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A MODALITY ATTENTION AGGREGATION

From the VLMs, we extract an attention matrix At ∈ Rt×t for each output token t, where the matrix size grows
with the number of predicted tokens. Each row represents a token as a query, and each column corresponds to a
token as a key. Therefore, each row r contains the attention coefficients of each token i with respect to the token
r: A[r, i] = αr,i = q⊤r ki. For each token t, we focus only on the attention of preceding tokens, represented by
v⊤t = A[−1] ∈ R1·t. vt is normalized so that the attention coefficients of all preceding tokens to t sum to 1.

This process is repeated for all output tokens t ∈ [1, T ] where T is the output length, yielding all normalized attention
vectors vt, t ∈ [1, T ]. These are averaged to produce the final attention vector for the VLM output—VA ∈ RN0

for answers and VR ∈ RN0+TA+N1 for reasoning. Here, N0 is the size of the input prompt including image tokens,
question, and eventually context, TA is the answer length, and N1 is the size of the second prompt asking for an
explanation.

To calculate the attention given to different modalities, we sum the attention coefficients based on the token positions
in the averaged attention vector VA or VR, resulting in normalized relevance scores: RI for the image, RQ for the
question, and RC for the context, which sum to 1, i.e., RI + RQ + RC = 1. This is done by adding hooks into the
LLaVA architecture to capture the start and end positions of the question, image, and context tokens. Due to dynamic
high resolution, the number of image tokens can vary significantly even with minimal image perturbations.

Algorithm 1 Attention Attribution Computation

1: Input: Attention matrix At ∈ Rt×t for each token t, Token positions for Image (I), Question (Q), and Context
(C), Length of output T

2: Output: Normalized relevance scores RI , RQ, RC

3: for t ∈ [1, T ] do
4: Extract attention for preceding tokens: v⊤t = A[−1] ∈ R1×t

5: Normalize attention coefficients: vt ← vt∑t
i=1 vt[i]

6: end for
7: Compute average attention vector: V = 1

T

∑T
t=1 v

T
t

8: Compute total attention for each modality:
9: RI ←

∑
i∈I V [i]

10: RQ ←
∑

i∈Q V [i]

11: RC ←
∑

i∈C V [i]
12: Normalize relevance scores:
13: RI ← RI

RI+RQ+RC

14: RQ ← RQ

RI+RQ+RC

15: RC ← RC

RI+RQ+RC

16: Return: RI , RQ, RC

B HYPERPARAMETER AND EVALUATION PROMPTS

In reasoning quality evaluation, GPT-4o is prompted to rate the reasoning from 0 to 10, using the prompt: “Rate the
explanation’s quality from 0 to 10. Give 10 for detailed, well-argued, and correct explanations. Give 0 for a poorly
reasoned, wrong, or single-word explanation based on the question and image. Don’t rate too harshly, use the full scale
and output only the final score”. During uncertainty computation, the number of the sampled outputs and the sampling
temperature T are set to 10 and 0.9 respectively. We use conditional probabilistic sampling. See Appendix A for the
attention attribution implementation.

In the prompt engineering ablation study in subsection 5.5 we use the prompt “Answer the question only with Yes or
No. Answer based on the context provided in the text.” for the answer, followed by “Explain your answer based on the
context provided in the text:” for reasoning.

C SI-VQA DATASET BASELINE

In the baseline configuration of the SI-VQA Dataset, the image tokens carry no meaningful information. We exper-
iment with several methods to remove image data: (1) replacing the image with black pixels, (2) adding random
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Gaussian noise centered on (0,0,0), or (3) omitting the image tokens entirely. In (1) and (2), the image size is by de-
fault set to 256 × 256 pixels. Across our experiments, we observed similar results when using black pixels or noise.
However, when no image input is provided, the model produces incoherent predictions and reasoning, often generat-
ing “\n”. Scenario (3) is out-of-distribution for any VLMs, leading to nonsensical outputs, as the model was trained
exclusively in a multimodal context and has never encountered unimodal (text-only) input.

(1) Baseline configuration with black image

Question: Is there a yellow and black frog in this school book?
Ground truth answer: Yes

Answer: No
Reasoning: The image you provided is completely black, which does not allow for the identification of any objects or creatures, including a yellow and black
frog.

(2) Baseline configuration with noisy image

Question: Is there a yellow and black frog in this school book?
Ground truth answer: Yes

Answer: No
Reasoning: The image is a close-up of a colorful, pixelated background. There is no frog visible in the image.

(3) Baseline configuration with no image token

Question: Is there a yellow and black frog in this school book?
Ground truth answer: Yes

Answer:是이이 \n \n Is a \n\n
Reasoning: 10
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D SI-VQA BENCHMARK EXAMPLES

Each instance of the SI-VQA Dataset was double-checked and validated by three individuals.

Boiling.jpg

Question: Is the water hot?
Ground truth answer: Yes
LLaVA 7B: No. The water is not hot.
LLaVA-Next 7B: No. The image you provided is too dark and lacks any discernible features to determine if the water is hot or not.

Question: Is the water hot?
LLaVA 7B: No. The water in the pitcher is cold.
LLaVA-Next 7B: No. The image shows a pitcher of water with ice cubes, which suggests that the water is cold.

Question: Is the water hot?
Complementary Context: Kettles, essential for boiling water, are commonly used for making tea, coffee, or instant meals, and come in various
designs, including traditional stove top and modern electric models.
LLaVA 7B: Yes. The water in the kettle is hot.
LLaVA-Next 7B: No. The image shows a water kettle with water inside it, but it is not hot. The water appears to be at room temperature or
slightly cooler, as indicated by the condensation on the outside of the kettle.

Question: Is the water hot?
Contradictory Context: Glass pitchers are often used to serve ice-cold beer, making them a popular choice in bars and restaurants for sharing
drinks in a casual, communal setting.
LLaVA 7B: No. The water in the pitcher is not hot. It is ice-cold, which is a common feature of glass pitchers used for serving beer.
LLaVA-Next 7B: No. The image shows a glass pitcher filled with ice and water, which is not hot. The ice is used to keep the water cold, and
the pitcher is designed to serve multiple people at once. This type of pitcher is commonly used for serving cold beverages, such as water or iced tea, in a
social setting.

Question: Is the water hot?
LLaVA 7B: No. Boiling water is water that is heated to the point of boiling, which is the temperature at which water vaporizes. In this image,
the water in the kettle is not hot, as it is described as "boiling water" and "cold water."
LLaVA-Next 7B: Yes. The image shows a water pitcher with the label "Boiling water" on it, which suggests that the water inside is being
heated to boiling point. The presence of steam and the fact that the water is being heated in a pitcher designed for boiling water further supports
the idea that the water is hot.

Question: Is the water hot?
Complementary Context: Kettles, essential for boiling water, are commonly used for making tea, coffee, or instant meals, and come in various
designs, including traditional stove top and modern electric models.
LLaVA 7B: Yes. The water in the kettle is hot, as indicated by the steam rising from it.
LLaVA-Next 7B: No. The image shows a water kettle with a label that reads "Boiling water." However, the water in the kettle appears to be
cold, as indicated by the condensation on the outside of the kettle. This suggests that the water has not yet reached its boiling point.

Question: Is the water hot?
Contradictory Context: Glass pitchers are often used to serve ice-cold beer, making them a popular choice in bars and restaurants for sharing
drinks in a casual, communal setting.
LLaVA 7B: No. The water in the pitcher is not hot. It is ice-cold, which is a common feature of glass pitchers used for serving beer.
LLaVA-Next 7B: No. The image shows a water pitcher with the label "Boiling water" on it, but the water inside appears to be cold. The context
of the image, which includes a wooden table and a few cookies, suggests that the water is being used for a hot beverage, such as tea or coffee. However, the
water itself is not boiling at the moment the image was taken.
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Painting_asia.jpg

Question: Is the painting of european descent?
Ground truth answer: No
LLaVA 7B: No. The painting is of African descent.
LLaVA-Next 7B: No. The image you provided is too dark and lacks detail to determine if it is a painting of European descent. The image is not clear enough
to make an accurate assessment.

Question: Is the painting of european descent?
LLaVA 7B: No. The painting is of Asian descent.
LLaVA-Next 7B: No. The painting is not of European descent. It appears to be a traditional East Asian artwork, likely depicting a scene from
a historical period in China or Japan, given the style of clothing and the architectural elements.

Question: Is the painting of european descent?
Complementary Context: Scholars and students engaged in study and teaching within an ancient Chinese educational setting. The intricate
details of the architecture and the serene outdoor environment emphasize the importance of learning and intellectual pursuit in classical Chinese
culture.
LLaVA 7B: Yes. The painting is of an ancient Chinese educational setting, featuring scholars and students engaged in study and teaching. The
intricate details of the architecture and the serene outdoor environment emphasize the importance of learning and intellectual pursuit in classical Chinese
culture.
LLaVA-Next 7B: No. The painting is not of European descent. It depicts a traditional Chinese scene, with scholars and students engaged in study and
teaching within an ancient Chinese educational setting. The architecture and the serene outdoor environment are characteristic of Chinese art and culture, and
the painting is not of European origin.

Question: Is the painting of european descent?
Contradictory Context: In an old German schoolhouse, students diligently engage in their lessons, surrounded by the timeless charm of
wooden desks, slate chalkboards, and the warm glow of afternoon sunlight filtering through the tall, arched windows.
LLaVA 7B: Yes. Yes.
LLaVA-Next 7B: Yes. The painting depicts a scene that is characteristic of traditional European schools, with students seated at wooden
desks, using slate chalkboards, and the presence of tall, arched windows suggests a European architectural style. The clothing of the students and the overall
composition of the painting are consistent with European art and culture.

Question: Is the painting of european descent?
LLaVA 7B: No. The painting is of Chinese descent.
LLaVA-Next 7B: No. The painting is not of European descent. It depicts a traditional Chinese scene, with Chinese architecture, clothing, and
people engaged in activities such as writing and reading. The style of the painting, including the clothing and the architectural elements, is
indicative of a Chinese setting, which suggests that the painting is not of European descent.

Question: Is the painting of european descent?
Complementary Context: Scholars and students engaged in study and teaching within an ancient Chinese educational setting. The intricate
details of the architecture and the serene outdoor environment emphasize the importance of learning and intellectual pursuit in classical Chinese
culture.
LLaVA 7B: No. The painting is of Chinese descent, depicting a scene of scholars and students engaged in study and teaching within an ancient
Chinese educational setting. The intricate details of the architecture and the serene outdoor environment emphasize the importance of learning and intellectual
pursuit in classical Chinese culture.
LLaVA-Next 7B: No. The painting is not of European descent. It depicts a traditional Chinese scene, with Chinese architecture, clothing, and hairstyles,
which are characteristic of East Asian art. The style of the painting, including the brushwork and the subject matter, are indicative of Chinese art and culture.

Question: Is the painting of european descent?
Contradictory Context: In an old German schoolhouse, students diligently engage in their lessons, surrounded by the timeless charm of
wooden desks, slate chalkboards, and the warm glow of afternoon sunlight filtering through the tall, arched windows.
LLaVA 7B: No. The painting is of Chinese descent, depicting a scene from a Chinese school.
LLaVA-Next 7B: Yes. The painting depicts a traditional European schoolhouse, with students seated at wooden desks and chalkboards, and
the architecture and style of the building suggest a European influence. The presence of tall, arched windows and the overall composition of the scene are
characteristic of European art and architecture.
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E ISI TOOL

The interactive tool can be used to analyze VLMs with the provided SI-VQA Dataset and follows a main pipeline that
consists of three main steps: 1) Data & Model Selection 2) Interventions on Image, Context, and Question, and 3)
Evaluation. Figure 7 gives an overview of this pipeline.

E.1 GENERAL INFORMATION

Users The application is catered toward researchers, developers, and other users with a basic understanding of
VLMs, who are interested in interpreting model behavior through semantic interventions on VLMs. By enabling
fast-paced iterations in a human-in-the-loop scenario, it allows the building of intuitions before scaling experiments in
large-scale projects.

System Requirements ISI for VLMs is an interactive tool embedded in a locally hosted web application requiring a
computer with sufficient VRAM for VLM inference. The minimum required VRAM for a 4bit-quantized LLAVA 7B
model is around 8GB while LLaVA-Vicuna and LLaVA-Next require 12GB. The computation of the semantic entropy
with the DeBERTa model requires an additional 7GB. The exact amount of VRAM depends on the amount of input
tokens.

Interventions

Data & VLM Selection

Download 

ReportReiterating Interventions

Interactive Semantic Interventions Pipeline

Image EvaluationContext & Question

Generate Output

Select Observation:

Select VLM:
- LLaVA 7B

- LLaVA-Vicuna 7B

- LLaVA-Next 7B

- Other VLMs

4bit  
Quantization?

Hyperparameter in Italic

Observation
Natural Image Annotated Image

Context: Complementary and Contradictory 
Question with Ground Truth Answer based on Image

includes:bird_antilope.jpg

2. Perturbations 
- Box Overlay (Select color) 
- Text (Text size) 
- Arrows (Arrow size) 
- Gaussian Noise (Sigma)

1. Select Image Preset 
- Natural Image 
- Annotated Image 
- Random Image

Intervene on the image through annotations, 
perturbations or signal degradation.

2. Define or rewrite Context

1. Select Context Preset 
- Complementary Context 
- Contradictory Context 
- Random Context

Intervene on the text through switching the 
context or rewriting context and question 

3. Define or rewrite Question

1. Generated Output

Evaluate output based on semantic uncertainty 
and attention to modalities.

2. Semantic Uncertainty (Num. samples, Temp.) 
- Semantic Entropy 
- Number of Semantic Clusters 
- Answers per Cluster Table

3. Attention Attribution  (Normalize Attention) 
- Attention to Question 
- Attention to Image 
- Attention to Context

Select observation from our dataset or upload 
own image, and choose VLM for evaluation.

Comes as part of our provided dataset

Extendible with own data and HuggingFace      models

Random Image

2

1

1

3

2 1

2 3

Upload own Image

Figure 7: Illustration of the evaluation pipeline used in the ISI for VLMs to enable interactive exploration of VLM
behavior under various scenarios. It consists of three main stages: 1) Data & VLM Selection: Users choose an observa-
tion either from the provided SI-VQA Dataset or upload their own, and select a VLM for evaluation. 2) Interventions
on Image, Context & Question: The selected image can be altered through presets or perturbations, and the context or
question can be edited or also switched with presets. 3) Evaluation: The output is analyzed for semantic uncertainty
and attention attribution, allowing for iterative refinement of interventions.

E.2 INTERACTIVE SEMANTIC INTERVENTION PIPELINE

Data & Model Selection: As the first step, a user either chooses an observation from the SI-VQA Dataset or uploads
their custom image. Each observation from the dataset includes an image, corresponding context, and a question with
a ground truth answer, as well as the presets for the annotated images and contradictory and complementary context.
The corresponding image, context, and question are displayed. In the next step, the user selects a VLM (LLaVA,
LLaVA-Vicuna, LLaVA-Next) and the number of parameters (7B, 11B, 32B) in two separate drop-down menus. 4-bit
quantization can be enabled to reduce the computational load and VRAM requirements.

Interventions on the Image: For interventions on the image, ISI allows the user two main functionalities. First, on
the proposed SI-VQA Dataset the user can select for each observation three different image presets (natural image
without modifications, annotated image with hand-crafted annotations, and random natural image from the dataset)
by selecting the respective buttons. Second, ISI allows perturbing the image directly in the tool by overlaying boxes
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with selectable colors, inserting and modifying text, adding directional arrows, and introducing Gaussian noise with
adjustable noise values.

Interventions on Context & Question: To facilitate the user’s ability to observe how various contexts and questions
affect the model’s performance two functionalities are supported. In the proposed SI-VQA Dataset, users can choose
from three distinct context presets—complementary, contradictory, or random—by selecting the respective button,
automatically updating the content in the text input fields. Additionally, the user can manually edit the context and
question in these fields.

Evaluation The evaluation is designed to enable quantitative analysis of how interventions on image and text impact
the behavior of the selected VLM. At the top, the current input is visualized to always relate the evaluation results to the
correct input. Below, the generated output, semantic uncertainty, and attention attribution are shown. For computational
reasons, each evaluation can be started separately.

The semantic uncertainty tab allows users to evaluate model uncertainty by clustering sampled outputs according to
their semantic meaning. This feature highlights the range of semantic differences in the outputs and calculates semantic
entropy, providing a comprehensive view of the model’s overall uncertainty. It displays key metrics, such as semantic
entropy and the number of semantic clusters, which are influenced by adaptable hyperparameters like the number of
samples and the sampling temperature. For deeper exploration, the "Answers per Cluster" dropdown provides a table
displaying all sampled answers along with their assigned semantic clusters. This table enables users to examine the full
range of generated outputs and understand the semantic similarities within each cluster. To evaluate the significance
of each of the three inputs during generation, the attention attribution tab displays the absolute or relative attention
assigned to the question, context, and image input tokens.

To provide a contextual understanding of the current observation, the tool additionally displays average values for
attention attribution and semantic entropy across the entire SI-VQA Dataset based on each VLM architecture. These
averages are shown when hovering over the relevant values.

Export The results of one iteration can be exported as a PDF to facilitate the systematic collection of example cases
for further analysis and to support the transition from initial qualitative insights to small-scale quantitative evaluation.
After the analysis, users can download a comprehensive report that includes the image, context, question, detailed
model setup, hyperparameters, and all computed evaluation metrics.
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F 4BIT QUANTIZATION

a.   Difference 4bit/32bit Quantization VQ Answering Accuracy

c.   Difference 4bit/32bit Quantization Sem. Entropy Reasoning

Configuration Configuration

Configuration

d.   Difference 4bit/32bit Quantization Attention Answering e.   Difference 4bit/32bit Quantization Attention Reasoning

b.   Difference 4bit/32bit Quantization Sem. Entropy Answering

Figure 8: Difference in performance between the 32Bit and 4Bit quantized versions of the models for a. VQA accuracy,
b. VQA semantic entropy, c. reasoning semantic entropy, d. VQA attention attribution, and e. reasoning attention
attribution.

To quantify the effect of different model sizes, we additionally perform all experiments also with the same models but
4Bit quantized, as there are no, e.g., 3B parameter LLaVA versions. Figure 8 shows the difference in results for all five
experiments between the 32Bit and 4Bit models. To our surprise, the difference in accuracy is not that large. Results
for the question-only configuration are not meaningful as both models randomly guess. However, in terms of model
uncertainty, the 32Bit model usually scores better. Mean differences in attention distribution are almost neglectable
as they are at a maximum of 0.01 percentage points. The results show that for simple VQA, quantized models can
achieve almost similar accuracy than their significantly larger 32Bit counterparts.

G VALIDATING SEMANTIC ENTROPY

Any assumptions made on the uncertainty of the models should be reflected in the AUGRC. We observe in Figure 4
that in the case of contradicting image and context (Q+I+C−) the AUGRC goes down for all models, reducing the
overconfidence in wrong classified samples, which is correctly captured by the semantic entropy. As the model makes
more mistakes in configuration Q+I+C−, the set size of wrong classified samples is larger. In the case of Q+I or
Q+I+C+ the AUGRC rises again as there is no confidence reducing context. Additionally, the accuracy is higher in the
case of Q+I+C+, reducing the set size of wrong classified samples. This empirical evaluation shows we can use the
AUGRC to quantify and evaluate the performance of semantic entropy for model failure detection. To our knowledge,
this is the first time semantic entropy has been evaluated for failure detection.
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H ADDITIONAL RESULTS

H.1 VQA ACCURACY AND QUALITY

a.   VQA Confusion Matricies

Figure 9: Confusion matrices and accuracy values for all model architectures and configurations.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

a.   VQA True Positive vs. True Negative Rate (higher is better) b.   VQ Reasoning Quality Score Distribution

Figure 10: True Negative Rate versus the True Positive Rate in the VQA task of all model architectures and configu-
rations. Values below 0.5 on one axis indicate worse than random guessing performance.

a.   VQA True Positive vs. True Negative Rate (higher is better) b.   VQ Reasoning Quality Score Distribution

Figure 11: Distribution of reasoning quality scores by GPT-4o for all LLaVA architectures. We observe lower values
for the standard LLaVA and a high bias towards the quality score of “8” for all models.
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H.2 SEMANTIC ENTROPY

a.   Semantic Entropy for VQ Answering (lower is better) b.   Semantic Entropy for VQ Reasoning (lower is better)

Figure 12: Distribution of semantic entropy for VQ answering and reasoning task for all model architectures and
configurations.
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H.3 ATTENTION

a.   Attention to different Inputs for VQ Answering

b.   Attention to different Inputs for VQ Reasoning

Figure 13: Attention attribution to the question (Q), image (I), and context (C+/−) by the three LLaVA models and
PaliGemma and the seven modality configurations, during the answering (a.) and the reasoning (b.) in the VQA tasks.
Variance across samples is greater for the reasoning than the answering process.

H.4 PEARSON CORRELATION BETWEEN ATTENTION AND ACCURACY

Table 1: The Pearson correlation coefficients (PCC) between the attention to the different inputs and the accuracy
per sample. Correlation is between -0.07 and 0.9 for all inputs and model architectures and can fluctuate between
architectures.

Model Architecture: LLAVA 7B LLAVA-Vicuna 7B LLAVA-NeXT 7B PaliGemma 3B

Question -0.034 -0.034 -0.074 -0.044

Image 0.087 0.002 -0.005 -0.014

Context -0.036 0.016 0.045 0.026
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I REBALANCING MODALITY IMPORTANCE FOR PALIGEMMA 3B

a.   Accuracy for VQ Answering (lhigher is better) b.   Semantic Entropy for VQ Answering 

      (lower is better)

c.   Attention between Inputs for VQ Answering

Figure 14: Two strategies to adjust modality importance: incorporating the image’s textual description into the input
and modifying the prompt to shift more attention toward the context. The impact of these changes is evaluated based
on a. answer accuracy, b. model uncertainty, and c. attention attribution. The hereby experiments were conducted with
the PaliGemma model.
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