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A Derivation of continuous time version of GRU1

In this section we derive the continuous-time version of the GRU model. Note that our definition2

of the GRU differs from the original version, presented in [3], by inverting the role of the u⟨t⟩ and3

1− u⟨t⟩ terms in the updates equations for y⟨t⟩ (a change in sign). This substitution does not change4

the behavior of the model but simplifies the notation in the continuous-time version of the model.5

We first rewrite the dynamics of a layer of GRU units at time step t from Eq. (1) of the main text,6

separating out the input and recurrent weights:7

u⟨t⟩ = σ
(
Uux

⟨t⟩ +Vuy
⟨t−1⟩ + bu

)
, r⟨t⟩ = σ

(
Urx

⟨t⟩ +Vry
⟨t−1⟩ + br

)
,

z⟨t⟩ = g
(
Uzx

⟨t⟩ +Vz

(
r⟨t⟩ ⊙ y⟨t−1⟩

)
+ bz

)
, y⟨t⟩ = u⟨t⟩ ⊙ z⟨t⟩ + (1− u⟨t⟩)⊙ y⟨t−1⟩ ,

(S1)

we can write this as8

y⟨t⟩ − y⟨t−1⟩ = −u⟨t⟩ ⊙y⟨t−1⟩ + u⟨t⟩ ⊙ z⟨t⟩. (S2)
Note that u here is equivalent to ũ = 1− u used in the standard GRU model. Eq. (S2) is in the form9

of a forward Euler discretization of a continuous time dynamical system. Defining y(t) ≡ y⟨t−1⟩,10

we get r(t) ≡ r⟨t⟩,u(t) ≡ u⟨t⟩, z(t) ≡ z⟨t⟩. Let ∆t define an arbitrary time step. Then Eq. (S2)11

becomes:12

y(t+∆t)− y(t) = −u(t)⊙ (y(t) + z(t))∆t (S3)
Dividing by ∆t and taking limit ∆t → 0, we get:13

ẏ(t) = −u(t)⊙ (y(t)− z(t)) , (S4)

where ẏ(t) ≡ dy(t)
dt is the time derivative of y(t).14

B Full details of the continuous time EGRU15

In this section we establish the continuous time version of the EGRU model. To describe the event16

generating mechanism and state dynamics it is convenient to express the dynamical system equations17

in therms of the activations aX.18

We first rewrite Eqs. (3) & (4) of the main text, as:19

faX
≡ τs ȧX + aX + bX = 0 , X ∈ {u, r, z} (S5)

fc ≡ τm ċ(t) + u(t)⊙ (c(t)− z(t)) = τm ċ(t)− F (t,au,ar,az, c) = 0 . (S6)

We write the event transitions for c at network event ek ∈ e, ek = (sk, nk), where sk are the continuous20

(real-valued) event times, and nk denotes which unit got activated, and using the superscript .− (.+)21

to the quantity just before (after) the event, as:22

c−nk
(sk) = ϑnk

, c+nk
(sk) = 0 , c+m(sk) = c−m(sk). (S7)
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where m ̸= nk denotes all the units connected to unit nk that are not activated. At the time of this23

event, the activations aX,m (X ∈ {u, r, x}) experiences a jump in its state value, given by:24

a+u,m(sk) = a−u,m(sk) + vu,mnk
× c−nk

(sk) , (S8)

a+r,m(sk) = a−r,m(sk) + vr,mnk
× c−nk

(sk) , (S9)

a+z,m(sk) = a−z,m(sk) + vz,mnk
× rnk

× c−nk
(sk) , (S10)

a+X,nk
(sk) = a−X,nk

(sk) . (S11)

External inputs also come in as events ẽk ∈ ẽ, ẽk = (sk, ik), where sk are the continuous (real-valued)25

event times, and ik denotes the index of the input component that got activated. Only the activations26

aX,l for the l-th unit experience a transition/jump on incoming external input events, as follows:27

a+X,l(sk) = a−X,l(sk) + uX,lnk
× xik(sk) , (S12)

where xik(sk) = (x(sk))ik is the ik-th component of the input x at time sk. The internal state c28

remains the same on the external input event. That is, c+l = c−l .29

C Derivation of event-based learning rule for EGRU30

In this section we derive the event-based updates for the network weights. The update questions31

yield different results for the recurrent weights (VX), biases (bX) and input weights (UX), which are32

derived in the remainder of this section. To increase readability important terms are highlighted in33

color.34

C.1 Gradient updates for the recurrent weights VX35

We first split the integral Eq. (7) across events as:36

L =

N∑
k=0

∫ sk + 1

sk

ℓc(c(t), t) + λc · fc +
∑

X∈{u,r,z}

λaX
· faX

 dt . (S13)

Then taking the derivative of the full loss function, we get:37

dL
dvji

=
d

dvji


N∑

k=0

∫ sk + 1

sk

ℓc(c(t), t) + λc · fc +
∑

X∈{u,r,z}

λaX
· faX

 dt

 . (S14)

By application of Leibniz integral rule we get,38

d

dvji

∫ sk + 1

sk

ℓc(c(t), t)dt = ℓc(c, sk + 1)
dsk + 1

dvji
− ℓc(c, sk)

dsk
dvji

+

∫ sk + 1

sk

∂ℓc
∂c

· ∂c

∂vji
dt . (S15)

and39

d

dvji

∫ sk + 1

sk

λc · fc dt (S16)

=

∫ sk + 1

sk

λc · dfc
dvji

dt =

∫ sk + 1

sk

λc ·
{
τm

d

dt

∂c

∂vji
+

∂F

∂vji

}
dt (S17)

= τm

[
λc · ∂c

∂vji

]sk + 1

sk

(S18)

− τm

∫ sk + 1

sk

λ̇c · ∂c

∂vji
+ λc ·

(∂F

∂c

)T
∂c

∂vji
+

∑
X∈{u,r,z}

(
∂F

∂aX

)T
∂aX

∂vji

 dt ,

(S19)
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where we first apply Gronwall’s theorem [5], then integration by parts, and MT denotes the transpose40

of matrix M . ℓc(c(t), t) is the instantaneous loss evaluated at time t. Similarly,41

d

dvji

∫ sk + 1

sk

∑
X∈{u,r,z}

λaX
· faX

dt =
∑

X∈{u,r,z}

∫ sk + 1

sk

λaX
·
{
τs

d

dt

∂aX

∂vji
+

∂aX

∂vji

}
dt (S20)

= τs

[
λaX

· ∂aX

∂vji

]sk + 1

sk

− τs

∫ sk + 1

sk

{
λ̇aX

· ∂aX

∂vji
+ λaX

· ∂aX

∂vji

}
dt ,

(S21)

since ∂b
∂vji

= 0.42

Substituting these values into Eq. (S14), and setting the coefficients of terms with ∂c
∂vji

and ∂aX

∂vji
to zero43

(using the fact that we can choose the adjoint variables freely due to fc and faX
being everywhere zero44

by definition), we get the dynamics of the adjoint variable described in Eq. (8). The adjoint variable45

is usually integrated backwards in time starting from t = T , also due to its dependence on the loss46

values (See Fig. S1). The initial conditions for the adjoint variables is defined as λc = λaX
= 0.47

Setting the coefficients of terms with ∂c
∂vji

and ∂aX

∂vji
to zero allows us to write the parameter updates as:48

dL
dvji

=

N∑
k=0

{(
l−c − l+c

) ds

dvji
+ τs

∑
X

(
λ−
aX

· ∂a
−
X

∂vji
− λ+

aX
· ∂a

+
X

∂vji

)
+ τm

(
λ−
c · ∂c

−

∂vji
− λ+

c · ∂c
+

∂vji

)}
(S22)

=

N∑
k=0

ξX,ijk (S23)

To define the required jumps at event times for the adjoint variables, we start with finding the49

relationship between ∂c−

∂vji
and ∂c+

∂vji
. Eqs. (S7) define sk as a differentiable function of vji under the50

condition ċ−nk
̸= 0 and ċ+nk

̸= 0 due to the implicit function theorem [16, 17].51

c−nk
− ϑnk

= 0 (S24)

∂c−nk

∂vji
+

dc−nk

ds

∂s

∂vji
= 0 (S25)

∂c−nk

∂vji
+ ċ−nk

∂s

∂vji
= 0 (S26)

∂s

∂vji
=

−1

ċ−nk

∂c−nk

∂vji
, (S27)

where we write
dc−nk

ds ≡ ċ−nk
and ċ−nk

̸= 0. Similarly,52

c+nk
= 0 (S28)

∂c+nk

∂vji
+ ċ+nk

∂s

∂vji
= 0 (S29)

which allows us to write53

∂c+nk

∂vji
=

ċ+nk

ċ−nk

∂c−nk

∂vji
(S30)

Similarly, starting from c+m = c−m, we can derive54

∂c+m
∂vji

=
∂c−m
∂vji

− 1

ċ−nk

∂c−nk

∂vji

(
ċ−m − ċ+m

)
(S31)
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For the activations aX, we use Eqs. (S8)–(S11) to derive the relationships between ∂aX

∂vji

+
and ∂aX

∂vji

−
.55

Thus, we have:56

∂a+X,m
∂vji

=
∂a−X,m
∂vji

− 1

τs

vmnk
r−X,nk

c−nk

ċ−nk

∂c−nk

∂vji
+ δink

δjmc−nk
+ c−nk

vmnk

∂r−X,nk

∂vji
− c−nk

vmnk

ṙ−X,nk

ċ−nk

∂c−nk

∂vji
(S32)

∂a+X,nk

∂vji
=

∂a−X,nk

∂vji
(S33)

where rX = 0 if X ∈ {u, r} and rX = r if X = {z}.57

Substituting Eqs. (S30),(S31),(S33), (S32) into Eq. (S22), we get:58

ξX,ijk =

∂c−nk

∂vji

−1

ċ−nk

(
ℓ+c − ℓ−c

)
+ τm

(
λ−
c,nk

−
ċ+nk

ċ−nk

λ+
c,nk

)
+ τm

1

ċ−nk

∑
m ̸=nk

λ+
c,m

(
ċ−m − ċ+m

)
(S34)

+
∑

X

r−X,nk
c−nk

ċ−nk

∑
m̸=nk

vmnk
λ+
aX,m + τs

∑
X

ṙ−X,nk
c−nk

ċ−nk

∑
m ̸=nk

vmnk
λ+
aX,m


(S35)

+τm
∑
m ̸=nk

∂c−m
∂vji

(
λ−
c,m − λ+

c,m

)
(S36)

τs
∑

X

∂a−X,nk

∂vji

(λ−
aX,nk

− λ+
aX,nk

)
− c−nk

G′(a−X,nk
)
∑
m ̸=nk

vmnk
λaX,m

+


(S37)

τs
∑

X

∑
m ̸=nk

∂a−X,m
∂vji

(
λ−
aX,m − λ+

aX,m

)
(S38)

−τsδink
r−X,nk

c−nk

∑
m ̸=nk

δjmλ+
aX,m


(S39)

where we use rX = G(aX) to denote G(ar) = r and G(az) = G(au) = 1, δab is the kronecker delta59

defined as:60

δab =

{
1 if a = b,
0 otherwise (S40)

Setting the coefficients of ∂c−

∂vji
and ∂a−

X

∂vji
to 0 (again, using our ability to choose the adjoint variables61

freely), we can get both ξX,ijk and the transitions for the adjoint variables.62

For the parameter updates we get:63

ξijk = −τsδink
r−X,nk

c−nk

∑
m̸=nk

δjmλ+
aX,m (S41)

= −τsr
−
X,ic

−
i λ

+
aX,j

. (S42)
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The jumps/transitions of the adjoint variables are:64

λ+
aX,m = λ−

aX,m (S43)

λ+
aX,nk

= λ−
aX,nk

− c−nk
G′(aX,nk

)
∑
m̸=nk

vmnk
λ+
aX,m (S44)

λ+
c,m = λ−

c,m (S45)

τmċ+nk
λ+
c,nk

= −(ℓ+c − ℓ−c ) + τmċ−nk
λ−
c,nk

+ τm
∑
m̸=nk

λ+
c,m(ċ−m − ċ+m)

+ τsc
−
nk

∑
X

(
ṙ−X,nk

+
r−X,nk

τs

) ∑
m ̸=nk

vmnk
λ+
aX,m , (S46)

where (ℓ+c − ℓ−c ) denotes the jumps in the instantaneous loss around event time sk. Thus, all the65

quantities on the right hand side of Eq. (S22) can be calculated from known quantities.66

C.2 Gradient updates for biases bX67

Proceeding similarly for the biases bX for each of X ∈ {u, r, z} (dropping the subscript X for68

simplicity):69

dL
dbi

=
d

dbi


N∑

k=0

∫ sk + 1

sk

ℓc(c(t), t) + λc · fc +
∑

X∈{u,r,z}

λaX
· faX

 dt

 . (S47)

the ξbias
X,ik term can be shown to be:70

ξbias
X,ik =

∫ sk + 1

sk

λaX,i dt (S48)

with71

dL
dbi

=

N∑
k=0

ξbias
X,ik . (S49)

C.3 Gradient updates for input weights UX72

Proceeding similarly for the input weights UX for each of X ∈ {u, r, z} (dropping the subscript X for73

simplicity):74

dL
dujx

=
d

dujx


N∑

k=0

∫ sk + 1

sk

ℓc(c(t), t) + λc · fc +
∑

X∈{u,r,z}

λaX
· faX

 dt

 . (S50)

the ξinput
X,jxk term can be shown to be:75

ξinput
X,jxk = −τsλ

+
aX,j

xx (S51)

with76

dL
dujx

=

N∑
k=0

ξinput
X,jxk . (S52)

D Details of experiments77

D.1 DVS128 Gesture recognition78

In this experiment we use Tonic library [10] to prepare the dataset. The recordings in the dataset are79

sliced by time without any overlap to produce samples of length 1.7 seconds. The data is denoised80

with a filter time of 10ms and normalised to [0;1] before being fed to the model. The positive and81

negative polarity events are represented by 2 separate channels. Our model consists of a preprocessing82

layer which performs downscaling and flattening transformations, followed by two RNN layers. Both83

RNN layers have the same number of hidden dimensions. Finally, a fully connected layer of size 1184

performs the classification. All the weights were initialised using Xavier uniform distribution, while85
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the biases were initialised using a uniform distribution. The unit thresholds were initialised using a86

normal distribution with mean 0 and standard deviation of
√
2, but was transformed to their absolute87

value after every update. We use cross-entropy loss and Adam optimizer with default parameters88

(0.001 learning rate, β1 = 0.9, β2 = 0.999). The learning rate is scaled by 80% every 100 epochs.89

We use additional loss to regularize the output and increase sparsity of the network. The applied90

regularization losses are shown in Eq. (S54). Lreg is applied indirectly to the active outputs and Lact91

is applied on the auxiliary internal state c⟨t⟩i , the threshold parameter ϑi is detached from the graph in92

the second equation so the loss only affects the internal state. We set the regularization weights wreg93

and wv to 0.01 and 0.05 respectively.94

Fig. S3(a) shows comparison of training curves for LSTM, GRU and EGRU, mean activity of95

the EGRU network is also shown, the network achieved 80%+ sparsity without significant drop in96

accuracy. The activities of LSTM and GRU are not shown in Fig S3(a) since they are always 100%.97

In our experiments we calculate sparsity of these networks as average number of activations close to98

zero with an absolute tolerance of 1× 10−8, however in Fig. S3(b) we show that even if we increase99

the absolute tolerance to 1× 10−3, the sparsity of these networks is still an order of magnitude lower100

than EGRU.101

Hyperparameters were chosen by conducting a grid search over the number of units (32 - 2048),102

number of layers (1 - 4) and values of regularization weights. Learning rate and optimizer was chosen103

from initial experiments. Since batch size did not have any significant effect on training, we chose a104

batch size that maximizes GPU utilization.105

Lreg = wreg

(
1

N

1

nunits

N∑
n=1

nunits∑
1

H
(
c
⟨t⟩
i − ϑi

)
− 0.05

)
(S53)

Lact = wv

(
1

N

1

nunits

N∑
n=1

nunits∑
i=1

ci − (ϑi − 0.05)

)
(S54)

where N spans mini-batch.106

D.1.1 Ablation study107

We performed ablation studies, showing the performance of the EGRU models with variation of the108

gating mechanism. All models in this study are a variation of our EGRU(1024) model. The results109

of these experiments are presented in Table S4. By using a scalar threshold ϑ where all units share110

a same threshold parameter we find that the accuracy drops by 2% but the the activity sparsity is111

increased to 90%.112

Next, we evaluate a model with ‘hard reset’ where the auxiliary internal state c
⟨t⟩
i is set to 0 every113

time an event is emitted by an unit. We observe a drop in accuracy possibly because the hard reset114

loses information when the internal state has gone above threshold at at any particular simulation115

time step, which may happen due to the limitations on precision in discrete time simulations with a116

fixed time grid. This drop in performance might be significant for applications which require high117

temporal resolution, which necessitates the term − y
⟨t−1⟩
i in Eq. (2). Model is also evaluated with118

‘no reset’ where the term − y
⟨t−1⟩
i is removed from Eq. (2) which results in slightly lower accuracy119

and sparsity.120

D.2 Sequential MNIST121

All the weights were initialised using Xavier uniform distribution, while the biases were initialised122

using a uniform distribution. The unit thresholds were initialised using a normal distribution with123

mean 0 and standard deviation of
√
2, but was transformed to be between 0 and 1 by passing through124

a standard sigmoid/logistic function after every update. In all the experiments, we used a batch size125

of 500, and trained the network with Adam with default parameters (0.001 learning rate, β1 = 0.9,126

β2 = 0.999) on a cross-entropy loss function. We used gradient clipping with a max gradient norm127

of 0.25. All models were trained for 200 epochs. The outputs of all the units were convolved with an128

exponential filter with time constant of 10 time units i.e. with e
−1
10 to calculate an output trace. The129

value of this trace at the last time step was used to predict the class through a softmax function.130
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input size network size delay iterations to convergence
(# bits) (# units) (time) (mean ± std)

2 2 2 15.0 ± 8.9
2 2 3 10.0 ± 5.3
2 5 2 16.0 ± 13.3
3 32 2 17 ± 11.0
3 32 5 28.3 ± 23.8

Table S1: Model performance of continuous time EGRU trained using hybrid continuous/discrete
adjoint method for different parameter values. Performance reported as number of iterations to reach
perfect bitwise accuracy (100%) on this task. Mean and standard deviation over 3 runs are reported.

delay GRU EGRU
(steps)

2 87.6 ± 1.7 240.3 ± 22.7
4 128.0 ± 11.4 451.0 ± 99.8
8 321.0 ± 76.9 841.6 ± 132.5
16 1034.6 ± 210.0 1755.0 ± 158.3

Table S2: Comparing memory capacity of the GRU and the discrete-time EGRU on the delay copy
task. The binary pattern used is 3 bits wide and 2 bits long, given to a network with 256 units in all
rows with a batch size of 1000. Performance reported as number of iterations to reach 98% bitwise
accuracy on this task. Mean and standard deviation over 3 runs are reported.

architecture para- effective accu- activity backward
(# units) meters MAC racy sparsity sparsity

(%) (%) (%) at epoch 100
(mean±std) (mean±std) (mean±std) (mean±std)

LSTM (867) 16.28M 20.97M 87.9±1.0 0 -
GRU (1024) 15.75M 15.73M 88.1±0.8 0 -
EGRU (512) 5.51M 4.31M±93.14K 86.0±1.2 76.1±5.9 45.7±0.7
EGRU (1024) 15.75M 10.71M±206.05K 87.7±2.1 79.8±3.3 54.4±1.2
EGRU (1024)* 110.12M 105.24M±441.30K 85.7±0.9 77.3±7.0 64.6±1.1

Table S3: Model performance over 5 runs for the DVS Gesture recognition task. Effective number
of MAC operations as described in section 3.5. * indicates network with 128× 128 input size, all
other networks have scaled input as explained in Section 4.2.

model accuracy (%) activity sparsity (%)

Full EGRU(1024) 90.2 82.5
without regularization 89.3 76.5
scalar ϑ 88.3 90.8
hard reset 87.2 90.0
no reset 88.9 80.7

Table S4: Performance of the EGRU(1024) model for the ablation study performed on the DVS
gesture task as described in Section D.1.1.
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Hyper-parameters were chosen by performing a search over batch sizes (50-1000), learning rates131

(10−3, 10−4), use of output trace, activity regularisation. The initialisation method of the thresholds132

were also tweaked – currently we use a normal initialisation with a sigmoid projection into the [0, 1]133

range, but we experimented with projecting it with an absolute value followed by clipping, which134

proved unstable.135

D.3 PTB Language modeling136

Our experimental setup largely follows [13]. In particular, we download and preprocess PennTree-137

bank with their published code 1. Words are projected to a 400-dimensional dense vector by a138

linear transformation, followed by three RNN layers. The first two RNN layers feature the same139

hidden dimension, while the hidden dimension of the last RNN layer always equals the word vector140

embedding dimension. As common in language modeling, we apply cross entropy loss and use141

weight tying [6, 14].142

Initialization of weights and thresholds is the same as for sequential MNIST (see D.2). We apply143

the regularization strategies of [13], where we found that (temporal) activity regularization only144

benefits LSTM and GRU. Backpropagation through time is conducted with a variable sequence145

length. With 95% probability, the sequence length is drawn from N (70, 5), and with 5% probability146

the sequence length is drawn from N (35, 5). We apply variational dropout [4] to the vocabulary147

with probability p = 0.1, to the word embedding vectors with probability p = 0.4 as well as to148

each layer output with probability pl. DropConnect [15] was applied to the hidden-to-hidden weight149

matricies with probability ph. While vocabulary dropout and embedding dropout where fixed for150

all models, we tuned layer-to-layer and hidden-to-hidden dropout rates for each model individually.151

We experimented with both Adam [7] and NT-AvSGD [13] optimization procedures. While Adam152

lead to competitive results for all models, only LSTM models converged using NT-AvSGD. When153

optimized with SGD based optimizers, both GRU and EGRU fell behind Adam optimized models.154

Thus, we optimized all models with Adam, and set momentum to 0 as reported in [12]. Gradient155

clipping was applied to all models, where the magnitude of clipped gradients only made very small156

differences in results. While gradient clipping of 0.25 was used for LSTM and GRU, we used 2.0157

for EGRUD. We trained our models for 1000 total epochs. GRU and LSTM achieved their best158

results with a reduce-on-plateau learning rate schedule, where we multiplied the learning rate with a159

factor of 0.2 if the loss did not improve for 100 epochs. EGRU worked best with a cosine-annealing160

learning rate schedule, where the first 500 epochs were trained at constant learning rate λ. Then a161

cosine decay from λ to 0.1 · λ was applied for the remaining 500 epochs. A partial grid parameter162

search was conducted exclusively on the PTB training and validation set. See table S6 for detailed163

hyperparameters of the best models.164

Our experiments exhibit both forward and backward sparsity also for the challenging task of language165

modeling. For this task, we don’t apply any explicit loss terms to improve sparsity. Figure S4 shows166

how sparsity evolves during the training process. It is evident that forward sparsity naturally evolves167

from EGRU, even without explicit sparsity regularization. The sparsity of the backward pass is168

governed by the width parameter ϵ of the pseudo-derivative. We experimented with different values169

of ϵ on PTB. As shown in figure S5 backward sparsity increases with smaller values of ϵ as expected.170

We also observe that ϵ acts as a regularizer. The larger EGRU models with 2000 and 2700 hidden171

units, tends to overfit on PTB if ϵ = 1. Figure S5 shows the dependence of performance measured in172

perplexity and backward sparsity on the pseudo-derivative support width ϵ.173

E Dataset licenses174

Penn Treebank [11] is subject to the Linguistic Data Consortium User Agreement for Non-Members2.175

LDC Not-For-Profit members, government members and nonmember licensees176

may use LDC data for noncommercial linguistic research and education only.177

For-profit organizations who are or were LDC members may conduct commercial178

technology development with LDC data received when the organization was an179

LDC for-profit member unless use of that data is otherwise restricted by a corpus-180

specific license agreement. Not-for-profit members, government members and181

nonmembers, including nonmember for-profit organizations, cannot use LDC data182

1https://github.com/salesforce/awd-lstm-lm
2https://www.ldc.upenn.edu/data-management/using/licensing
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to develop or test products for commercialization, nor can they use LDC data in183

any commercial product or for any commercial purpose.184

Following [13], we download Penn Treebank data from http://www.fit.vutbr.cz/~imikolov/185

rnnlm/simple-examples.tgz.186

The DVS128 Gesture Dataset [1] is released under the Creative Commons Attribution 4.0 license187

and can be retrieved from: https://research.ibm.com/interactive/dvsgesture/. We used188

Tonic library [10] for Pytorch to preprocess data and to apply transformations.189

The sequential MNIST task [8] is based on the MNIST dataset first introduced in [9], available from:190

http://yann.lecun.com/exdb/mnist/.191

F Hardware and software details192

Most of our experiments were run on NVIDIA A100 GPUs. Some initial hyper-parameter searches193

were conducted on NVIDIA V100 and Quadro RTX 5000 GPUs. We used about 12,000 computa-194

tional hours in total for training and hyper-parameter searches. All models and experiments were195

implemented in PyTorch. For the continuous time EGRU model, we also used the torchdiffeq [2]196

library.197

The machines used for the DVS128 gesture recognition task and for the PTB language modeling task198

feature 8x NVIDIA A100-SXM4 (40GB) GPUs, 2x AMD EPYC CPUs 7352 with 24 cores each,199

and 1TB RAM on each compute node. For each run, we only use a single GPU, and a fraction of the200

cores and memory available on the node to run multiple experiments in parallel. The nodes operate201

Red Hat Enterprise Linux Server (release 7.9).202
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architecture parameters effective test activity backwards
(# units) MAC accuracy sparsity sparsity (%) at

(%) (%) epochs 20/50/100
(mean±std) (mean±std) (mean±std) (mean±std)

GRU (512) 791K 795K 98.6±0.2 - -
GRU (590) 1.049M 1.054M 98.7±0.1 - -
EGRU (512) 790K (147±7)K 87.2±3.0 82.1±0.9 22.2±2.8/24.9±0.7/

28.7± 1.1
EGRU (590) 1.048M (210±51)K 95.5±1.6 80.5±4.9 24.9±6.8 / 26.1±5.9 /

25.6±1.7

Table S5: Model performance over 4 runs for sequential MNIST task. Test scores are given as
percentage accuracy, where higher is better.

Model LSTM GRU EGRU EGRU EGRU
Hidden units 1150 1350 1350 2000 2700

Test ppl (best) 58.9 68.8 64.5 63.7 63.5
Val ppl (best) 61.0 71.2 67.4 66.5 66.4
Val ppl (mean±std) 61.2± 0.2 71.7± 0.2 67.6± 0.1 66.6± 0.2 66.7± 0.2
Forward sparsity 0% 0% (87.9± 0.1)% (90.43± 0.04)% (93.2± 0.1)%
Forward MACs 24.2M 24.2M 4.7M 6.6M 8.1M

Learning rate 0.003 0.001 0.003 0.003 0.003
Batch Size 40 80 80 80 80
Dropout ph 0.5 0.3 0.5 0.5 0.5
Dropout pl 0.4 0.3 0.3 0.4 0.4
Weight decay 1.2× 10−6 1× 10−5 1.2× 10−6 1.2× 10−6 1.2× 10−6

AR 2 0 0 0 0
TAR 1 0 0 0 0
Pseudo-derivative ϵ - - 0.8 0.8 0.6

Table S6: PTB language modeling: Best parameters for the trained models. Mean and uncertainty are
calculated from multiple runs with different random seeds. 10 runs for LSTM, GRU, and EGRU-2700,
5 runs for EGRU-1350, 3 runs for EGRU-2000. Activity regularization (AR) and temporal activity
regularization (TAR) [13] only reduced the accuracy of GRU and EGRU based models.
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Figure S1: Illustrate the event-based state dynamics for two EGRU units (i and j) (A) Forward
dynamics. Information only propagates from units that generate an event. (B) Backward dynamics.
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Figure S2: Illustration of the scaling properties of the EGRU on a 14× 14 sequential MNIST task (1
run per network size). As the size of the network increases, the network converges faster. Increasing
the network size 10x increases the speed of convergence 5x, while increasing the total amount of
computation per sample only 2x. The total amount of computation is adjusted for network size. The
smaller subsampled 14x14 sMNIST task was chosen here for reasons of computational limitations.
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Figure S3: (a) mean training curves over 5 runs for DVS gesture task. (b) activity sparsity of LSTM
and GRU for DVS gesture task over 1 run across various values of absolute tolerance to zero.
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Figure S4: EGRU with 2000 hidden units on the Penn Treebank language modeling task with
pseudo-derivative ϵ = 0.6 . (a) layer-wise forward sparsity (b) layer-wise backward sparsity
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Figure S5: Backward sparsity for EGRU with 2000 hidden units on the Penn Treebank language
modeling task with varying pseudo-derivative support ϵ.
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