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Abstract

Despite the impressive chain-of-thought (CoT)001
reasoning ability of large language models002
(LLMs), its underlying mechanisms remains003
unclear. In this paper, we explore the inner004
workings of LLM’s CoT ability via the lens of005
neurons in the feed-forward layers. We pro-006
pose an efficient method to identify reasoning-007
critical neurons by analyzing their activation008
patterns under reasoning chains of varying qual-009
ity. Based on it, we devise a rather simple in-010
tervention method that directly stimulates these011
reasoning-critical neurons, to guide the genera-012
tion of high-quality reasoning chains. Extended013
experiments validate the effectiveness of our014
method and demonstrate the critical role these015
identified neurons play in CoT reasoning. Our016
code and data will be publicly available.017

1 Introduction018

Through the chain-of-thought (CoT) prompting019

strategy (Wei et al., 2022; Merrill and Sabharwal,020

2024), large language models (LLMs) can arrive021

at correct answers through a step-by-step reason-022

ing paradigm. However, LLMs often generate text023

with obvious mistakes, raising doubts about their024

ability to robustly process reasoning chains (Turpin025

et al., 2023). Therefore, understanding LLMs rea-026

soning mechanisms is important to improve their027

reasoning accuracy and efficiency.028

A surge of work has been conducted to ex-029

plore techniques to improve reasoning accuracy030

and efficiency. Previous studies have predomi-031

nantly focused on optimizing external components032

of CoT (Fu et al., 2023; Wang et al., 2023; Tang033

et al., 2023; Jin et al., 2024), such as prompt engi-034

neering and symbolic representations (Madaan and035

Yazdanbakhsh, 2022; Ye et al., 2023). While these036

approaches provide valuable external insights into037

the factors that enhance CoT performance, they038

fall short of offering an internal explanation for the039

quality of the model’s outputs.040

To address this gap, researchers have attempted 041

to provide mechanistic explanations for the model’s 042

CoT reasoning abilities. Existing work can be 043

roughly categorized into module-level and neuron- 044

level interpretation methods. Concretely, the 045

module-level methods generally leverage causal 046

tracing (Meng et al., 2022, 2023) and circuit con- 047

struction (Hanna et al., 2023; Yao et al., 2024) to 048

identify and analyze key modules involved in the 049

model’s CoT reasoning process. However, due to 050

the higher cost of estimating all the components 051

within LLMs, these methods can not be used for 052

more fine-grained analysis. In contrast, neuron- 053

level methods primarily focus on analyzing neu- 054

rons within the feed-forward network (FFN) lay- 055

ers (Stolfo et al., 2023; Rai and Yao, 2024; Yu 056

and Ananiadou, 2024a), as these layers have been 057

shown to encode significant factual and linguistic 058

knowledge (Yu and Ananiadou, 2024b). 059

In this paper, we identify reasoning-critical neu- 060

rons by leveraging the activation differences of 061

FFN neurons across reasoning chains of varying 062

quality. Unlike previous work (Rai and Yao, 2024; 063

Christ et al., 2024), which solely focus on neurons 064

exhibiting high absolute activation values, our ap- 065

proach specifically emphasizes neurons that display 066

significant relative differences in activation across 067

reasoning chains of varying quality. Our motiva- 068

tion is that by modulating the activation strengths of 069

these neurons, we can directly enhance the model 070

performance in downstream tasks. Concretely, we 071

first construct a contrastive dataset of varying rea- 072

soning trajectories using the MATH benchmark’s 073

training set. Leveraging the dataset, we analyze the 074

neurons activation patterns under reasoning chains 075

of varying quality. Specifically, we quantify the 076

disparity in neuron activations by computing the 077

ratio of their activation values between high- and 078

low-quality chains, then apply a threshold to se- 079

lect neurons exhibiting significant activation dif- 080

ferences. As shown in Figure 3a, these neurons 081
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consistently demonstrate stronger activation during082

correct reasoning chains. Then, we modulate the083

activation strengths of these neurons to alter the084

quality of generated CoT chains.085

Experimental results demonstrate the effective-086

ness of our method across all subdomains of the087

MATH benchmark, leading to 2.4% relative im-088

provement on average.089

2 Preliminary090

Currently, most LLMs are built upon an auto-091

regressive Transformer architecture (Vaswani et al.,092

2017), in which the core components are the multi-093

head self-attention (MHA) and the feed-forward094

network (FFN). Given the MHA output hl
i at layer095

i, the FFN output can be expressed as follows:096

FFN(hl
i) = V lf(K lhl

i) (1)097

where K l ∈ RN×d,V l ∈ Rd×N represent two lin-098

ear layers, and f denotes the non-linear activation099

function. In this paper, we define a neuron as a100

specific scalar parameter in the weight matrix V l.101

In this paper, we study how to identify the acti-102

vation coefficients of key neurons within the LLM,103

and how to improve the CoT reasoning ability by104

intervening these neurons.105

3 Methodology106

3.1 Neurons Contribution Estimation107

To identify neurons that significantly influence the108

quality of CoT, we first construct a contrastive109

dataset using the MATH benchmark’s training set,110

which covers seven mathematical subdomains to111

diversity in the thematic content of reasoning tasks.112

For each problem, we generate multiple CoT trajec-113

tories through controlled sampling, then we clas-114

sify them into quality categories based on solution115

quality. We perform initial classification based on116

answer correctness, then we manually verify and117

filter out reasoning chains that yield correct final118

answers but contain incorrect or problematic in-119

termediate reasoning steps, ultimately obtaining120

a contrastive dataset that encompasses both high-121

and low-quality CoT instances.122

Based on our contrastive dataset, we analyze123

the internal activation differences in the model un-124

der different quality CoTs to estimate the contri-125

bution of each neuron on generating high-quality126

CoTs. Specifically, we feed the LLM with CoT127

trajectories. For the j-th neuron in the i-th layer,128

we first compute the average activation strength 129

when processing the CoT trajectories. We define 130

m
(+)
ij as the average activation strength value for 131

the high-quality CoT trajectories and m
(−)
ij for the 132

low-quality CoT trajectories. Given the varying 133

average activation values of neurons across dif- 134

ferent layers, defining an appropriate significance 135

threshold is challenging. Therefore, we consider 136

using ratio-based differentiation rij = m
(+)
ij /m

(−)
ij 137

rather than absolute difference metrics to quantify 138

the neuronal variance. 139

Figure 1: CoT key neuron identification and intervention
based on FFN neurons activation difference.

3.2 CoT Key Neurons Selection and 140

Intervention. 141

Our identification protocol employs a cascaded fil- 142

tering approach: first, we select neurons in the top 143

10% of the {rij} distribution, then we impose a 144

predefined threshold to further filter neurons with 145

significant differences. If the difference measure 146

rij of a neuron exceeds this threshold, we consider 147

that neuron to be related to the quality of the LLM’s 148

CoT. We present this step in Algorithm 1. 149

We next validate whether our method success- 150

fully identifies reasoning neurons. We begin by 151

conducting a neuron coefficient enhancement ex- 152

periment, where we amplify the coefficients of the 153

identified neurons and observe the resulting perfor- 154

mance changes on downstream tasks. Following 155

this, we perform a neuron coefficient interference 156

experiment, in which we set the coefficients of the 157

identified neurons to zero and examine the impact 158
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Model Method
MATH

Algebra CP PC PA Geometry IA NT Avg.

LLaMA 3.2 3B IT

Greedy CoT 69.75 43.68 30.40 65.00 36.15 25.8 39.32 47.71
Top-activation 67.96 43.68 32.50 63.72 37.80 23.40 42.32 47.34

MathNeuro 67.96 44.53 29.00 65.23 38.47 26.50 39.70 47.64
Wanda 68.13 42.17 31.73 64.70 37.24 24.35 41.57 47.36

Random 69.15 43.00 30.20 65.50 36.15 26.15 36.70 47.35
Ours 70.77 47.32 33.65 67.44 40.59 28.27 40.82 50.11

LLaMA 3.1 8B IT

Greedy CoT 67.80 41.32 31.16 67.90 36.36 26.90 42.69 48.20
Top-activation 66.27 42.82 31.73 67.90 35.70 26.76 41.57 47.83

MathNeuro 68.82 41.97 31.50 68.00 36.36 27.34 42.50 48.61
Wanda 67.23 42.50 30.20 67.44 36.20 27.13 41.23 47.86

Random 66.53 42.50 30.85 66.83 35.92 26.50 40.43 47.43
Ours 69.07 46.04 33.26 69.88 40.59 28.27 42.32 50.13

LLaMA 3.2 1B IT

Greedy CoT 44.52 23.76 17.20 41.74 22.83 12.74 21.16 28.74
Top-activation 42.30 24.10 16.80 41.00 22.26 12.63 19.10 27.78

Wanda 43.18 23.98 17.00 41.52 21.92 11.52 20.89 28.05
MathNeuro 44.85 23.76 14.50 42.79 24.52 12.63 21.9 28.93

Random 45.19 23.80 17.00 40.50 21.80 13.00 20.78 28.57
Ours 47.32 26.33 19.12 44.3 26.84 14.13 24.34 31.28

Mistral 7B IT

Greedy CoT 20.65 14.34 7.32 28.37 8.67 4.18 9.26 14.59
Top-activation 20.20 14.76 7.32 27.69 6.89 2.08 7.41 13.65

MathNeuro 20.80 15.80 9.15 28.46 10.33 6.26 9.26 15.51
Wanda 20.34 15.73 6.81 27.35 7.23 3.53 7.83 14.00

Random 20.72 13.71 7.32 27.35 9.18 4.18 11.11 14.61
Ours 22.17 16.91 10.99 30.81 11.21 6.26 12.96 17.03

Qwen Math 2.5B IT

Greedy CoT 91.42 68.31 60.99 84.88 64.06 59.79 78.65 75.05
Top-activation 91.75 68.52 63.47 84.88 63.42 58.63 76.02 74.87

MathNeuro 91.68 69.59 61.76 84.76 64.75 61.29 78.15 75.58
Wanda 90.58 67.89 61.50 84.12 63.76 57.72 77.39 74.20

Random 91.50 68.31 61.18 84.65 63.42 59.55 79.13 75.00
Ours 92.77 70.88 63.67 86.27 65.96 61.64 80.90 76.91

Table 1: Experimental results on MATH dataset. PC and PA denote Precalculus and Prealgebra, respectively. Avg.
is the average value of all categories. The best are denoted in bold.

on performance in downstream tasks.159

4 Experiments160

4.1 Main Results161

Here, we present our experimental findings. our162

experimental setup is presented in Appendix B. We163

first identify a set of critical neurons through our164

proposed method, which selects neurons exhibit-165

ing significantly higher activation strength under166

high-quality reasoning chains compared to low-167

quality instances. We then conduct enhancement168

experiments by amplifying the activation values169

of these neurons by 1.1 during mathematical rea-170

soning tasks. For comparison, we evaluate four171

baseline conditions with equivalent quantities of172

neurons, detailed descriptions of these methods are173

provided in Appendix C. The main results are pre-174

sented in Table 1, we observe that the enhancement175

of our identified differential neurons yields consis-176

tent accuracy improvements across all MATH sub-177

datasets, with average gains of 2.4% compared to178

greedy CoT. This performance advantage suggests179

that our methodology effectively captures neurons180

specifically involved in high-quality reasoning pro- 181

cesses, potentially responsible for steering LLM to 182

generate high quality reasoning chains. 183
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Figure 2: Impact of perturbing neuron activation values
on the reasoning task accuracy of LLaMA-3.2 (3B).

To further investigate the causal relationship be- 184

tween these neurons and reasoning capability, we 185

conduct interference experiments through activa- 186

tion suppression. We observe that complete deacti- 187

vation of these neurons result in catastrophic fail- 188

ure on solving mathematical problems. In contrast, 189

random deactivation of equivalent numbers of neu- 190
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rons only causes relatively marginal performance191

decreases. This sharp contrast in task sensitivity192

confirms that the identified neurons are crucial for193

maintaining mathematical reasoning capabilities.194

4.2 Further Analysis195

Activation pattern under varying quality CoTs.196

As shown in Figure 3a, when comparing activa-197

tion patterns between high-quality and low-quality198

CoTs, we observe distinct distribution characteris-199

tics. Neurons activated under different quality CoT200

samples exhibit a pronounced ratio peak around201

1.16, while those from same-quality CoT samples202

reveal no significant ratio differences. This vali-203

dates our method’s capability to isolate reasoning-204

critical neurons through cross-quality comparisons.205

Neuron distribution across layers. Figure 3b206

presents the distribution of average identified neu-207

rons across model layers. Reasoning-critical neu-208

rons predominantly cluster in middle-to-high lay-209

ers, with the final layer containing most identified210

neurons. This distribution aligns with prior find-211

ings about transformer architectures, where middle212

layers encode task-solving information while final213

layers specialize in answer generation (van Aken214

et al., 2019). The high concentration in later layers215

suggests these neurons serve as final-stage qual-216

ity controllers that integrate intermediate reasoning217

states into coherent outputs.218
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Figure 3: Distribution of activation strength difference
and identified reasoning neurons across layers.

Overlap between the identified neurons and the219

top-activated neurons. Figure 4 illustrates the220

overlap rates between the neurons identified by our221

method and the top 5% − 50% activated neurons222

across different layers, revealing a U-shaped pat-223

tern. It indicates that critical neurons for reasoning224

quality are not consistently among the most highly225

activated neurons, particularly in middle layers. It226

aligns with our experimental findings that scaling227

the activation values of neurons with significant228

activation differences across reasoning qualities229

within the top-activated group yields weaker per- 230

formance improvements compared to scaling all 231

neurons with significant activation differences. 232
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Figure 4: Overlap between the identified neurons and
the top-activated neurons across layers.

Generalization on general reasoning tasks. To 233

demonstrate our method’s generalizability beyond 234

mathematical reasoning, we conduct additional 235

evaluations on the CommonsenseQA and Strate- 236

gyQA benchmarks, which emphasize general rea- 237

soning capabilities. The results in table below illus- 238

trate that our approach achieves competitive perfor- 239

mance across these general reasoning tasks, high- 240

lighting its wide applicability. 241

- CommonsenseQA StrategyQA
Greedy CoT 68.30 66.08

Top-activation 68.80 66.38
MathNeuro 69.21 67.69

Wanda 67.98 66.21
Random 68.55 65.79

Ours 70.27 69.57

Table 2: Experimental results on CommonsenseQA and
StrategyQA. The best are denoted in bold.

5 Conclusion 242

In this work, we investigate the internal activa- 243

tion patterns of models when generating Chain- 244

of-Thought (CoT) of varying quality. Specifically, 245

we first construct a contrastive dataset comprising 246

correct and incorrect reasoning chains, then we 247

propose an effective method to identify reasoning- 248

critical neurons based on activation disparities. 249

Through further experiments, we demonstrate that 250

modulating the activation strengths of these neu- 251

rons can enhance the model’s reasoning perfor- 252

mance on downstream tasks. 253
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Limitations254

Our study has several limitations. First, our anal-255

ysis experiments are primarily conducted on the256

LLaMA-3.2-3B architecture. Since neural sensi-257

tivity to interventions varies significantly across258

model families and scales, some conclusions of259

our analysis results may not generalize to other260

LLMs. Second, while we focus on FFN layers due261

to their established role in knowledge representa-262

tion (Dai et al., 2022), LLMs’ reasoning ability263

comes from complex interactions between multi-264

ple components, so a complete mechanistic under-265

standing requires future investigation into more266

components in LLMs like attention layers. Finally,267

although our contrastive dataset for identifying rea-268

soning neurons is effective, we have not systemat-269

ically explored optimal dataset characteristics for270

neuron identification, we plan to explore these in271

our future work.272
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A Reasoning Neuron Collection436

Algorithm437

We present our proposed neuron collection method438

in Algorithm 1

Algorithm 1 Reasoning Neuron Collection
1: Input: Correct solution examples E1, incorrect solution

examples E2, selection ratio threshold θ, the target LLM
2: Output: A set of candidate neuronsN .
3: InitializeN ← {},M (+)

ij ← 0,M
(−)
ij ← 0

4: for each example in E1 :
5: for each layer i = 1, ...,m :
6: for each neuron j = 1, ..., n :
7: âij ← AvgL2Norm({ak

ij}Nk=1, k)

8: M
(+)
ij ←M

(+)
ij + âij

9: for each example in E2 :
10: for each layer i = 1, ...,m :
11: for each neuron j = 1, ..., n :
12: âij ← AvgL2Norm({ak

ij}Nk=1, k)

13: M
(−)
ij ←M

(−)
ij + âij

14: for each layer l = 1, ..., L :
15: for each neuron j = 1, ..., n :
16: m

(+)
ij ← Avg(M

(+)
ij , size(E1)))

17: m
(−)
ij ← Avg(M

(−)
ij , size(E2)))

18: {rij} ← FindLargest(m
(+)
ij /m

(−)
ij , θ)

19: N ← N ∪ {vij |rij ∈ {rij}}

439

B Experimental Setup440

Models. We conduct our primary experiments441

on LLaMA 3.2 3B Instruct (MetaAI, 2024b), a442

state-of-the-art language model specifically fine-443

tuned for instruction-following and reasoning tasks.444

LLaMA 3.2 3B Instruct is known for its robust per-445

formance in complex reasoning scenarios, particu-446

larly in mathematical and logical problem-solving,447

making it an ideal candidate for our study on CoT448

reasoning.To ensure the generalizability of our ap-449

proach, we also evaluate our method on models of450

varying scales and architectures, including Mistral451

7B Instruct, LLaMA 3.2 1B (MetaAI, 2024b) In-452

struct ,LLaMA 3.1 8B Instruct (MetaAI, 2024a)453

and Qwen Math 2.5 Instruct. This multi-model454

setup allows us to validate the applicability of our455

method across different configurations.456

Dataset. Our evaluation is conducted on the test457

sets of the MATH benchmark (Hendrycks et al.,458

2021), a widely recognized dataset designed to459

assess the mathematical reasoning and problem-460

solving capabilities of large language models. The461

MATH dataset comprises a collection of challeng-462

ing competition-level mathematical problems, typ-463

ically sourced from middle and high school math464

competitions such as AMC and AIME. These prob- 465

lems span a broad range of mathematical domains 466

and are carefully curated to test reasoning skills. 467

The dataset is divided into seven categories: Alge- 468

bra, Counting and Probability, Precalculus, Prealge- 469

bra, Geometry, Intermediate Algebra, and Number 470

Theory, providing a comprehensive benchmark for 471

our study. The details of the datasets is shown in 472

Table 3.

Category Train Dev/Test
Algebra 1744 1187

CP 771 474
Precalculus 746 546
Prealgebra 1205 871
Geometry 870 479

IA 1295 903
NT 869 540

Table 3: Statistics of the MATH datasets. CP, IA, and
NT denote Counting and Probability, Intermediate Al-
gebra, and Number Theory, respectively.

473

C Details of Main Experiments Baselines 474

• Top Activated Neurons. Many existing meth- 475

ods directly identify important neurons through 476

saliency scores (Geva et al., 2022; Sun et al., 2024). 477

Inspired by prior work, we select the top K% of 478

neurons with the highest average activation values 479

under positive CoT conditions as important neu- 480

rons. This approach provides a computationally 481

efficient baseline for neuron identification. 482

• MathNeuro. MathNeuron (Christ et al., 2024) 483

identifies important parameters in LLMs by isolat- 484

ing math-specific parameters and improves down- 485

stream task performance through parameter scaling 486

and pruning. We adapt this method to a neuron- 487

level version by identifying neurons that are acti- 488

vated under positive CoT but not under negative 489

CoT conditions. We use its default implementation 490

for our pruning experiments. 491

• Wanda. Wanda (Sun et al., 2024) ranks pa- 492

rameter importance by scoring the product of each 493

weight’s magnitude and its activation, a criterion 494

widely used for model pruning. We adopt Wanda 495

as a baseline and adapt it to the neuron level by 496

using the product of a neuron’s L2 norm and its 497

activation as the comparison metric. 498

• Random Selection. As a control baseline, we 499

randomly select the same number of neurons to 500

compare against the other methods. This baseline 501
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Figure 5: Impact of selection threshold and scaling
scalar on the reasoning accuracy of LLaMA-3.2 (3B).

serves as a reference for different methods.502

D Ablation Study503

Here, we conduct experiments to investigate the504

influence of two hyper-parameters in our method.505

We first examine the impact of the threshold used to506

select neurons. The results are shown in Figure 5a,507

as the selection threshold increases, neurons asso-508

ciated with CoT quality are identified, leading to509

a gradual improvement in the pruned model’s ac-510

curacy on mathematical reasoning tasks. However,511

further elevation of the selection threshold may re-512

sult in the exclusion of critical neurons, causing a513

decline in the model’s task performance. We then514

set the selection threshold to 1.15, exploring the515

impact of varying scaling factors. As shown in516

Figure 5b, increasing the scaling factor enhances517

the pruned model’s reasoning ability. However, as518

the scaling factor continues to grow, the model’s519

performance begins to decline, which is likely at-520

tributed to the model’s sensitivity to the activation521

coefficients.522

E Effects of neuron modulation on523

general capabilities.524

Table 4 presents the performance of models sub-525

jected to our neuron intervention methodology on526

general-domain tasks, demonstrating that while our527

method enhances the model’s mathematical reason-528

ing capabilities, it does not negatively impact the529

model’s general capabilities. This provides strong530

empirical evidence supporting the effectiveness and531

robustness of our approach for practical implemen-532

tations.

- CommonsenseQA StrategyQA MMLU
Greedy 68.30 66.08 59.48
Ours 68.85 67.15 59.21

Table 4: Experimental results on CommonsenseQA,
StrategyQA and MMLU.

533

F Domain-Specific Neuron Analysis 534

To investigate relationships between selected 535

neurons from different mathematical reasoning 536

datasets, we perform set operations on neurons fil- 537

tered by seven domain-specific contrastive datasets. 538

By computing the complement of each dataset- 539

specific neuron set against the union of all other do- 540

main sets, we identify unique neurons exclusively 541

associated with individual mathematical domains, 542

which we term domain-specific neurons. The quan- 543

titative distribution of these neurons across do- 544

mains is presented in Table 5. We further conduct 545

intervention experiments to examine the impact of 546

these specific neurons, the results are presented in 547

Figure 6, we observe that suppressing activation 548

values of domain-specific neurons in domain A 549

causes disproportionately larger accuracy degrada- 550

tion on Domain A’s evaluation set compared to 551

other domains. This suggests that beyond gen- 552

eral mathematical reasoning neurons, activation 553

patterns of neurons tied to particular mathematical 554

subfields also contribute to LLM’s CoT reasoning 555

quality. 556

Alge
bra CP PC PA

Geo
metr

y IA NT

Algebra

CP

PC

PA

Geometry

IA

NT

-37.5% -15.4% -9.3% -10.5% -16.6% -4.7% -3.5%

-24.5% -54.4% -11.8% -17.7% -21.1% -3.4% -1.0%

-37.8% -9.4% -24.5% -0.6% -12.0% 6.3% 5.0%

-19.1% -7.9% -8.2% -24.3% -8.0% -3.4% -1.8%

-27.5% -11.7% -5.9% -12.9% -30.1% 2.9% -0.6%

-47.4% -16.0% -16.5% -6.2% -12.9% -23.2% -1.2%

-31.4% -18.1% -8.5% -24.7% -19.5% -14.0% -11.0%

Figure 6: Pertubation result across different domain-
specific neurons.

Algebra CP PC PA Geometry IA NT

1,580 1,071 2,880 604 4,246 492 278

Table 5: The number of neurons across different do-
mains.

Inspired by prior work (Geva et al., 2022), we 557

further project these neurons to vocabulary space 558

via unembedding matrices. As exemplified in Ta- 559

ble 6, we observe that some domain-specific neu- 560

rons exhibit semantic associations with their corre- 561

sponding mathematical domains, which provides 562

additional evidence for our hypothesis that domain- 563

specific neurons constitute modular knowledge 564

units specialized for distinct reasoning contexts. 565
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Category neuron Top tokens

Geometry
f431
23 Vol, vol, volume, Vol, vol

f1727
26 sphere, spherical, spheres, Sphere, Sphere
f1806
26 radius, radius, Radius, Radius, _radius

Algebra
f7100
18 vectors, vector, Vector, vector, direction
f4347
24 Distance, distance, Distance, distances, distance
f391
19 projection, projections, blitz, project, optimal

NT
f2802
23 Ninth, Nine, Sep, XIII, IX
f5198
25 567, 42, 345, 678, 876
f937
26 third, Third, Third, -three, third

CP
f1452
14 sum, total, sum, .sum, total
f2920
19 more, more,更多, More, MORE
f4955
19 percentage, percentages, percent, Percentage, Percent

Table 6: List of domains related to math reasoning along with their relative neurons and neurons’ corresponding top
tokens in Llama 3.2-3B Instruct.
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