
Published as a conference paper at ICLR 2025

LEARNING TO EXPLORE AND EXPLOIT WITH GNNS
FOR UNSUPERVISED COMBINATORIAL OPTIMIZATION

Utku Umur Acikalin1

ua45@cornell.edu
Aaron Ferber1
amf272@cornell.edu

Carla P. Gomes1
gomes@cs.cornell.edu

1Cornell University, Department of Computer Science

ABSTRACT

Combinatorial optimization (CO) problems are pervasive across various domains,
but their NP-hard nature often necessitates problem-specific heuristic algorithms.
Recent advancements in deep learning have led to the development of learning-
based heuristics, yet these approaches often struggle with limited search capabilities.
We introduce Explore-and-Exploit GNN (X2GNN, pronounced x-squared GNN),
a novel unsupervised neural framework that combines exploration and exploitation
for combinatorial search optimization: i) Exploration - X2GNN generates multiple
solutions simultaneously, promoting diversity in the search space; (ii) Exploitation
- X2GNN employs neural stochastic iterative refinement to exploit partial existing
solutions, guiding the search toward promising regions and helping escape local
optima. By balancing exploration and exploitation, X2GNN achieves superior
performance and generalization on several graph CO problems including Max Cut,
Max Independent Set, and Max Clique. Notably, for large Max Clique problems,
X2GNN consistently generates solutions within 1.2% of optimality, while other
state-of-the-art learning-based approaches struggle to reach within 22% of optimal.
Moreover, X2GNN consistently generates better solutions than Gurobi on large
graphs for all three problems under reasonable time budgets. Furthermore, X2GNN
exhibits exceptional generalization capabilities. For the Maximum Independent
Set problem, X2GNN outperforms state-of-the-art methods even when trained
on smaller or out-of-distribution graphs compared to the test set. Our framework
offers a more effective and flexible approach to neural combinatorial optimization,
addressing a key challenge in the field and providing a promising direction for
future research in learning-based heuristics for combinatorial optimization. 1

1 INTRODUCTION

Combinatorial optimization (CO) problems aim to find a discrete solution that optimizes an objec-
tive function from a discrete set of feasible solutions constrained by specific problem parameters.
These optimization problems frequently emerge in commercial, governmental, and scientific con-
texts, prompting extensive study in fields such as mathematics, computer science, and operations
research. Many combinatorial optimization problems are NP-hard, indicating no polynomial-time
exact algorithm exists unless P = NP.

Exact algorithms, which achieve optimality by implicitly or explicitly considering all possible
solutions, are typically only tractable for small instances due to their exponential worst-case time
complexity. Consequently, another body of work focuses on heuristic algorithms that quickly attain
high-quality solutions without optimality guarantees. Work here seeks to balance computational
time and solution quality, often exploring the search space through multiple different solutions, and
exploiting promising ones (Eiben and Schippers, 1998).

Heuristics are often hand-crafted for a specific problem, exploring problem intricacies to achieve peak
performance for a given problem distribution, requiring time and domain expertise. The rise of deep

1Code is available at https://github.com/utkuumur/X2GNN

1

https://github.com/utkuumur/X2GNN

Published as a conference paper at ICLR 2025

learning has enabled new learning-based heuristics that can be automatically tuned for performance
using data.

However, current approaches are often limited in their search capabilities, often only iteratively
improving a single solution, or naively restarting and forgetting previously generated solutions.

In this paper, we introduce Explore-and-Exploit GNN (X2GNN, pronounced X-squared GNN),
a novel unsupervised neural combinatorial optimization framework. X2GNN combines effective
exploration of the solution space with intelligent exploitation of partial solutions.

Our Main Contributions are:

1. We propose X2GNN, which combines exploration and exploitation for combinatorial
search optimization: (i) Exploration - X2GNN simultaneously generates multiple coupled
solutions, promoting diversity in the search space; (ii) Exploitation - X2GNN employs
neural stochastic iterative refinement to exploit partial existing solutions, guiding the search
toward promising regions and helping escape local optima.

2. State-of-the-art performance: X2GNN outperforms existing learning-based approaches on
benchmark datasets for the maximum cut, maximum independent set, and maximum clique
problems. Additionally, X2GNN is competitive with general OR approaches like Gurobi,
and problem specific heuristics like KaMIS, offering improved or comparable solution
quality at similar time cutoffs.

3. Strong generalization capabilities: X2GNN generalizes to graphs that are out-of-distribution
or up to 4 times larger than those seen during training, while still significantly outperforming
other learning-based methods trained on the same distribution as the test set.

4. Rigorous Evaluation: We enhance existing benchmark datasets commonly used in the ML
for combinatorial optimization community by including strong traditional baselines and
evaluating solvers at comparable runtimes. We additionally allow solvers a 30-minute time
limit, which is at least 24 times longer than our longest-running model.

2 RELATED WORK

The broad intersection between machine learning (ML) and combinatorial optimization (CO) has seen
much work with different facets explored in various surveys (Bengio et al., 2021; Kotary et al., 2021;
Cappart et al., 2023). State-of-the-art learning-based primal heuristics specifically can be broadly
categorized by their training supervision and solution construction methods. Supervised learning
approaches use training data composed of problem instances and corresponding solutions derived
from existing solvers (Khalil et al., 2016; Selsam et al., 2019; Nair et al., 2020; Sun and Yang, 2023).
However, these may face challenges such as the unavailability of high-quality solvers for all problems
and poor generalization capabilities across different problem instances (Yehuda et al., 2020). Despite
these challenges, recent studies have shown that diffusion-based training can enhance generalization
in supervised learning (Sun and Yang (2023)).

Unsupervised learning approaches have also been explored, differing primarily in whether solutions
are constructed autoregressively or not. Earlier non-autoregressive models generate a ‘soft’ solution
in a single step, which is then decoded into a final solution using methods ranging from simple
greedy (Karalias and Loukas, 2020) decoding to more sophisticated techniques (Min et al., 2022). As
Sanokowski et al. (2024) noted, these approaches can be classified as single-step diffusion methods.
These models are notably faster and more scalable than their autoregressive counterparts. Sanokowski
et al. (2023) suggest that non-autoregressive solution construction may fail to capture essential
dependencies among problem variables and they refer to these types of methods as mean-field
approximations.

The earlier single-step non-autoregressive methods are outperformed by autoregressive construction
governed by MDPs (Sanokowski et al., 2023; Zhang et al., 2023). However, these models are trained
using reinforcement learning (RL) and face high computational needs and poor generalization (Sun
and Yang, 2023). Additionally, autoregressive construction does not allow modification of fixed
decisions, unlike diffusion-based construction where all variables can be altered at each step.

2

Published as a conference paper at ICLR 2025

The success of generative diffusion models (Sohl-Dickstein et al., 2015) made it appealing for CO.
For diffusion-based CO approaches, noise is sequentially added to the optimal solution obtained
from other solvers in the forward process, and the model learns to iteratively remove this noise in
the reverse process. Sun and Yang (2023) models the CO problems as a discrete diffusion problem
using Bernouilli and Categorical noise. For MIS, they outperform non-autoregressive models but
have similar performance to autoregressive models, suffering from long diffusion schedules. Li
et al. (2023) follow the same training procedure as Sun and Yang (2023) but employ gradient-guided
noising-denosing rounds during inference. This improves upon Sun and Yang (2023); however, long
diffusion schedules and reliance on the gradients hinder effectiveness. Sanokowski et al. (2024)
trains a diffusion model to sample from the Boltzmann distribution with the probability of sampling a
solution being positively correlated to its objective value. They derive an unsupervised loss function
using a continuous Lagrangian relaxation, showing that longer generation schedules increase quality.

3 PRELIMINARIES

We consider the broad class of combinatorial optimization problems on graphs and instantiate
X2GNN for three NP-hard problems on undirected unweighted graphs G = (V,E). As in many
real-world scenarios, we consider distributional versions of these problems, where we are asked to
train an algorithm on a dataset of instances and then deploy the algorithm on unseen instances.

Maximum Clique (MC): A clique in a graph G is a subset of vertices where every two vertices are
adjacent. The Maximum Clique problem involves finding the largest clique in G.

Maximum Independent Set (MIS): An independent set in a graph G is a subset of vertices, none of
which are adjacent. The Maximum Independent Set problem aims to find the largest independent set.

Maximum Cut (MCut): For a graph G = (V,E), the Maximum Cut problem seeks to partition the
set of nodes V into two subsets S and V \ S, maximizing the number of edges between S and V \ S.

Solutions for these problems can be represented by a binary decision for each node, Y ∈ {0, 1}|V |,
indicating solution inclusion, Yi = 1 if vi ∈ S otherwise 0. Additionally, the maximum clique
and maximum independent set problems are closely related; a clique S in graph corresponds to an
independent set S in its complementary graph (Cormen et al. (2001)). We use this relationship for all
approaches and solve MC problems by solving MIS on the corresponding complementary graph.

4 X2GNN FRAMEWORK

X2GNN, illustrated in Figure 1, is an iterative framework that explores the search space by simul-
taneously generating a pool of K-Coupled solutions and exploiting promising ones via stochastic
refinement.

K-Coupled solutions form a group of K solutions that are built collectively, we refer to each group as
a K-Couple. We model the K-Couple using a multilayer graph, copying the original graph K times to
represent the K solutions, and adding auxiliary edges between corresponding nodes in different layers.
We model the solution values themselves as node features. We then iteratively feed the K-Couple
into a graph neural network (GNN) which makes a prediction on each node corresponding to a new
K-Couple. We train the GNN’s outputs at each iteration using a combination of an unsupervised
optimization loss, a constraint satisfaction loss, and a diversity loss on the K-Couple. Importantly,
before feeding a K-Couple as input to the GNN, we randomly perturb the solution to help escape
local optima. Furthermore, we randomly initialize the K-Couple.

Formally, given a problem represented by graph G = (V,E), we represent the GNN input of K
solutions at iteration t using tX ∈ [0, 1]K×|V |, with tXk

u denoting the feature of node u ∈ V for
solution k ∈ 1, . . . ,K in iteration t. We use tŶ to denote the K-Coupled solution generated at
iteration t. That is, tŶ = gθ(G, tX). Similarly, we use the notation tŶ k

u to denote the probability of
node u ∈ V being in solution k ∈ 1, . . . ,K generated at iteration t.

Solution Generation and Stochastic Iterative Refinement: We refer to the first iteration (t = 1) of
X2GNN as construction and the subsequent iterations (t ≥ 2) as refinement. During construction,
we randomly initialize node features 1Xk

u to 0.5 with probability p and 0 with probability 1 − p,

3

Published as a conference paper at ICLR 2025

Multilayer Graph

Original Graph

Create Multilayer graph

Initial node features Solutions after construction

Exploration: Coupled Solution Pool Generation

Exploitation: Stochastic Refinement

Figure 1: Illustration of X2GNN for a Minimum Independent Set instance. First, a multilayer graph
is created from K = 2 copies of the original graph, with cross edges to couple solutions. Copies of
the original edges (E′

O) are drawn in blue, and cross edges (E′
C) are drawn in red. Node features

correspond to the probability of being in the solution, representing soft solutions. Initially, when
generating the coupled solutions, the features are random. These features are fed into a GNN to
obtain K soft solutions. During stochastic refinement, the GNN iteratively takes solutions from the
previous time step, randomly perturbs them, and generates new solutions. Stochastic refinement
can be repeatedly applied at inference and is done once during training. Finally, the training loss is
calculated for all generated solutions using the objective value, Lagrangian term, and diversity.

with p being 0.95 in practice. Essentially, we initialize the K-Couple with unbiased solutions while
introducing diversity to break symmetries for nodes with identical degrees.

During refinement, we randomly set the previous iteration’s output t−1Ŷ to 0 with probability ϕ to
generate new node features tX .

The parameter ϕ offers a natural way to control exploration and exploitation. If ϕ = 1, no information
from the previous iteration is used, maximizing exploration. If ϕ = 0, the previously generated
solutions are maintained, and the method will deterministically refine the K-Couple, maximizing
exploitation. Thus, high values of ϕ lead to exploration whereas low values lead to exploitation. We
refer to one step of this approach as Stochastic Refinement and the general application of multiple
iterations as Stochastic Iterative Refinement.

Aligning the model’s input and output enables repeated use of the recurrent model. Recurrent models
trained on short iterations can be deployed for longer iterations to solve more complex problems
(Schwarzschild et al., 2021); however, overuse can result in ‘overthinking’ (Bansal et al., 2022).
X2GNN mitigates this by not iterating over the hidden representations, but rather iterating stochasti-
cally over the output space. The stochastic sampling process significantly impacts performance by
facilitating exploration around the current solution, allowing exploitation, and escaping local optima.
Moreover, it helps generalization to bigger and out-of-distribution datasets.

Converting Soft Solutions to Hard Solutions: Since the GNN outputs soft solutions Ŷ k, we convert
them to discrete feasible solutions S depending on the problem. For MCut, we select a node u into S

iff Ŷ k ≥ 0.5, yielding a feasible solution due to the absence of constraints. For MIS and MC, we add
node u into S in order of decreasing probability Ŷ k

u as long as S ∪ {u} satisfies problem constraints.

K-Coupled Solutions: To couple solutions, we construct a multilayer graph GM = (V ′, E′) from
the original graph G = (V,E). GM contains K “layers” each containing a copy of the original graph.

4

Published as a conference paper at ICLR 2025

Additional edges (cross edges) connect nodes in different layers corresponding to the same node in
G. We denote E′

O as the edges corresponding to original edges E, and E′
C as the cross edges, such

that E′ = E′
O ∪ E′

C . We construct GM as follows: For each node vi ∈ V , we create node vki for
all layers k = 1, . . . ,K. For each edge (vi, vj) ∈ E, we create an original edge between vki and vkj
for all k = 1, . . . ,K, forming E′

O. We then add cross edges E′
C , such that for each node i ∈ V all

copies of i have a pairwise edge between them in GM In practice, we select K = 2.

X2GNN Neural Network Architecture: The GNN used by X2GNN to construct and refine
solutions consists of 2L layers combining Graph Isomorphism Networks (GIN) (Xu et al., 2019) and
Graph Attention Networks (GAT) (Velickovic et al., 2018; Brody et al., 2022). The layers alternate
between GIN layers operating on (V ′, E′

O) to work on individual solutions and GAT layers operating
on (V ′, E′

C) to enable information sharing between solutions. This alternating design enables the
simultaneous generation of K-coupled solutions. Note that the same model parameters are used for
both construction and refinement.

Training and Loss Functions: We train X2GNN using unsupervised combinatorial optimization
losses which take the form of Lagrangian relaxations of the original problem. We adopt nonlinear
programming formulations for MCut, MIS, and MC problems from Sanokowski et al. (2024). For
MIS and MC, the objective is to include as many nodes in S as possible, penalizing constraint
violation, whereas in MCut the objective is to include as many edges in the cut as possible. We
additionally propose adding a loss function to promote diversity among the K-coupled solutions. In
the MIS and MC settings, we want solutions to contain different nodes, whereas we are interested in
having different cut edges for MCut. We write the optimization problems, continuous relaxations,
and Lagrangian terms for the constraints in Table 1.

Overall, X2GNN trains the GNN parameters θ to jointly optimize objective quality (Lo), constraint
satisfaction (Lc), and solution diversity (Ld) over the training set G:

min
θ

EG∈G

[∑
t

[∑
k

Lo(G, tŶ k) + λ1Lc(G, tŶ k)

]
+ λ2Ld(G, tŶ)

]
For MC and MIS, we impose node diversity:

Ld(G, Ŷ) =
1

K(K − 1)

∑
1≤k1,k2≤K

k1 ̸=k2

∑
u∈V

Ŷ k1
u Ŷ k2

u

For MCut, we impose cut edge diversity:

Ld(G,Y) =
1

K(K − 1)

∑
1≤k1,k2≤K

k1 ̸=k2

∑
(u,v)∈E

1− (2Ŷ k1
u − 1)(2Ŷ k1

v − 1)

2

1− (2Ŷ k2
u − 1)(2Ŷ k2

v − 1)

2

Problem Formulation Objective Constraint loss

MC
max

Y ∈{0,1}|V |

∑
u∈V Yu

s.t. YuYv = 0, ∀(u, v) ̸∈ E

∑
u∈V

Ŷu

∑
(u,v)̸∈E

Ŷ k
u Ŷ k

v

MIS
max

Y ∈{0,1}|V |

∑
u∈V Yu

s.t. YuYv = 0, ∀(u, v) ∈ E

∑
u∈V

Ŷu

∑
(u,v)∈E

Ŷ k
u Ŷ k

v

MCut max
Y ∈{0,1}|V |

∑
(u,v)∈E

1 − (2Yu − 1)(2Yv − 1)

2

∑
(u,v)∈E

1 − (2Ŷu − 1)(2Ŷv − 1)

2
–

Table 1: Mathematical formulation, objective loss Lo, and constraint loss Lc for our problems.

We train X2GNN using a two-stage training procedure. In the first stage, the model learns to construct
solutions, and in the second stage, the model learns to stochastically refine constructed solutions for
one step. The proposed two-stage training procedure leads to better initial solutions and more stable
solution refinement for X2GNN.

5

Published as a conference paper at ICLR 2025

Inference: Unlike during training, during inference we use the stochastic refinement step multiple
times leading to stochastic iterative refinement. Training the model on a single stochastic refinement
iteration is enough to teach the model to generally improve solutions. We show that using the
stochastic iterative refinement longer leads to a significant increase in solution quality. Additionally,
instead of generating just one K-coupled solution, we generate C K-coupled solutions to increase
exploration. These K-coupled solutions are independent and effectively run X2GNN simultaneously
with different random seeds.

X2GNN offers time-quality trade-offs by selecting C, the number of K-Coupled solutions, and T the
number of iterations. By increasing C and/or T , we can consider more solutions to improve solution
quality by using more time. For each choice of C and T , X2GNN generates C ×K solutions at the
first iteration that are then refined for T −1 iterations to generate C×K×T solutions in total. Hence,
the computational impact of C and T is very similar. A natural question is how to select C and T for a
fixed computational budget. Under a fixed budget, increasing C promotes exploration by maintaining
more solutions, whereas increasing T enhances exploitation by allowing more refinement iterations
on existing solutions. This mechanism controls exploration and exploitation in our optimization
framework, which is crucial for effectively navigating the search landscape of complex problems.

5 EXPERIMENTS

Datasets: Previous literature has identified that some problem instances for MIS and MC are
relatively easy (Dai et al., 2020). To ensure rigorous evaluation, we use synthetically generated hard
instances, following previous work (Karalias and Loukas, 2020; Zhang et al., 2023; Sanokowski
et al., 2024). Our datasets include RB graphs (Xu and Li, 2000), a revision to model B graphs (Gent
et al., 2001; Smith and Dyer, 1996), known to generate challenging instances for MC and MIS.
Specifically, we use RB graphs with 200-300 nodes(RB250) and 800-1200 nodes (RB1000). For
MIS, we also evaluate on Erdős-Rényi (ER) graphs (Erdös and Rényi, 1959) with 700-800 nodes
and edge probability 0.15 (ER750), as well as regular graphs where each node has either 3 (d=3) or
5 (d=5) neighbors. Following Schuetz et al. (2022), we generate 20 regular graphs for each degree
d ∈ 3, 5 and each size n ∈

[
102, 103, 104, 105, 106

]
for testing. To train learning-based methods,

we generate 4,000 additional graphs with n = 103, enabling evaluation of both generalization and
scalability. For MCut, we use Barabási-Albert (BA) graphs (Barabási and Albert, 1999) with 250
nodes (BA250) and 1,000 nodes (BA1000). We train on 4,000 graphs and test on 500 graphs except
for ER (128 test graphs) and regular graphs (20 test graphs for each size and d).

Baselines: We compare X2GNN against both Operations Research (OR) and Machine Learning
(ML) techniques. We compare against Gurobi (Gurobi Optimization, LLC, 2024) on all tasks as
it is a general-purpose exact solver that is highly performant on many CO tasks due to years of
development. For MIS, we compare against KAMIS (Lamm et al., 2016), a highly specialized MIS
solver, as well as learning-based approaches such as PPO (Ahn et al., 2020), Gflow (Zhang et al.,
2023), DIFFUSCO (Sun and Yang, 2023), T2T (Li et al., 2023), and DiffUCO (Sanokowski et al.,
2024). For MC, we benchmark against KAMIS used on the complement graph, greedy algorithms,
mean-field annealing (MFA), and learning-based methods including ERDOS and its annealed version
ANNEAL (Karalias and Loukas, 2020; Sun et al., 2022), DiffUCO, and Gflow. MCut comparisons
include semi-definite-programming (SDP) based approximation algorithm (Goemans and Williamson,
1995), Tabu Search (TS) (Nath and Kuhnle, 2024), and learning-based methods RUN-CSP (Tönshoff
et al., 2020), ANYCSP (Tönshoff et al., 2023), ERDOS, ANNEAL, DiffUCO, and Gflow. When
given, we use Fast, Quality, and 30min to denote that we set time limits around the twice the fastest
version of X2GNN, twice the slowest version of X2GNN, and 30 minutes respectively.

Evaluation Metrics: We employ three metrics: the mean objective value (Size), the mean drop
in quality relative to the best-known solution (Drop), and the mean runtime in seconds (Time).
Overall, better methods find solutions with lower solution quality drop at smaller runtimes. Since
all problems are maximization problems, larger size is better. For instance, a 10% drop means the
method generates solutions with a mean objective value of 90, while the best method achieves 100.
In all tables, learning-based methods are shaded. Bold entries denote the best learning-based method,
and italics indicate the best method, learning or traditional. Additionally, we denote the method type
categorizing methods into operations research (OR), heuristic (H), supervised learning (SL), and
unsupervised learning (UL).

6

Published as a conference paper at ICLR 2025

Table 2: Results for Max Clique on small and large RB graphs, presenting the mean clique size,
drop in quality compared to the optimal, and runtime in seconds. Learning-based methods are
shaded, and the best learning-based result is bolded. The best global result is in italics. X2GNN
generates solutions at least 14% to 23% better than all learning-based methods. X2GNN solves
RB250 optimally, with a similar run time as Gurobi and KaMIS.

Method Type RB250 RB1000

Size ↑ Drop ↓ Time ↓ Size ↑ Drop ↓ Time ↓
KaMIS OR 19.074 0% 10 40.652 0% 51
Gurobi (30min) OR 19.074 0% 0.73 40.652 0% 287
Gurobi (Quality) OR 19.068 0.03% 0.61 36.23 10.88% 47
Gurobi (Fast) OR 14.62 23.35% 0.17 25.36 37.62% 3
Greedy H 13.53 29.07% 0.03 26.71 34.30% 0.04
MFA H 14.82 22.30% 0.04 27.94 31.27% 0.21

Erdos UL 12.02 36.98% 0.06 25.43 37.44% 0.2
Anneal UL 14.1 26.08% 0.06 27.46 32.45% 0.2
Gflow UL 16.24 14.86% 0.06 31.42 22.71% 0.44
DiffUCO UL 16.3 14.54% 4.13 30.5 24.97% 7.92

X2GNN (RB250)(2x64) UL 19.04 0.18% 0.09 39.83 2.02% 1.5
X2GNN (RB250)(8x64) UL 19.072 0.01% 0.37 40.09 1.38% 5.8
X2GNN (RB250)(32x64) UL 19.074 0% 1.41 40.17 1.19% 23.5

For generalization, we denote the training dataset with (RB250) or (BA250) in the model name. We
denote variants of X2GNN that generate C 2-Coupled solutions and use T − 1 stochastic refinement
steps with (2CxT) in the model name.

5.1 RESULTS ON MAXIMUM CLIQUE

Results for MC on small and large RB datasets are shown in Table 2.For MC, we train X2GNN on
RB250 and showcase generalization to larger instances. X2GNN generates solutions of at least 14%
and 23% higher objective value than the second-best learning-based methods on RB250 and RB1000,
respectively.

Compared to traditional algorithms, X2GNN solves every RB250 instance optimally, with a similar
run time as Gurobi and KaMIS. On the larger dataset, on which X2GNN wasn’t trained, X2GNN
generates solutions that are within 2% of optimality while almost being 50 and 190 times faster than
KaMIS and Gurobi, respectively. Additionally, at a similar runtime, X2GNN has substantially better
solution quality than Gurobi.

5.2 RESULTS ON MAXIMUM INDEPENDENT SET

Table 3 presents results for Maximum Independent Set (MIS) on small RB, large RB, and ER graphs.
For all datasets except regular graphs, the metaheuristic KaMIS achieves the best solution quality.
Again, X2GNN outperforms all learning-based methods by a large margin, especially for the largest
RB1000 dataset, where X2GNN generates solutions that are 9% better than the second best. Even
the model trained on RB250 dataset is able to outperform the other learning-based methods on
both RB1000 and ER750 datasets, showing that X2GNN can successfully generalize to harder and
different graph distributions.

Comparison with the traditional algorithms is more nuanced. On ER750, X2GNN generates better
solutions than KaMIS and Gurobi when they are given either 15 or 60 seconds. On RB1000, X2GNN
generates better solutions than Gurobi but slightly worse solutions than KaMIS at around 20 seconds.

Figure 2 presents the solution quality relative to the theoretical lower bound and the running time for
regular graphs of varying sizes. Given the large graph sizes, obtaining optimal solutions is intractable.
Following Schuetz et al. (2022), we use analytical upper bounds for random d-regular graphs, with
the best-known ratios α3/n = 0.45537 and α5/n = 0.38443 for d = 3 and d = 5, respectively
(Duckworth and Zito, 2009). However, these bounds may not be tight. For instances with n = 100
and d = 3, both X2GNN and KaMIS find optimal solutions, as verified by Gurobi. Notably, the
analytical upper bound remains 2.6% above these solutions, indicating that actual performance may
be better than suggested.

7

Published as a conference paper at ICLR 2025

Table 3: Results for Max Independent Set on small and large RB graphs and ER graphs, presenting
the mean independent set size, drop in quality compared to the virtual best (KaMIS), and runtime
in seconds. X2GNN substantially outperforms learning-based approaches on all datasets. When
generalizing from small RB250 instances, X2GNN outperforms learning-based methods trained
on the larger and in-distribution problems. On ER instances, X2GNN outperforms traditional OR
approaches given similar time limits.

Method Type RB250 RB1000 ER750

Size ↑ Drop ↓ Time ↓ Size ↑ Drop ↓ Time ↓ Size ↑ Drop ↓ Time ↓
KaMIS (30min) OR 20.106 0% 3.92 43.218 0% 381 45.234 0% 382
Gurobi (30min) OR 20.106 0% 0.31 42.96 0.60% 550 43.62 3.57% 1800
KaMIS (Quality) OR 20.106 0% 3.92 42.98 0.55% 18 44.84 0.87% 61
Gurobi (Quality) OR 20.106 0% 0.42 42.25 2.24% 22.27 43.5 3.83% 120
KaMIS (Fast) OR 20.032 0.37% 1.16 42.66 1.29% 6.5 43.46 3.92% 16
Gurobi (Fast) OR 19.16 4.71% 0.1 38.81 10.20% 1.23 41.31 8.67% 3.62

PPO UL 19.01 5.45% 0.15 32.32 25.22% 0.91 41.11 9.12% 2.11
GFlow UL 19.18 4.61% 0.05 37.48 13.28% 0.4 41.14 9.05% 1.03
DIFUSCO SL 17.68 12.07% 0.87 35.82 17.12% 41.11 40.35 10.80% 15.46
T2T SL 18.35 8.73% 2.32 35.822 17.11% 26.55 41.37 8.54% 13.92
DiffUCO UL 19.24 4.31% 0.42 38.87 10.06% 5 43.63 3.55% 0.71

X2GNN(16x8) UL 19.51 2.96% 0.034 40.53 6.22% 0.3 42.05 7.04% 0.31
X2GNN(64x8) UL 19.82 1.42% 0.128 41.54 3.88% 1.18 43.06 4.81% 1.07
X2GNN(256x8) UL 19.98 0.63% 0.5 42.19 2.38% 4.66 43.82 3.13% 3.91
X2GNN(256x32) UL 20.072 0.17% 1.94 42.48 1.71% 18.36 44.43 1.78% 15.26
X2GNN(1024x32) UL 20.098 0.04% 7.11 42.81 0.94% 74.4 44.91 0.72% 57.18
X2GNN(RB250)(256x32) UL 20.072 0.17% 1.94 39.28 9.1% 9.43 44.15 2.40% 7.96

Figure 2: The left plot shows the relative solution quality compared to the theoretical upper bound for
X2GNN, DiffUCO, and KaMIS (higher is better). The right plot shows the average running time for
each method (lower is better). Lines with squares and triangles show the results for regular graphs
where each node has 3 and 5 neighbors, respectively. X2GNN outperforms DiffUCO on all graph
sizes and families in terms of solution quality while being faster on larger graphs. It also surpasses
KaMIS in larger graphs with a better run time.

X2GNN surpasses DiffUCO in both solution quality and computational efficiency on larger graphs.
DiffUCO fails to solve n = 106 graphs within two hours, while X2GNN efficiently produces high-
quality solutions in about 600 seconds. Although KaMIS slightly outperforms X2GNN on smaller
instances, X2GNN excels on larger graphs with lower computational time, scaling effectively to
instances three orders of magnitude larger than those in training.

5.3 RESULTS ON MAXIMUM CUT

Results for Maximum Cut on small and large BA datasets are shown in Table 4. X2GNN outperforms
all state-of-the-art learning-based methods on both datasets. However, ANYCSP and DiffUCO
notably have only slightly worse performance than X2GNN both in terms of speed and quality. For
the large dataset, X2GNN outperforms Gurobi with a time limit of 30 minutes per instance while
only using 0.2 seconds. Similarly, X2GNN outperforms Tabu Search, finding better solutions faster.

8

Published as a conference paper at ICLR 2025

Table 4: Results for Max Cut on small and large BA graphs, presenting the mean cut size, drop in
quality to the virtual best, and runtime in seconds. X2GNN outperforms learning-based methods,
slightly outperforming ANYCSP. Additionally, on BA1000, X2GNN outperforms Gurobi given 30
minutes by generating better solutions in 0.2s.

Method Type BA250 BA1000

Size ↑ Drop ↓ Time ↓ Size ↑ Drop ↓ Time ↓
Gurobi (30min) OR 735.32 0% 759 2966.58 0.76% 1800
Gurobi (Quality) OR 731.99 0.45% 2.5 2931.02 1.95% 4.24
Gurobi (Fast) OR 731.83 0.47% 0.16 2930.99 1.95% 0.66
SDP OR 700.04 4.8% 4.2 - - -
Tabu Search H 733.79 0.21% 3 2926.6 2.10% 11.5
Greedy H 688.31 6.39% 0.02 2761.06 7.64% 0.29
MFA H 704.03 4.26% 0.15 2833.86 5.20% 0.66

Erdos UL 693.45 5.69% 0.07 2870.34 3.98% 0.25
Anneal UL 696.73 5.25% 0.07 2863.23 4.22% 0.24
GFlow UL 704.3 4.22% 0.27 2864.61 4.17% 1.95
RUN-CSP UL 726.96 1.14% 0.78 2925.8 2.12% 10.8
ANYCSP UL 735.12 0.03% 2.5 2988.6 0.02% 7.37
DiffUCO UL 733.5 0.25% 2.77 2981.1 0.27% 6.6

X2GNN(16x8) UL 734.21 0.15% 0.08 2985.2 0.14% 0.2
X2GNN(64x8) UL 734.92 0.05% 0.15 2987.7 0.05% 0.48
X2GNN(256x8) UL 735.17 0.02% 1.2 2988.7 0.02% 1.95
X2GNN(256x32) UL 735.26 0.01% 4.1 2989.3 0% 7.3
X2GNN (BA250)(256x32) UL 735.26 0.01% 4.1 2985.5 0.13% 5.4

These results indicate that on 3 CO problems, X2GNN outperforms neural baselines, is competitive
with specialized metaheuristics like KaMIS, and improves over general solvers like Gurobi.

5.4 ABLATION

In this section, we analyze the impact of K-coupled solutions for different values of K. We also
measure the impact of stochastic refinement, two-stage training, and encouraging diversity.

Table 5: Effects of the parameter K on K-coupled solutions, showing K = 2 gives the lowest drop.

Problem K = 1 K = 2 K = 4 K = 8

MIS 4.01% 0.43% 3.81% 9.47%
MC 0.14% 0.01% 0.21% 1.79%
MCut 0.030% 0.015% 0.021% 0.157 %

Table 5 demonstrates that K = 2 is the optimal choice for each problem. Its impact is particularly
significant for MIS, while more subtle for MC and MCut.

We evaluate the impact of ablating aspects of X2GNN by comparing to our standard version which
achieves a drop value of 0.43% on MIS. Using deterministic refinement instead of stochastic refine-
ment significantly increases the drop value to 4.97%. Training the full framework in a single stage
increased the drop value to 1.44%. Similarly, ignoring the diversity loss raises the drop value to
1.81%. These findings highlight the cumulative benefits of our proposed techniques. The combination
of K = 2 coupled solutions, stochastic refinement, two-stage training, and diversity loss is crucial
for the superior performance of X2GNN.

5.5 NEURAL SEARCH DYNAMICS

For a fixed budget, X2GNN can controllably balance exploration and exploitation by trading off the
number of solution couples generated at each iteration C, with the number of iterations T taken.

MC and MIS problems benefit from different exploration-exploitation trade-offs due to their distinct
feasible region structures: In MC, selecting a node restricts subsequent additions to only its neighbors,
causing the search space to contract rapidly with each decision. Early choices have high impact,
potentially eliminating optimal solutions if poor selections are made. Consequently, exploring diverse
starting points (higher C) becomes crucial. In MIS, selecting a node only eliminates its neighbors

9

Published as a conference paper at ICLR 2025

from consideration, typically leaving a substantial portion of nodes available. This more gradual
search space reduction allows solutions to recover from suboptimal early choices through additional
refinement iterations.

As shown in Figure 3, our experiments confirm these insights. Figure 3a demonstrates that MC benefits
from prioritizing exploration (higher C), with C=64 providing optimal performance. Conversely,
Figure 3b shows that MIS performs better with emphasis on exploitation (higher T, lower C), with
C=4 yielding the best results.

These findings highlight that while all combinatorial optimization problems require both strategies,
their relative importance varies based on how solution construction progressively constrains the
search space.

21 22 23 24 25 26 27 28 29

Total number of solutions C*T

10−1

100

101

%
D

ro
p

in
qu

al
it

y
vs

op
ti

m
al

Search Dynamics for Max Clique

C=2

C=4

C=8

C=16

C=32

C=64

C=128

(a)

21 22 23 24 25 26 27 28 29

Total number of solutions C*T

100

101

%
D

ro
p

in
qu

al
it

y
vs

op
ti

m
al

Search Dynamics for Max Independent Set

C=2

C=4

C=8

C=16

C=32

C=64

C=128

(b)

Figure 3: Search dynamics on RB250: Each line corresponds to one setting of C, where higher
values increase exploration. We present the drop in solution quality (lower is better) over various
computational budgets. For MC, higher values of C yield better performance, suggesting the search
benefits from broader exploration of the solution space. Conversely, for MIS, lower values of C lead
to better solutions, indicating the search benefits from deeper exploitation of promising regions.

6 CONCLUSION

In this work, we introduce Explore-and-Exploit GNN (X2GNN), a novel unsupervised neural
framework that addresses a key challenge in learning-based combinatorial optimization (CO). Unlike
most existing approaches that focus on constructing a limited number of solutions, X2GNN effectively
explores the vast search space of NP-hard CO problems through two key mechanisms:

(i) Exploration: X2GNN generates multiple solutions simultaneously, and promotes solution diversity.

(ii) Exploitation: X2GNN employs neural stochastic iterative refinement, using sampled partial
solutions to guide the search toward promising regions and escape local optima.

Our experiments on three canonical NP-Hard CO problems - Maximum Clique (MC), Maximum
Independent Set (MIS), and Maximum Cut (MCut) - demonstrate that X2GNN significantly out-
performs state-of-the-art learning-based approaches. Notably, for large MC problems, X2GNN
consistently generates solutions within 1.2% of optimality, while other learning-based methods
struggle to reach within 22% of optimal. Moreover, X2GNN exhibits exceptional generalization
capabilities, outperforming existing methods even when trained on smaller or out-of-distribution
graphs. The iterative nature of X2GNN allows users to trade off runtime and solution quality, as
the model can be applied indefinitely to refine solutions. This feature, combined with its strong
performance and generalization performance, positions X2GNN as a competitive framework with
promising directions for future research in learning-based heuristics for combinatorial optimization.
By balancing exploration and exploitation, X2GNN offers a more effective and adaptable approach
to neural combinatorial optimization, addressing the limitations of existing methods and paving the
way for more robust solutions to complex CO problems across various domains.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This project is partially supported by Schmidt Sciences programs, an AI2050 Senior Fellowship
and two Eric and Wendy Schmidt AI in Science Postdoctoral Fellowships; the National Science
Foundation (NSF); the National Institute of Food and Agriculture (USDA/NIFA); the Air Force Office
of Scientific Research (AFOSR). Additionally, Utku Umur Acikalin is supported by the Turkish
Ministry of National Education.

REFERENCES

Agoston E Eiben and Cornelis A Schippers. On evolutionary exploration and exploitation. Funda-
menta Informaticae, 35(1-4):35–50, 1998.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end constrained
optimization learning: A survey. In International Joint Conference on Artificial Intelligence, 2021.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, and Bistra Dilkina. Learning
to branch in mixed integer programming. In Dale Schuurmans and Michael P. Wellman, editors,
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA, pages 724–731. AAAI Press, 2016. doi: 10.1609/AAAI.V30I1.10080.
URL https://doi.org/10.1609/aaai.v30i1.10080.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill.
Learning a SAT solver from single-bit supervision. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=HJMC_iA5tm.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra Addanki,
Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li,
Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks. CoRR,
abs/2012.13349, 2020. URL https://arxiv.org/abs/2012.13349.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial opti-
mization. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems, volume 36, pages 3706–3731. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/0ba520d93c3df592c83a611961314c98-Paper-Conference.pdf.

Gal Yehuda, Moshe Gabel, and Assaf Schuster. It’s not what machines can learn, it’s what we
cannot teach. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 10831–10841. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/
v119/yehuda20a.html.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric scattering
networks help solve the maximum clique problem? Advances in Neural Information Processing
Systems, 35:22713–22724, 2022.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization. arXiv preprint arXiv:2406.01661, 2024.

11

https://doi.org/10.1609/aaai.v30i1.10080
https://openreview.net/forum?id=HJMC_iA5tm
https://arxiv.org/abs/2012.13349
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ba520d93c3df592c83a611961314c98-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0ba520d93c3df592c83a611961314c98-Paper-Conference.pdf
https://proceedings.mlr.press/v119/yehuda20a.html
https://proceedings.mlr.press/v119/yehuda20a.html

Published as a conference paper at ICLR 2025

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Vari-
ational annealing on graphs for combinatorial optimization. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural In-
formation Processing Systems, volume 36, pages 63907–63930. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/c9c54ac0dd5e942b99b2b51c297544fd-Paper-Conference.pdf.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and
Ling Pan. Let the flows tell: Solving graph combinatorial problems with gflownets. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances
in Neural Information Processing Systems, volume 36, pages 11952–11969. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/27571b74d6cd650b8eb6cf1837953ae8-Paper-Conference.pdf.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis R. Bach and David M. Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 2256–2265.
JMLR.org, 2015. URL http://proceedings.mlr.press/v37/sohl-dickstein15.
html.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001. ISBN
0-262-03293-7.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 6695–6706, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html.

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, and
Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Extrapolation without
overthinking. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/7f70331dbe58ad59d83941dfa7d975aa-Abstract-Conference.html.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=ryGs6iA5Km.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In The Tenth In-
ternational Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=F72ximsx7C1.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/c9c54ac0dd5e942b99b2b51c297544fd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c9c54ac0dd5e942b99b2b51c297544fd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/27571b74d6cd650b8eb6cf1837953ae8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/27571b74d6cd650b8eb6cf1837953ae8-Paper-Conference.pdf
http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/7f70331dbe58ad59d83941dfa7d975aa-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/7f70331dbe58ad59d83941dfa7d975aa-Abstract-Conference.html
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=F72ximsx7C1

Published as a conference paper at ICLR 2025

Hanjun Dai, Xinshi Chen, Yu Li, Xin Gao, and Le Song. A framework for differentiable discovery of
graph algorithms. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020.

Ke Xu and Wei Li. Exact phase transitions in random constraint satisfaction problems. Journal of
Artificial Intelligence Research, 12:93–103, 2000.

Ian P Gent, Ewan MacIntyre, Patrick Prosser, Barbara M Smith, and Toby Walsh. Random constraint
satisfaction: Flaws and structure. Constraints, 6:345–372, 2001.

Barbara M Smith and Martin E Dyer. Locating the phase transition in binary constraint satisfaction
problems. Artificial Intelligence, 81(1-2):155–181, 1996.

P Erdös and A Rényi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F Werneck. Finding
near-optimal independent sets at scale. In 2016 Proceedings of the eighteenth workshop on
algorithm engineering and experiments (ALENEX), pages 138–150. SIAM, 2016.

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In International conference on machine learning, pages 134–144. PMLR, 2020.

Haoran Sun, Etash K Guha, and Hanjun Dai. Annealed training for combinatorial optimization on
graphs. arXiv preprint arXiv:2207.11542, 2022.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Ankur Nath and Alan Kuhnle. A benchmark for maximum cut: Towards standardization of the
evaluation of learned heuristics for combinatorial optimization. arXiv preprint arXiv:2406.11897,
2024.

Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum
constraint satisfaction. Frontiers Artif. Intell., 3:580607, 2020. doi: 10.3389/FRAI.2020.580607.
URL https://doi.org/10.3389/frai.2020.580607.

Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: Graph neural
networks as fast global search heuristics for constraint satisfaction. In Edith Elkind, editor,
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-
23, pages 4280–4288. International Joint Conferences on Artificial Intelligence Organization, 8
2023. doi: 10.24963/ijcai.2023/476. URL https://doi.org/10.24963/ijcai.2023/
476. Main Track.

William Duckworth and Michele Zito. Large independent sets in random regular graphs. Theoretical
Computer Science, 410(50):5236–5243, 2009.

DIMACS. The second dimacs implementation challenge: 1992-1993. https://iridia.ulb.
ac.be/~fmascia/maximum_clique/DIMACS-benchmark. Accessed: 2024-11-20.

Renee Mirka and David P Williamson. An experimental evaluation of semidefinite programming and
spectral algorithms for max cut. ACM Journal of Experimental Algorithmics, 28:1–18, 2023.

13

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.3389/frai.2020.580607
https://doi.org/10.24963/ijcai.2023/476
https://doi.org/10.24963/ijcai.2023/476
https://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
https://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark

Published as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 NETWORK ARCHITECTURE

We use a GNN architecture where Graph Isomorphism Network (GIN) (Xu et al. (2019)) and Graph
Attention Network (GAT) (Velickovic et al. (2018); Brody et al. (2022)) layers are used in an
interleaved manner. We use nL GIN and GAT layers. The initial node features (node probabilities)
are transformed to a higher dimension by a linear layer before they are passed to the first GIN layer.

The GIN layers work on the original edges and GAT layers work on the crossedges. GIN layers
are composed of two-layer MLPs with RELU activations after the MLP layers. We apply Layer
Normalization after each MLP layer in GINs and after each GAT layer. We add skip connections to
both GIN and GAT layers. Finally, the output of each GAT layer is concatenated and fed into a final
two-layer MLP. This architecture is executed recurrently starting from the last hidden representation
from MLP nR times. The final output is transformed into logits and the probability that each node
belongs to S is computed via Softmax. For all problems, the architecture hidden representation size is
64.

A.2 HYPERPARAMETERS

All the hyperparameters on each dataset is given in Table 6. nL and nR represents the number of
layers and number of recurrent steps. K and C means C K−Coupled solutions are generated during
training. On all settings, we select K = 2 and C = 4 during training. K and C values used during
inference are shown right next to the model. λ1 and λ2 are the weights of the constraint and diversity
loss, respectively.

Dataset ep lr bs nL nR h K C ϕ λ1 λ2

RB-250 MIS 50 0.001 64 4 2 64 2 4 0.5 1 0.75
RB-1000 MIS 50 0.001 64 4 4 64 2 4 0.5 1 0.75
ER-750 MIS 50 0.001 64 4 4 64 2 4 0.5 1 0.75
RB-250 MC 50 0.001 64 4 2 64 2 4 0.8 1 0.75

BA-250 MCut 50 0.001 64 4 2 64 2 4 0.8 - 0.75
BA-1000 MCut 50 0.001 64 4 4 64 2 4 0.8 - 0.75

Table 6: Hyperparameters used in training.

A.3 COMPUTATIONAL RESOURCES AND TIME MEASUREMENTS

All experiments are conducted on a machine with 2 Intel Xeon 6348 processors with 28 cores, 1TB
of memory, and 4 A100 80GB GPUs. All traditional heuristics are run using a single core and Gurobi
is run with 4 cores, allowing 40GB of memory for each instance.

We only use 1 A100 during training or inference for all datasets. The training time for MIS is roughly
1 hour and 9 hours for RB250 and RB1000 datasets, respectively. The training time for MCut is
roughly 1 hour and 3 hours for BA250 and BA1000 datasets, respectively. The training time for MC
is roughly 2 hours for the RB250 dataset.

For baselines, we run each method in our machine and report the time we obtain on our machine to
have a fair comparison. However, we use the original size when available on the same dataset split.

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL EXPERIMENTS FOR MAXIMUM CLIQUE

For MC, we consider a challenging dataset from DIMACS implementation challenges related Maxi-
mum Clique (DIMACS). This dataset contains 37 challenging graphs. We use the X2GNN model
trained on the RB-1000 dataset as well as its fine-tuned version. We report the performance of
X2GNN 256x32 with and without fine-tuning as well as the best traditional heuristic KaMIS.

14

Published as a conference paper at ICLR 2025

Table 7: Table shows the clique size and the running time for each instance for X2GNN and KaMIS,
considering that X2GNN FT fine-tunes X2GNN on these instances, and X2GNN is trained on only
RB1000 instances. The clique sizes matching the best-known solutions are shown in bold.

Size Runnig Time
Instance n m Best known KaMIS X2GNN FT X2GNN KaMIS X2GNN FT X2GNN

brock200_2 200 9,876 12 12 11 11 7.14 4.95 4.95
brock200_4 200 13,089 17 16 16 16 5.45 3.7 3.67
brock400_2 400 59,786 29 24 24 24 9.17 4.32 4.35
brock400_4 400 59,765 33 25 25 25 8.77 4.28 4.29
brock800_2 800 208,166 24 20 20 20 33.91 10.84 10.79
brock800_4 800 207,643 26 20 21 21 36.02 10.87 10.8

C1000.9 1,000 450,079 68 66 66 64 19.06 6.68 6.59
C125.9 125 6,963 34 34 34 34 5.26 3.72 3.6

C2000.5 2,000 999,836 16 15 14 0 188.80 72.63 72.4
C2000.9 2,000 1,799,532 80 75 75 73 45.28 17.67 17.59
C250.9 250 27,984 44 44 44 44 5.15 3.72 3.65

C4000.5 4,000 4,000,268 18 16 13 0 596.32 367.1 369.75
C500.9 500 112,332 57 56 56 55 6.88 3.8 3.74

DSJC1000_5 1,000 499,652 15 15 12 12 70.18 20.1 19.96
DSJC500_5 500 125,248 13 13 13 13 26.61 7.29 7.24

gen200_p0.9_44 200 17,910 44 44 44 44 5.20 3.71 3.59
gen200_p0.9_55 200 17,910 55 55 55 55 5.20 3.74 3.6
gen400_p0.9_55 400 71,820 55 53 55 55 5.35 3.71 3.58
gen400_p0.9_65 400 71,820 65 65 65 65 5.22 3.71 3.58
gen400_p0.9_75 400 71,820 75 75 75 75 5.65 3.75 3.58

hamming10-4 1,024 434,176 40 38 40 38 12.24 9.53 9.4
hamming8-4 256 20,864 16 16 16 16 5.76 3.66 3.55

keller4 171 9,435 11 11 11 11 5.40 3.71 3.58
keller5 776 225,990 27 26 23 27 10.97 8.32 8.26
keller6 3,361 4,619,898 59 55 39 43 61.87 75.01 75.2

MANN_a27 378 70,551 126 126 126 92 5.05 3.69 3.57
MANN_a45 1,035 533,115 345 344 343 244 5.09 3.7 3.59
MANN_a81 3,321 5,506,380 1100 1100 1097 664 5.06 4.25 4.14
p_hat1500-1 1,500 284,923 12 11 10 0 88.97 61.61 60.96
p_hat1500-2 1,500 568,960 65 65 65 62 85.44 39.96 40.47
p_hat1500-3 1,500 847,244 94 94 94 94 44.08 22.49 22.45
p_hat300-1 300 10,933 8 8 8 8 18.69 5.27 5.19
p_hat300-2 300 21,928 25 25 25 25 12.02 4.48 4.38
p_hat300-3 300 33,390 36 36 36 36 7.06 3.75 3.57
p_hat700-1 700 60,999 11 11 9 2 42.16 15.36 15.27
p_hat700-2 700 121,728 44 44 44 44 25.06 11.49 11.42
p_hat700-3 700 183,010 62 62 62 62 13.62 7.38 7.31

3.87% 6.68% 17.41% 15.60 8.46 8.33

Table 7 shows that X2GNN is able to generalize and generate optimal or near-optimal solutions
on many instances even though it is trained on RB1000 instances, a set of much sparser instances.
However, it does fail to generate good solutions on a few instances. With fine-tuning, solution quality
improves quite a lot both for these failing cases and also in general, leading to an average gap of
6.68% from 17.41%. Even the most successful traditional heuristic KaMIS achieves an average
gap of 3.87%. Considering this dataset is designed to be a challenging dataset, learning a general
rule based on RB1000 instances that can solve many problems, and achieving a gap of 6.68% after
fine-tuning is noteworthy.

B.2 ADDITIONAL EXPERIMENTS FOR MAXIMUM INDEPENDENT SET

For MIS, we evaluate X2GNN’s performance on an additional dataset that comprises instances from
Coding Theory applications, specifically error correction codes, with graph sizes ranging from 64
to 4,096 nodes. For this dataset, we utilize the X2GNN model trained on the RB1000 dataset. We
compare against KaMIS, the state-of-the-art MIS solver.

On the Coding Theory dataset (Table 8), X2GNN finds the best-known solution in 20 of 32 instances,
compared to KaMIS’s 28 instances. X2GNN achieves an average gap of 3.37% from best-known
solutions (versus 0.34% for KaMIS). Excluding one outlier instance where X2GNN finds a solution
less than half the best-known value, X2GNN’s average gap improves to 1.74%. This performance is
notable given no domain-specific tuning was performed.

To demonstrate X2GNN’s adaptability to weighted problems, we extend it to weighted maximum
independent set problems with minimal modifications: adding a weight embedding layer combined

15

Published as a conference paper at ICLR 2025

Table 8: The table shows the size of the independent sets found by X2GNN and KaMIS and the
running time in seconds for each instance. The last row shows the average gap in percentages from
the best-known solution. The instances where a method found the best-known solutions are shown in
bold.

Graph Best Known X2GNN 256x32 KaMIS X2GNN 256x32 Time KaMIS Time

1dc.64 10 10 10 5.06 5.14
1dc.128 16 16 16 3.87 4.04
1dc.256 30 30 30 4.37 4.50
1dc.512 52 52 52 6.33 6.49
1dc.1024 94 94 93 11.29 11.40
1dc.2048 172 172 172 24.25 24.40

1et.64 18 18 18 3.81 1.31
1et.128 28 28 28 3.81 3.85
1et.256 50 50 50 3.82 3.90
1et.512 100 98 100 4.68 4.74
1et.1024 171 165 171 7.12 7.23
1et.2048 316 300 316 13.95 14.02

1tc.8 4 4 4 3.71 0.48
1tc.16 8 8 8 3.76 0.81
1tc.32 12 12 12 3.76 0.30
1tc.64 20 20 20 3.79 1.10

1tc.128 38 38 38 3.75 1.15
1tc.256 64 63 63 3.78 3.88
1tc.512 110 109 110 4.39 4.48
1tc.1024 196 189 196 6.64 6.73
1tc.2048 352 332 352 12.91 13.00
1zc.128 18 18 18 3.77 3.87
1zc.256 36 36 36 3.99 4.10
1zc.512 62 62 62 5.46 5.55
1zc.1024 112 109 112 9.13 9.32
1zc.2048 198 181 195 18.78 18.89
1zc.4096 379 326 353 40.19 40.41
2dc.128 5 5 5 4.52 1.46
2dc.256 7 7 7 8.22 10.06
2dc.512 11 11 11 19.07 22.31
2dc.1024 16 15 16 52.72 57.81
2dc.2048 24 11 24 152.61 162.73

Average Gap 3.37% 0.34%

with node representations via summation, and incorporating weights into the loss function calculation.
Using the RB250 dataset with uniform random integer weights between 1 and 5, we compare against
optimal solutions from Gurobi. Table 9 shows X2GNN maintains high solution quality with a 0.8%
optimality gap.

Table 9: Results for Weighted Maximum Independent Set on small RB graphs, presenting the mean
independent set size, drop in quality compared to the optimal, and run time in seconds.

Method Type RB250
Size ↑ Drop ↓ Time ↓

Gurobi OR 82.94 0% 0.21

X2GNN(16x8) UL 78.52 5.33% 0.03
X2GNN(64x8) UL 80.26 3.23% 0.09
X2GNN(256x8) UL 81.31 1.97% 0.35
X2GNN(256x32) UL 81.83 1.34% 1.25
X2GNN(1024x32) UL 82.28 0.8% 4.92

16

Published as a conference paper at ICLR 2025

In an ablation study, we replaced the GAT layer with a simple MLP for processing cross-edges. Table
10 shows this variant still outperforms other learning-based approaches but underperforms compared
to the GAT version, indicating GAT’s superior capability in aggregating information across different
solutions.

Table 10: The results for replacing GAT layers with a simple MLP layer.

Method Type RB250
Size ↑ Drop ↓ Time ↓

KaMIS (30min) OR 20.106 0% 3.92
Gurobi (30min) OR 20.106 0% 0.31
KaMIS (Quality) OR 20.106 0% 3.92
Gurobi (Quality) OR 20.106 0% 0.42
KaMIS (Fast) OR 20.032 0.37% 1.16
Gurobi (Fast) OR 19.16 4.71% 0.1

PPO UL 19.01 5.45% 0.15
GFlow UL 19.18 4.61% 0.05
DIFUSCO SL 17.68 12.07% 0.87
T2T SL 18.35 8.73% 2.32
DiffUCO UL 19.24 4.31% 0.42

X2GNN-GAT(16x8) UL 19.51 2.96% 0.034
X2GNN-GAT(64x8) UL 19.82 1.42% 0.128
X2GNN-GAT(256x8) UL 19.98 0.63% 0.5
X2GNN-GAT(256x32) UL 20.072 0.17% 1.94
X2GNN-GAT(1024x32) UL 20.098 0.04% 7.11

X2GNN-MLP(16x8) UL 18.95 5.75% 0.027
X2GNN-MLP(64x8) UL 19.41 3.46% 0.096
X2GNN-MLP(256x8) UL 19.698 2.03% 0.38
X2GNN-MLP(256x32) UL 19.886 1.09% 1.35

B.3 ADDITIONAL EXPERIMENTS FOR MCUT

For the Maximum Cut (MCut) problem, we evaluate X2GNN’s out-of-distribution performance
on two additional benchmark sets. The first dataset, introduced in Mirka and Williamson (2023),
comprises diverse graphs from the SNAP Networks repository (referred to as SNAP dataset). This
dataset is particularly suitable for assessing generalization capabilities due to its heterogeneous graph
distributions. The second dataset, known as Gset 2, is a well-established benchmark collection
traditionally used to evaluate MCut algorithms.

To train X2GNN, we generate 4,000 Erdős-Rényi (ER) graphs with sizes uniformly sampled from
between 200 and 500 and edge probabilities from [0.1, 0.75]. We then evaluate the trained model on
both SNAP and Gset datasets.

Table 11 presents results for the SNAP dataset, comparing X2GNN against ANYCSP (trained on the
same dataset), Tabu Search (TS), Semidefinite Programming (SDP) relaxation, and BMZ heuristic
from Mirka and Williamson (2023). X2GNN discovers the best solutions among all compared
methods for all but two instances, demonstrating superior performance over both ANYCSP and
traditional heuristics.

For the Gset evaluation, we use on all unweighted GSET instances, demonstrating that X2GNN can
generalize to larger instances. Table 12 shows the cut size achieved by the traditional heuristics BLS,
DSDP, KHLWG and learning based heuristics X2GNN and ANYCSP for each instance. To aggregate
the results, we first compute the virtual best solution by taking the maximum value found by any of
the compared algorithms. Then, for each instance we compute the average gap from the best as 1 -
solution/best and take the mean to calculate the average gap from the virtual best solution.

2https://web.stanford.edu/~yyye/yyye/Gset/

17

https://web.stanford.edu/~yyye/yyye/Gset/

Published as a conference paper at ICLR 2025

Table 11: Table shows the cut sizes for instance and method. The cut sizes matching the best are
shown in bold.

Graph n m X2GNN (256x32) ANYCSP TS BMZ SDP

ENZYMES8 88 133 126 126 126 126 126
johnson16-2-4 120 5460 3036 2941 3036 3036 3036
hamming6-2 64 1824 992 946 992 992 992
ia-infect-hyper 113 2196 1279 1208 1279 1278 1275
soc-dolphins 62 159 122 122 122 122 122
email-enron-only 143 623 427 427 427 426 422
dwt_209 209 976 557 557 557 557 551
ca-netscience 379 914 620 580 627 634 634
ia-infect-dublin 410 2765 1771 1709 1758 1767 1750
road-chesapeake 39 170 126 126 126 126 125
Erdos991 492 1417 1036 1036 1012 1031 1019
dwt_503 503 3265 1938 1938 1937 1931 1934
p-hat700-1 700 60999 33413 31856 33426 33440 33450
email-univ 1133 5451 3775 3764 3657 3765 3736

The results indicate that X2GNN achieves an average gap of 0.12% from the best solutions among the
compared ones under the 64x256 setting, which has a maximum running time of 11 seconds on the
largest instance with 104 nodes. ANYCSP under the 64x256 setting has a similar running time and
achieves an average gap of 0.69% from the best solution. When we increase the number of refinement
iterations by one order of magnitude, the average gaps achieved by X2GNN and ANYCSP are 0.12%
and 0.56%, respectively. Despite having an order of magnitude longer runtime, ANYCSP achieves a
higher average gap than X2GNN at even a short runtime. These results show that both methods are
scalable and can generate high-quality solutions to larger and different distributions than those seen
during training; however, X2GNN performs better than ANYCSP.

Additionally, X2GNN generates solutions with a smaller gap on average than the second best
traditional heuristic KHLWG, whereas ANYCSP consistently generates solutions with higher gap
than KHLWG.

18

Published as a conference paper at ICLR 2025

Table 12: Results for Max Cut on Gset dataset, presenting the cut size for each instance. The last row
shows the average gap in percentages from the best solution.

Graph BLS DSDP KHLWG X2GNN 64x256 ANYCSP 64x256 X2GNN 64x2560 ANYCSP 64x2560

G1 11624 - 11624 11583 11582 11598 11616
G14 3064 2922 3061 3054 3021 3058 3035
G15 3050 2938 3050 3043 3011 3036 3024
G16 3052 - 3052 3040 3011 3045 3024
G17 3047 - 3046 3037 3002 3039 3018
G2 11620 - 11620 11575 11585 11588 11601
G22 13359 12960 13359 13339 13263 13347 13285
G23 13344 13006 13342 13319 13247 13329 13309
G24 13377 12933 13337 13310 13273 13319 13276
G25 13340 - 13332 13311 13248 13327 13287
G26 13328 - 13328 13296 13236 13306 13272
G3 11622 - 11620 11583 11581 11591 11614
G35 7684 - 7678 7648 7543 7646 7575
G36 7678 - 7670 7646 7529 7654 7566
G37 7689 - 7682 7665 7546 7666 7593
G38 7687 - 7683 7649 7547 7658 7570
G4 11646 - 11646 11597 11612 11617 11633
G43 6660 - 6660 6655 6622 6659 6651
G44 6650 - 6639 6645 6622 6646 6631
G45 6654 - 6652 6640 6625 6652 6641
G46 6649 - 6649 6639 6622 6644 6637
G47 6657 - 6665 6651 6626 6654 6647
G48 6000 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000 6000
G5 11631 - 11631 11596 11583 11594 11623
G50 5880 5880 5880 5872 5846 5880 5876
G51 3848 - 3847 3838 3791 3837 3810
G52 3851 - 3849 3835 3792 3840 3805
G53 3850 - 3848 3841 3796 3844 3812
G54 3852 - 3851 3842 3791 3841 3802
G55 10294 9960 10236 10241 10066 10283 10141
G58 19263 - 19248 19167 18843 19186 18937
G60 14176 13610 14057 14121 13855 14146 13952
G63 26997 8017 26963 26863 26405 26905 26512
G70 9541 9456 9458 9492 9189 9525 9290

GeoMean 7726.5 - 7718.6 7703.5 7638.6 7710.3 7667.0
Mean Gap 0.01% - 0.13% 0.12% 0.69% 0.11% 0.56%

19

	Introduction
	Related Work
	Preliminaries
	X2GNN Framework
	Experiments
	Results on Maximum Clique
	Results on Maximum Independent Set
	Results on Maximum Cut
	Ablation
	Neural Search Dynamics

	Conclusion
	Experimental Details
	Network Architecture
	Hyperparameters
	Computational Resources and Time Measurements

	Additional Experiments
	Additional Experiments for Maximum Clique
	Additional Experiments for Maximum Independent Set
	Additional Experiments for MCut

