirical Evaluation
	Setup
	Time and Memory Cost
	Global Attacks
	Local Attacks
	Relationship of Graph Size and GNNs Robustness

	Checklist

