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MOTIVATION
• Leveraging ML and wearables for precision medicine — Recent

breakthroughs in artificial intelligence have paved the way for pre-
cision medicine in unprecedented ways. The democratization and
accessibility of machine learning algorithms in standard comput-
ing libraries have enabled the usage of advanced analytics to an-
alyze large datasets that are challenging to analyze with conven-
tional methods like regression. In this study, random forest regres-
sion (Breiman; 2001) is implemented to machine learn nominal
max oxygen consumption rate, V̇O2,max from commercial wear-
able sensor data based on density functional theory simulations of
hemoglobin in oxygenated and deoxygenated states.

• Inferring pulse oximetry from first principles — Pulse oxime-
try is a standard physiological measure of oxygen saturation, and
is typically conducted by fingertip or earlobe tests. Reflective
pulse oximetry systems (Mendelson; 1983) have been developed
and miniaturized to be conducted using LEDs on wearable fitness
trackers, such as Fitbit, Apple Watch, WHOOP, Oura rings, and
other platforms. These systems measure oxygen variation as the
ratio of red to infrared ratios reflected off skin. Using density func-
tional theory, under the independent particle assumption, Fermi’s
golden rule is employed to calculate absorption coefficients (Tim-
rov; 2019) from which the absorbance ratio could be calculated
from first principle simulations. Life and material science could
be integrated from theory to industry with hemoglobin as an ex-
ample, where the methods could be extended to other biological
systems and signals from similar or other material properties from
the solution to the Schrödinger many-body wave equation, posed
as an Euler-Lagrange formulation of the electron density ground
state energy eigenvalue problem (Schwingenschlögl; 2004).

STATE-OF-THE-ART : RANDOM FOREST

ŷ(x) =
1

n

n∑
i=1

Ti(x) (1)

where ŷ(x) is the predicted value for the input x, n is the number
of trees in the forest, Ti(x) is the output prediction of the leaf node
reached by traversing tree i using decisions based on x, such that:

Ti(x) =


vi1 if x satisfies condition Ci1

...
vik if x satisfies condition Cik

(2)

where vij are leaf node outputs per i-th tree, Cij are input feature
conditions per node, k is the number of leaf nodes in tree i.

DESIGN OF FIRST PRINCIPLES INFERENCE
• Thm. 1: Ground state electron density uniqueness — The ground

state electron density, ρ0(r) = N
∫
|Ψ0(r, r2, . . . , rN )|2 dr2 . . . drN ,

uniquely determines Vext(r) up to an additive constant.
• Thm. 2: Energy functional variational principle — E[ρ0] =

minρE[ρ].

• Lead to Kohn-Sham equations by Euler-Lagrange formulation:(
− ℏ2

2m∇2 + Veff(r)
)
ψi(r) = ϵiψi(r) where ϵi is the Lagrange pa-

rameter approximation of the energy eigenvalue associated with
the state ψi, and Veff(r) is the effective potential given by:

Veff(r) = Vext(r) +

∫
ρ(r′)

|r− r′| dr
′ + Vxc(r) (3)

and Vxc(r) is the functional derivative of the exchange-correlation
energy Exc[ρ] with respect to the density, δExc

δρ . The ground state
electron density ρ0(r) is calculated by summing the square of the
absolute value of each occupied Kohn-Sham orbital, where N is
the number of electrons (or occupied states):

ρ0(r) =
N∑
i=1

|ψi(r)|2 (4)

Atomic positions, r, from structural relaxation yield inputs to cal-
culate the complex dielectric tensor, ϵ(ω), from which the absorp-
tion coefficient α(λ) is calculated and used to infer V̇ O2,max by
learning from a random forest trained on wearable sensor data

• Stages of running a marathon:

Time-series data for (top) weight loss and (bottom) distance for 5-6 years
throughout marathon running in March 2022 with preparation prior and
consistent running after.

• Oximetry and proprietary commercial V̇ O2,max algorithm data:

Time-series data for (left) reflective pulse oximetry and (right) max oxygen
consumption rate for 1.5 years while preparing for marathon in March 2022
for nominal conditions prior.

LEARNING ARCHITECTURE & HIERARCHY
• Architecture: Random forest regression model diagram

FIRST PRINCIPLES RESULTS

Summary of density functional theory results using the independent particle
assumption-based absorption coefficient from transition state probabilities
by Fermi’s golden rule based on the ground state electron density dielectric
tensor, ϵρ, where αx is the x−nanometer absorption coefficient and AX

AY
is

the X-Y-nanometer absorbance ratio.

Calculated property Hemoglobin (Hb) Oxyhemoglobin (HbO2)

α660nm[ 1
cm ] 6.3×103 4.8×103

α940nm] 1
cm ] 8.8×103 5.7×103

α660nm

α940nm
(A660nm

A940nm
) 0.71 0.84

• Absorption coefficient of blood from first-principles calculations
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Quantum mechanical (top) absorption coefficient for the active site of
human hemoglobin before (center-bottom left) and after binding oxygen
(center-bottom right) at planar and side-views of the heme group.

FIRST PRINCIPLES INFERENCES

Summary of machine learning results. Asterisks refers to R2 for standard
and reflective pulse oximetry correlation. Prediction-powered inference er-
rors are calculated by the same models trained on the measurement errors.

Density functional theory prediction-powered inference Hb, A660/A940=0.71 HbO2, A660/A940=0.84 R2 value

SpO2/SaO2 % 96.44 93.15 0.96*

Linear V̇O2 max 69.07 ± 8.63 47.35 ± 12.51 0.11

Random forest V̇O2 max 60.43 ± 3.00 58.97 ± 3.00 0.83

Linear filtered V̇O2 max 69.77 ± 8.63 46.65 ± 10.50 0.19

Random forest filtered V̇O2 max 60.71 ± 0.82 59.59 ± 2.28 0.84

• Learning V̇ O2,max from α660nm

α940nm
(A660nm

A940nm
) into trained model

Machine learning max oxygen consumption from wearable reflective pulse
oximetry with density functional theory, comparing (top) linear regression
with (bottom) random forest regression to train model on wearable data for
1.5 years.

SUMMARY AND FUTURE WORK
• This work shows that first principles calculations powered

by wearable sensor data could enable AI-powered precision
medicine.

• Hemoglobin is demonstrated as an example in this study and
its compatibility with first principles calculation-based inferences
through wearable sensor measurement models trained on physio-
logical quantities.

• Future work: extend the approach to other biological systems and
signals, such as glucose and insulin measurements.
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