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A Additional Results

In this section, we present additional experiments that further validate the effectiveness and efficiency of
the proposed VAPO framework. We first conduct an ablation study to evaluate the contribution of key loss
components and architectural choices, demonstrating their impact on both FID performance and convergence
to the Boltzmann equilibrium. Then, we compare the computational efficiency of VAPO against recent EBM
baselines, highlighting its advantages in training and inference time while maintaining competitive generative
performance across model variants.

A.1 Ablation Study

To isolate and quantify the impact of individual components in the proposed VAPO loss function. Table 3
presents an ablation study conducted on a smaller (VAPO-Base) model and a reduced training batch size
to accelerate training. Notably, the FID scores increase without (B) the covariance loss and (C) the cosine
distance gradient alignment, indicating that these loss components are essential to the VAPO training. We
note that since (B) learns only the normalized gradient and not the energy magnitude, it requires careful
tuning of denormalization during ODE sampling.

Subsequently, (D) replaces the cosine distance with inner product, and (E) replaces the entire VAPO loss
with the flow matching loss of Lipman et al. (2023). Although these loss configurations yield better FID
performances, the sampling results and norm plots in Figures 19 - 22 show that neither of these configurations
achieves Boltzmann equilibrium under SGLD sampling. Removing the cosine distance in (D) eliminates the
scale invariance of cosine similarity, leading to large variations in gradient magnitudes that disrupt the
stability of energy required for steady-state convergence. Similarly, the flow matching loss in (E) does not
inherently enforce Boltzmann stationarity. Applying the same weighting w(t) to the flow matching loss
would halt the learning of the gradient field cutoff time tmax.

For these reasons, we do not adopt the loss configurations (D) and (E) in our loss framework, despite the
lower FID scores. In contrast, the variational nature of the covariance loss allows it to enforce that the energy
values Φ(x, t) remain stationary near t = 1 without impeding learning. This covariance loss is fundamental
as it corresponds to the Fokker-Planck dynamics underlying a probability path. More importantly, its
adaptability to weighting ensures a proper establishment of the stationary Boltzmann distribution. Finally,
by (F) incorporating a larger VAPO-Base model and (G) increasing the training batch size, we obtain
improved FID scores with (A) the proposed VAPO loss function.

A.2 Computational Efficiency

Table 4 compares the training-time computational efficiency of VAPO against the recent EBM baselines.
Here, we included an additional smaller model (VAPO-Base) with fewer parameters but a higher FID score.
The training time and GPU memory footprint are measured on a single A100 GPU of 80G memory. Italicized
values represent estimates for the VAEBM model based on experiments conducted using smaller batch size,
as the model cannot be trained on a single GPU using the prescribed batch sizes. Additionally, Table 5
compares the inference-time computational efficiency of VAPO against the recent EBM baselines. Overall,
these results suggest that our method provides improved computational efficiency in both training and

Table 3: Ablation study across different training losses and model configurations.
Loss Configuration Model Variant Parameter Count Batch Size FID ↓
(A) VAPO loss Base 38.3M 64 9.45
(B) VAPO loss without covariance Base 38.3M 64 13.1
(C) VAPO loss without cosine distance Base 38.3M 64 11.3
(D) cosine distance → inner product Base 38.3M 64 9.21
(E) VAPO loss → flow matching loss Base 38.3M 64 8.90
(F) VAPO loss Large 55.7M 64 7.66
(G) VAPO loss Large 55.7M 128 6.72
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Table 4: Comparison of training-time computational efficiency against EBM baselines.
Method Sampling/Perturbation Approach Parameter Memory Training Training FID ↓Count Usage (GB) Iterations Time (hrs)
VAEBM Xiao et al. (2021a) SGLD + Variational Inference + Replay Buffer 135.9M 129 25K 414 12.2
DRL (Gao et al. (2021)) SGLD + Diffusion 38.6M 56 240K 172 9.58
CLEL (Lee et al. (2022)) SGLD + Replay Buffer 30.7M 10 100K 133 8.61
CDRL (Zhu et al. (2024)) SGLD + Amortized Inference + Diffusion 34.8M 69 400K 144 4.31
VAPO-Base (Ours) Stationary-Enforced OT-FM 38.3M 35 300K 48 9.33
VAPO-Large (Ours) Stationary-Enforced OT-FM 55.7M 60 300K 112 6.72

Table 5: Comparison of inference-time computational efficiency against EBM baselines.
Method Numerical Approach Parameter Sampling Inference Training FID ↓Count Steps Time (s) Latency (ms)
VAEBM (Xiao et al. (2021a)) SGLD 135.1M 16 21.3 13.31 12.2
CoopFlow (Xie et al. (2022)) SGLD 45.9M 30 2.5 0.833 15.8
DRL (Gao et al. (2021)) SGLD 34.8M 180 23.9 1.328 9.58
CDRL (Zhu et al. (2024)) SGLD 38.6M 90 12.2 1.356 4.31
VAPO (Ours) ODE Solver 55.7M 74 14.6 1.968 6.72

inference compared to most strong EBM baselines while maintaining competitive FID scores, particularly
for the base model, which has a parameter count similar to the baselines. Nonetheless, there remains a gap
in FID performance relative to the state-of-the-art generative models.

B Additional Discussions

In this section, we discuss the strengths and limitations of our proposed VAPO framework in the broader
context of energy-based generative modeling. We first highlight the advantages of VAPO over conven-
tional diffusion and flow-based approaches, emphasizing its interpretability, theoretical alignment with Boltz-
mann energy, and improved sampling efficiency. Next, we examine the critical role of MCMC in achieving
Boltzmann-convergent training and sampling. While our method avoids the high cost of long-run MCMC by
leveraging structured probability paths, we show that such paths may fail to explore low-density regions in
high-dimensional spaces. This limitation can result in mode collapse and degraded sample quality when us-
ing deterministic ODE-based sampling. Finally, we analyze the remaining performance gap between VAPO
and state-of-the-art EBMs, attributing it to architectural simplicity, trade-offs between convergence and
generative sharpness, and the added complexity of modeling marginal rather than conditional distributions.

B.1 Advantages over Diffusion and Flow-based Generative Models

Our proposed energy-parameterized potential flow offers several advantages over conventional diffusion and
flow matching models, where vector fields are directly parameterized by neural networks rather than derived
as the gradients of scalar-valued energy functions. Specifically, these benefits include:

Interpretable Energy Landscape via Marginal Density Modeling By explicitly parameterizing the
vector field as the gradient of a scalar potential energy, our method provides a natural energy-based repre-
sentation of data dynamics. Such a formulation supports key energy-based modeling tasks, including explicit
(marginal) density estimation, composable generation, and OOD detection capabilities not inherently pro-
vided by conventional diffusion or flow matching approaches. As shown in Table 2, VAPO demonstrates
strong OOD detection performance due to our proposed energy-based formulation.

Theoretical Connection to Boltzmann Energy Our Boltzmann energy formulation in Proposition 5
rigorously connects the deterministic potential flow to a stationary Boltzmann distribution characterized by
the Boltzmann energy ΦB . This theoretical foundation firmly situates our approach within the energy-based
modeling framework, offering theoretical coherence that is lacking in existing diffusion and flow matching
models. As a result, it allows our approach to combine the efficiency of flow-based probability paths with
the interpretability and rigor of the Boltzmann energy representation. As shown in Figure 2, the potential
flow converges effectively to the stationary Boltzmann distribution.
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Optimality of Conservative Vector Field Our approach learns a purely gradient-based vector field ∇xΦ,
in contrast to diffusion and flow matching methods, which may incorporate divergence-free components, as
noted in Neklyudov et al. (2023). By enforcing a conservative energy function through Helmholtz decompo-
sition, our method reduces the dynamical cost associated with these divergence-free components, enabling
more efficient particle transport and improving training efficiency, as demonstrated by the comparative
benchmark in Table 4.

Efficient Deterministic ODE Sampling By eliminating the reliance on implicit MCMC sampling, our
approach reduces computational overhead and avoids common convergence issues encountered in traditional
EBMs. Furthermore, our potential flow formulation enables deterministic ODE-based sampling that is
generally more stable and efficient for generating high-quality samples with fewer steps than stochastic
sampling methods, as demonstrated by the comparative results in Table 5.

B.2 Incorporating Langevin Dynamics for Boltzmann-Convergent Sampling

Conventional EBM training often relies on convergent (long-run) MCMC sampling to thoroughly explore the
data space and assign appropriate energy values across the landscape, particularly in low-density regions.
This process helps smooth out sharp local minima and mitigates overfitting to high-density areas. In contrast,
our framework employs a conditional homotopy ρ(x | x̄, t) (perturbation kernel) to guide training samples
along a structured dynamic probability path. As noted by Nijkamp et al. (2019), such probability paths
resemble short-run MCMC behavior, which limits their capacity to explore low-density regions in high-
dimensional spaces. Consequently, many of these regions remain unseen during training and are thus poorly
modeled in the resulting energy landscape. ODE-based samplers further exacerbate this issue due to their
lack of stochasticity, making them more susceptible to becoming trapped in sharp local minima and suffering
from poor mixing. Compared to stochastic samplers like Stochastic Gradient Langevin Dynamics (SGLD),
deterministic sampling is inherently more sensitive to gaps in energy coverage. This limitation is not unique
to our approach - it is a general challenge for diffusion-based and flow-based models that rely on time-
dependent Gaussian perturbations to construct their training trajectories.

To achieve proper Boltzmann convergence and reduce mode collapse under deterministic ODE sampling, it
is necessary to improve data space coverage beyond what is provided by structured Gaussian perturbations.
This could be addressed by incorporating long-run MCMC during training, although doing so incurs the
substantial computational overhead characteristic of traditional EBMs. As a potential direction for future
work, we propose integrating long-run MCMC sampling within the reverse-diffusion conditional path, fol-
lowing techniques developed by Gao et al. (2021),Zhu et al. (2024), and Geng et al. (2024). However, these
methods primarily model the conditional distribution p(xt−1 | xt) rather than the marginal data distribution
p(x), which remains the focus of our current work. As a result, these conditional EBMs do not establish
a direct connection to the Boltzmann distribution p(x) ∝ eΦ(x), which forms the theoretical foundation of
marginal energy-based modeling. Adapting such conditional modeling techniques to the marginal EBM set-
ting would require substantial methodological developments. To offset the training cost of long-run MCMC,
future work may also explore hybrid strategies involving pre-sampled replay buffers or distillation from a
pre-trained convergent EBM.

B.3 Addressing Performance Gaps: Modeling Trade-offs and Theoretical Challenges

While our proposed VAPO framework achieves competitive FID performance, there remains a noticeable
gap compared to state-of-the-art EBMs. In the following discussion, we analyze the underlying factors
contributing to this discrepancy.

Difference in Model Architecture DDAEBM (Geng et al., 2024) utilizes a multi-model architecture
comprising three distinct components: (1) a generator model parameterized by the modified U-Net archi-
tecture of Xiao et al. (2021b), (2) an energy model parameterized by the NCSN++ architecture from Song
et al. (2021), and (3) a CNN-based encoder. This multi-component architecture enables specialized modules
to collaboratively refine each other’s behavior through adversarial training, thereby enhancing generative
performance. In contrast, our VAPO model adopts a simpler framework design, employing only a single
EBM parameterized by the U-Net architecture described in Dhariwal & Nichol (2021). Although this single-
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component architecture has a comparable parameter count to that of the NCSN++ used in DDAEBM, it may
lack the collaborative optimization and mutual refinement advantages that arise from multi-model training
setups. Consequently, our VAPO’s FID scores align more closely with those of single-energy or joint-energy
EBMs (Salimans & Ho, 2021; Gao et al., 2021; Lee et al., 2022). We hypothesize that incorporating additional
auxiliary model components with adversarial training strategies, as utilized by DDAEBM, could enhance the
representational capacity and further sharpen the energy landscape of our VAPO model, potentially leading
to improved FID performance. Investigating this hybrid approach, which balances computational efficiency
with adversarial training strategy, will be reserved for our future work.

Boltzmann stationarity and FID Trade-off In our previous ablation study, we observed a notable
trade-off between Boltzmann stationarity and FID performance. This observation aligns with insights from
Agoritsas et al. (2023) and Nijkamp et al. (2020), which show that non-convergent EBMs outperform con-
vergent EBMs trained with long-run MCMC sampling in image generation. Models such as DDAEBM fall
within this class of non-convergent EBMs. We hypothesize that this is due to the inherent tension between
accurate equilibrium modeling and sharp generative quality. Specifically, imposing strict Boltzmann con-
vergence tends to smooth out the energy landscape, inadvertently flattening local minima that correspond
to meaningful data modes. Although such smoothing enhances theoretical interpretability by faithfully ap-
proximating the true equilibrium of the Boltzmann distribution, it compromises the sharpness and detail of
generated samples, leading to higher FID scores. To mitigate this limitation, we propose exploring advanced
sampling techniques such as the Metropolis-Adjusted Langevin Algorithm (MALA) used in Pal et al. (2021a)
or other adaptive short-run samplers in future work. The gradient-informed proposal and acceptance steps of
MALA could potentially enhance local mode exploration efficiency without fully abandoning the Boltzmann
equilibrium.

Conditional vs Marginal EBMs Another critical contributing factor is the distinction between condi-
tional EBMs as modeled by DDAEBM, and marginal EBMs considered by VAPO. In particular, Geng et al.
(2024) articulate that modeling conditional distributions simplifies the learning task, as these conditional dis-
tributions are inherently less multi-modal compared to complex marginal distributions. DDAEBM leverages
this insight by decomposing the generation process into discrete diffusion steps, each focusing on simpler,
conditional distributions that are easier to model effectively. In contrast, our VAPO explicitly models a global
marginal distribution, thus inherently facing greater complexity due to increased modality. Consequently,
achieving comparable generative performance poses additional challenges. To address this limitation, future
work could explore hierarchical or multi-stage conditional modeling strategies to simplify explicit marginal
modeling. Nevertheless, conditional EBMs inherently lack a direct relationship to the marginal Boltzmann
distribution, which is fundamental to the theoretical underpinnings of our VAPO framework. Therefore,
adapting conditional modeling techniques to fully marginal EBMs would require substantial development.
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C Proofs and Derivations

C.1 Proof of Proposition 1

Proof. Based on the definitions of q(x) and p(x̄ | x), we can expand their logarithms (ignoring additive
constants) as follows:

log q(x) = − 1
2 ω2

1
2 ω2 ∥x∥2 + (terms independent of x) (26)

log p(x̄ | x) = − 1
2 ν2 ∥x̄ − x∥2 + (terms independent of x) (27)

Substituting these into (5), we obtain:

h(x | x̄, t) = −α(t)
2 ω2 ∥x∥2 − β(t)

2 ν2 ∥x̄ − x∥2 (28)

Expanding the squared term:

∥x̄ − x∥2 = ∥x∥2 − 2 xT x̄ + ∥x̄∥2 (29)

and substituting it back into h(x | x̄, t):

h(x | x̄, t) = −
(

α(t)
ω2 + β(t)

ν2

)
∥x∥2 + β(t)

ν2 xT x̄ (30)

Recognizing the quadratic form in terms of x, we identify that ρ(x | x̄, t) is a Gaussian density:

ρ(x | x̄, t) = N
(
x; µ(t)x̄, σ(t)2I

)
(31)

whose mean µ(t) and variance σ(t)2 can be obtained by completing the square.

Define

A := α(t)
ω2 + β(t)

ν2 , B := β(t)
ν2 (32)

Then the exponent becomes

h(x | x̄, t) = −1
2

[
A ∥x∥2 − 2B xT x̄

]
(33)

and we wish to express this quadratic form as follows

A ∥x − µ(t) x̄∥2 + (terms independent of x) (34)

Expanding A ∥x − µ(t) x̄∥2, we obtain

A ∥x − µ(t) x̄∥2 = A ∥x∥2 − 2A µ(t) xT x̄ + A µ(t)2 ∥x̄∥2 (35)

To match the linear term, the mean of the Gaussian is thus given by

µ(t) = B

A
= β(t)/ν2

α(t)/ω2 + β(t)/ν2 = sigmoid
(

log
(

β(t)
α(t)

ω2

ν2

))
(36)

where sigmoid(z) = 1
1+e−z denotes the standard logistic (sigmoid) function.

By comparing with the standard Gaussian exponent

− 1
2σ2 ∥x − µ(t) x̄∥2, (37)
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we deduce that the variance is given by

σ(t)2 = 1
A

= 1
α(t)/ω2 + β(t)/ν2 . (38)

Using the expression obtained for µ(t), the standard deviation can also be written as

σ(t) =

√
ν2

β(t) µ(t). (39)

C.2 Proof of Proposition 2

Proof. Differentiating the conditional homotopy ρ(x | x̄, t) in (4) with respect to t, we have:

∂ρ(x | x̄, t)
∂t

= 1∫
Ω eh(x|x̄,t) dx

∂[eh(x|x̄,t)]
∂t

− eh(x|x̄,t)

[
∫

Ω eh(x|x̄,t) dx]2
∂[
∫

Ω eh(x|x̄,t) dx]
∂t

= 1∫
Ω eh(x|x̄,t) dx

∂[eh(x|x̄,t)]
∂f

∂h(x | x̄, t)
∂t

− eh(x|x̄,t)

[
∫

Ω eh(x|x̄,t) dx]2

∫
Ω

∂[eh(x|x̄,t)]
∂f

∂h(x | x̄, t)
∂t

dx

= eh(x|x̄,t)∫
Ω eh(x|x̄,t) dx

∂h(x | x̄, t)
∂t

− eh(x|x̄,t)∫
Ω eh(x|x̄,t) dx

∫
Ω

eh(x|x̄,t)∫
Ω eh(x|x̄,t) dx

∂h(x | x̄, t)
∂t

dx

= ρ(x | x̄, t)
(

∂h(x | x̄, t)
∂t

−
∫

Ω
ρ(x | x̄, t) ∂h(x | x̄, t)

∂t
dx

)
= −1

2 ρ(x | x̄, t)
(

dα(t)
dt

xT x

ω2 + dβ(t)
dt

(x − x̄)T (x − x̄)
ν2

−
∫

Ω
ρ(x | x̄, t) dα(t)

dt

xT x

ω2 + dβ(t)
dt

(x − x̄)T (x − x̄)
ν2 dx

)

(40)

where we have applied the quotient rule in the first equation and the chain rule in the second equation.

Subsequently, define

γ(x, x̄, t) = dα(t)
dt

∥x∥2

ω2 + dβ(t)
dt

∥x − x̄∥2

ν2
(41)

and using the fact that:

∂ρ̄(x, t)
∂t

=
∂
∫

Ω ρ(x | x̄, t) pdata(x̄) dx̄

∂t
=
∫

Ω

∂ρ(x | x̄, t)
∂t

pdata(x̄) dx̄ (42)

we can substitute (40) into (42) to obtain:

∂ρ̄(x, t)
∂t

= −
∫

Ω
pdata(x̄) ρ(x | x̄, t)

(
γ(x, x̄, t) −

∫
Ω

ρ(x | x̄, t) γ(x, x̄, t) dx

)
dx̄ (43)

Given that both ρ(x | x̄, t) and pdata(x̄) are normalized (proper) density functions, writing (43) in terms of
expectations yields the PDE in (9).

C.3 Proof of Proposition 3

Here, we used the Einstein tensor notation interchangeably with the conventional notation for vector dot
product and matrix-vector multiplication in PDE. Also, we omit the time index t of Φ(x, t) in this section
for brevity.
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Proof. Applying forward Euler to the particle flow ODE (11) using step size ∆t, we obtain:

xt+∆t
= α(xt) = xt + ∆t u(xt) (44)

where

u(xt) = ∇xΦ(xt) (45)

where xt denotes the discretization of x(t). Hereafter, we abbreviate xt, α(xt), ν(xt) as x, α, ν, respectively.

Assuming that the α : Ω → Ω is a diffeomorphism (bijective function with differentiable inverse), the push-
forward operator α# : R → R defines the density transformation ρΦ(α, t + ∆t) := α#ρΦ(x, t). Associated
with this change of variable formula is the following density transformation:

ρΦ(α, t + ∆t

)
= 1

|Dxα|
ρΦ(x, t) (46)

where |Dxα| denotes the Jacobian determinant of α, where the the Jacobian is taken with respect to x.

From (9) and (43), we obtain:

∂ log ρ̄(x, t)
∂t

= 1
ρ̄(x, t)

∂ρ̄(x, t)
∂t

= − 1
ρ̄(x, t)

1
2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
(47)

Applying the forward Euler method to (47), we obtain:

log ρ̄(x, t + ∆t) ≥ log ρ̄(x, t) − ∆t

2
1

ρ̄(x, t) Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
(48)

Applying the change-of-variables formula (46) and then substituting (48) into the KL divergence DKL
[
ρ(x, t+

∆t)∥ρ̄(x, t + ∆t)
]

at time t + ∆t, we obtain:

DKL
[
ρΦ(x, t + ∆t)∥ρ̄(x, t + ∆t)

]
=
∫

Ω
ρΦ(x, t) log

(
ρΦ(α, t + ∆t

)
ρ̄
(
α, t + ∆t

) ) dx

=
∫

Ω
ρΦ(x, t)

(
log ρΦ(x, t) − log |Dxα| − log ρ̄

(
α, t
)

+ ∆t

2
1

ρ̄
(
α, t
) Epdata(x̄)

[
ρ(α | x̄, t

) (
γ
(
α, x̄, t

)
− γ̄
(
α, x̄, t

))]
+ C

)
dx

(49)

Consider minimizing the KL divergence (49) with respect to α as follows:

min
α

DKL(α) = min
α

∆t

2

∫
Ω

ρΦ(x, t) 1
ρ̄
(
α, t
) Epdata(x̄)

[
ρ
(
α | x̄, t

) (
γ
(
α, x̄, t

)
− γ̄
(
α, x̄, t

))]
dx︸ ︷︷ ︸

DKL
1 (α)

−
∫

Ω
ρΦ(x, t) log ρ̄(α, t) dx︸ ︷︷ ︸

DKL
2 (α)

−
∫

Ω
ρΦ(x, t) log |Dxα| dx︸ ︷︷ ︸

DKL
3 (α)

(50)

where we have neglected the constant terms that do not depend on α.

To solve the optimization (50), we consider the following optimality condition in the first variation of DKL:

I(α, ν) = d

dϵ
DKL

(
α + ϵ ν

) ∣∣∣∣
ϵ=0

= 0 (51)
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This condition must hold for all trial functions ν.

Subsequently, taking the variational derivative of the first functional DKL
1 in (50), we obtain:

I1(α, ν) = d

dϵ
DKL

1 (α + ϵν)
∣∣∣∣
ϵ=0

= ∆t

2

∫
Ω

ρΦ(x, t) d

dϵ

{
1

ρ̄(α + ϵν, t) Epdata(x̄)

[
ρ(α + ϵν | x̄, t)

(
γ(α + ϵν, x̄, t) − γ̄(α + ϵν, x̄, t)

)]} ∣∣∣∣∣
ϵ=0

dx

= ∆t

2

∫
Ω

ρΦ(x, t) ∂

∂α

{
1

ρ̄(α, t) Epdata(x̄)

[
ρ(α | x̄, t)

(
γ(α, x̄, t) − γ̄(α, x̄, t)

)]}
ν dx

= ∆t

2

∫
Ω

ρΦ(x, t) Dx

{
1

ρ̄(α, t) Epdata(x̄)

[
ρ(α | x̄, t)

(
γ(α, x̄, t) − γ̄(α, x̄, t)

)]}
(Dxα)−1 ν dx

(52)

where the last equation is due to chain rule ∂f
∂α = Dxf (Dxα)−1.

Applying the Taylor series expansion to the derivative ∂g
∂xi

(α) with respect to xi yields:

∂g(α)
∂xi

= ∂g(x + ∆tu)
∂xi

= ∂g(x)
∂xi

+ ∆t

∑
j

∂2g(x)
∂xi ∂xj

uj + O(∆2
t ) (53)

In addition, the inverse of Jacobian Dxα−1 can be expanded via the Neuman series to obtain:

Dxα−1 =
(

I + ∆tDxu
)−1 = I − ∆tDxu + O(∆2

t ) (54)

Using the Taylor series and Neuman series expansions in (53) and (54), we can write (52) in tensor notation,
as follows:

I1(α, ν) = ∆t

2

∫
Ω

ρΦ(x, t)
∑

i

∂

∂xi

{
1

ρ̄(x, t) Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]}
νi dx + O(∆2

t )

(55)

Taking the variational derivative of the second functional DKL
2 in (50) yields:

I2(α, ν) = d

dϵ
DKL

2 (α + ϵν)
∣∣∣∣
ϵ=0

=
∫

Ω
ρΦ(x, t) d

dϵ
log ρ̄(α + ϵν)

∣∣∣∣
ϵ=0

dx

=
∫

Ω
ρΦ(x, t) 1

ρ̄(α, t) ∇xρ̄(α, t) · ν dx =
∫

Ω
ρΦ(x, t) ∇x log ρ̄(α, t) · ν dx

(56)

where we have used the derivative identity d log g = 1
g dg to obtain the second equation.

Using the Taylor series expansion (53), we can write (56) in tensor notation, as follows:

I2(α, ν) = −
∫

Ω
ρΦ(x, t)

∑
i

(
∂ log ρ̄(x, t)

∂xi
− ∆t

∑
j

∂2 log ρ̄(x, t)
∂xi ∂xj

uj

)
νi dx + O(∆2

t )

= −
∫

Ω
ρΦ(x, t)

∑
i

(
∂ log ρ̄(x, t)

∂xi
− ∆t

∑
j

∂2 log ρ̄(x, t)
∂xi ∂xj

uj

)
νi dx + O(∆2

t )
(57)
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Similarly, taking the variational derivative of the DKL
3 term in (50), we obtain:

I3(α, ν) = d

dϵ
DKL

3 (α + ϵν)
∣∣∣∣
ϵ=0

=
∫

Ω
ρΦ(x, t) d

dϵ
log
∣∣D(α + ϵν)

∣∣ ∣∣∣∣
ϵ=0

dx

=
∫

Ω
ρΦ(x, t) 1∣∣Dxα

∣∣ d

dϵ

∣∣D(α + ϵν)
∣∣ ∣∣∣∣

ϵ=0
dx =

∫
Ω

ρΦ(x, t) tr
(
Dxα−1Dν

)
dx

(58)

where we have used the following Jacobi’s formula:

d

dϵ

∣∣D(α + ϵν)
∣∣ ∣∣∣∣

ϵ=0
= |Dxα| tr

(
Dxα−1Dν

)
(59)

to obtain the last equation in (58).

Substituting in (54) and using the Taylor series expansion (53), (56) can be written in tensor notation as
follows:

I3(α, ν) =
∫

Ω

∑
i

(
ρΦ(x, t) ∂νi

∂xi
− ∆t

∑
j

ρΦ(x, t) ∂uj

∂xi

∂νi

∂xj

)
dx + O(∆2

t )

=
∫

Ω

∑
i

(
∂ρΦ(x, t)

∂xi
νi − ∆t

∑
j

∂

∂xj

{
ρΦ(x, t) ∂uj

∂xi

}
νi

)
dx + O(∆2

t )

=
∫

Ω

∑
i

(
∂ρΦ(x, t)

∂xi
− ∆t

∑
j

∂

∂xj

{
ρΦ(x, t) ∂uj

∂xi

})
νi dx + O(∆2

t )

(60)

where we have used integration by parts to obtain the second equation.

Taking the limit lim ∆t → 0, the terms O(∆2
t ) that approach zero exponentially vanish. Subtracting (55) by

(57) and (60), then equating to zero, we obtain the first-order optimality condition (51) as follows:∫
Ω

ρ̄(x, t)
∑

i

∑
j

− ∂

∂xi

{
1

ρ̄(x, t)
∂

∂xj

{
ρ̄(x, t) uj

}}

+ 1
2

∂

∂xi

{
1

ρ̄(x, t) Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]}
νi dx = 0

(61)

where we have assumed that ρΦ(x, t) ≡ ρ̄(x, t) holds and have used the following identities:

∂ log ρ̄(x, t)
∂xi

= 1
ρ̄(x, t)

∂ρ̄(x, t)
∂xi

∂2 log ρ̄(x, t)
∂xi ∂xj

= ∂

∂xi

(
1

ρ̄(x, t)
∂ρ̄(x, t)

∂xj

) (62)

Given that νi can take any value, equation (61) holds (in the weak sense) only if the terms within the round
bracket vanish. Integrating this term with respect to the xi, we obtain:∑

j

∂

∂xj

{
ρ̄(x, t) uj

}
= 1

2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
+ ρ̄(x, t) C (63)

which can also be written in vector notation as follows:

∇x ·
(
ρ̄(x, t) u

)
= 1

2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
+ ρ̄(x, t) C (64)
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To find the scalar constant C, we integrate both sides of (64) to obtain:∫
Ω

∇x ·
(
ρ̄(x, t) u

)
dx = 1

2

∫
Ω
Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
dx +

∫
Ω

ρ̄(x, t) C dx

= 1
2

∫
Ω
Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
dx + C

(65)

Applying the divergence theorem to the left-hand side of (65), we obtain:∫
Ω

∇x ·
(
ρ̄(x, t) u

)
dx =

∫
∂Ω

ρ̄(x, t) u · n̂ dx (66)

where n̂ is the outward unit normal vector to the boundary ∂Ω of Ω.

Given that ρ̄(x, t) is a normalized (proper) density with compact support (vanishes on the boundary), the
term (66) becomes zero, leading to C = 0. Substituting this result along with u(x) = ∇xΦ(x) into (64), we
arrive at the following PDE:

∇x ·
(
ρ̄(x, t) ∇xΦ(x)

)
= 1

2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
(67)

Therefore, assuming that the base case ρ0(x) ≡ ρ̄0(x) holds and that a solution to (67) exists at every t, the
proposition follows by the principle of induction.

C.4 Proof of Proposition 4

To show that the conditional and marginal homotopies satisfy the reverse diffusion process, we first express
the forward-time SDE and ODE of Song et al. (2021):

dx(τ) = f(τ) x(τ) dτ + g(τ) dW (τ)
dx(τ)

dτ
= f(τ) x(τ) − 1

2 g(τ)2 ∇x log p(x, τ)
(68)

in terms of reverse time t = 1 − τ , via applying the change of variable dt = −dτ as follows:

dx(t) = −f(t) x(t) dt + g(t) dW (t)
dx(t)

dt
= −f(t) x(t) + 1

2 g(t)2 ∇x log ρ̄(x, t)
(69)

which gives (15) and (17).

Substituting the marginal score ∇x log ρ̄(x, t) with the conditional score:

∇x log ρ(x | x̄, t) = 1
ρ(x | x̄, t) ∇xρ(x | x̄, t) = − ϵ

σ(t) (70)

and applying reparameterization x(t) = µ(t) x̄+σ(t) ϵ and (16), we can write the conditional ODE as follows:
dx(t)

dt
= v(x | x̄, t)

= −f(t) x(t) + 1
2 g(t)2 ∇x log ρ(x | x̄, t)

= −f(t) x(t) + 1
2 g(t)2 ϵ

σ(t)

= −f(t) x(t) + σ(t)
(

σ̇(t) + f(t) σ(t)
) ϵ

σ(t)

= µ̇(t)
µ(t)

(
x(t) − σ(t) ϵ

)
+ σ̇(t) ϵ

= µ̇(t) x̄ + σ̇(t) ϵ

(71)
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and thus corresponds to the conditional vector field defined in flow matching (Lipman et al., 2023).

Marginalizing (71) with respect to

pdata(x̄ | x) = ρ(x | x̄, t) pdata(x̄)
ρ̄(x, t) (72)

and substituting (19) and applying (70), we obtain

v(x, t) =
∫

Ω

(
− f(t) x(t) + 1

2 g(t)2 ∇x log ρ(x | x̄, t)
)

ρ(x | x̄, t) pdata(x̄)
ρ̄(x, t) dx̄

= −f(t) x(t) + 1
2 g(t)2

∫
Ω

∇x log ρ(x | x̄, t) ρ(x | x̄, t) pdata(x̄)
ρ̄(x, t) dx̄

= −f(t) x(t) + 1
2 g(t)2

∫
Ω

1
ρ(x | x̄, t)

ρ(x | x̄, t) pdata(x̄)
ρ̄(x, t) ∇xρ(x | x̄, t) dx̄

= −f(t) x(t) + 1
2 g(t)2 1

ρ̄(x, t) ∇xρ̄(x, t)

= −f(t) x(t) + 1
2 g(t)2 1

ρ̄(x, t) ∇x log ρ̄(x, t)

(73)

and thus corresponds to the marginal probability flow ODE 17.

C.5 Proof of Proposition 5

Proof. Based on the result of Proposition 4 and using (12), we can express the homotopy matching problem

∂ρΦ(x, t)
dt

= ∂ρ̄(x, t)
dt

(74)

equivalently as

∇x ·
(

ρΦ ∇xΦ(x, t)
)

= ∇x ·
(

ρΦ

(
− f(t) x(t) + 1

2 g(t)2 ∇x log ρ̄(x, t)
))

(75)

Given that this matching holds identically, we have

∇xΦ(x, t) = −f(t) x(t) + 1
2 g(t)2 ∇x log ρ̄(x, t) (76)

Furthermore, given that both the forward-time ODE and SDE of Song et al. (2021) exhibit the same marginal
probability density ρ̄(x, t), it is shown that they satisfy the following reverse-time SDE:

dx(τ) =
(

f(τ) x(τ) − g(τ)2 ∇x log ρ̄(x, t)
)

dτ + g(τ) dW (τ) (77)

which reverses the diffusion process as outlined by Anderson (1982) and Song et al. (2021). Applying the
change of variable dt = −dτ , this reverse-time SDE can similarly be written in terms of t = 1 − τ as

dx(t) = −
(

f(t) x(t) − g(t)2 ∇x log ρ̄(x, t)
)

dt + g(t) dW (t) (78)

where dW (t) does not change sign, since the Wiener process is invariant under time reversal.

Subsequently, the Fokker-Plank dynamic that governs the time evolution of the marginal density homotopy
ρ̄(x, t) is given by

∂ρ̄(x, t)
∂t

= − ∇x ·
(

ρ̄(x, t)
(

− f(t) x(t) + g(t)2 ∇x log ρ̄(x, t)
))

+ 1
2 g(t)2 ∆x ρ̄(x, t) (79)
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where ∆x = ∇x · ∇x denotes the Laplacian. By substituting (76) into this Fokker-Plank equation, we then
have

∂ρ̄(x, t)
∂t

= − ∇x ·
(

ρ̄(x, t)
(

2 ∇xΦ(x, t) + f(t) x(t)
))

+ 1
2 g(t)2 ∆x ρ̄(x, t) (80)

At equilibrium ∂ρ̄(x,t)
∂t = 0, the Fokker-Planck equation admits a unique normalized steady-state solution,

given by the Boltzmann distribution:

pB(x) ∝ exp
(

2
g2

∞

(
2 Φ∞(x) + f∞

2 x(t)T x(t)
))

(81)

when the potential energy function, the drift coefficient, and the diffusion coefficient reach their time-
independent steady states Φ∞(x), f∞ and g∞ at equilibrium. The Boltzmann distribution can then be
written in terms of a coherent Boltzmann energy ΦB considered in EBMs, as follows:

pB(x) = eΦB

Z
(82)

where

ΦB(x) = 4 Φ∞(x) + f∞ ∥x∥2

g2
∞

(83)

and Z =
∫

Ω eΦB(x) dx is the normalizing constant.

C.6 Proof of Proposition 6

Proof. The variational loss function in (22) can be written as follows:

L(Φ, t) = 1
2 Eρ(x|x̄,t) pdata(x̄)

[
Φ(x)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
+ 1

2 Eρ̄(x,t)

[∥∥∇xΦ(x)
∥∥2
]

(84)

where we have assumed, without loss of generality, that a normalized energy Ēθ(x, t) = 0. For an unnormal-
ized solution Φ(x), we can always obtain a normalization by subtracting its mean.

The optimal solution Φ of the functional (84) is given by the first-order optimality condition:

I(Φ, Ψ) = d

dϵ
L(Φ(x) + ϵΨ(x), t)

∣∣∣∣
ϵ=0

= 0 (85)

which must hold for all trial function Ψ.

Taking the variational derivative of the particle flow objective (85) with respect to ϵ, we have:

I(Φ, Ψ) = d

dϵ
L(Φ + ϵΨ)

∣∣∣∣
ϵ=0

= 1
2

∫
Ω×Ω

pdata(x̄) ρ(x | x̄, t)
(
γ(x, x̄, t) − γ̄(x, x̄, t)

) d

dϵ
(Φ + ϵΨ) dx̄ dx

+ 1
2

∫
Ω

ρ̄(x, t) d

dϵ

∥∥∇x(Φ + ϵΨ)
∥∥2

dx

= 1
2

∫
Ω×Ω

pdata(x̄) ρ(x | x̄, t)
(
γ(x, x̄, t) − γ̄(x, x̄, t)

)
Ψ dx̄ dx +

∫
Ω

ρ̄(x, t) ∇xΦ · ∇xΨ dx

(86)

32



Published in Transactions on Machine Learning Research (05/2025)

Given that Φ ∈ H1
0(Ω; ρ), its value vanishes on the boundary ∂Ω. Therefore, the second summand of the

last expression in (86) can be written, via multivariate integration by parts, as∫
Ω

ρ̄(x, t) ∇xΦ · ∇xΨ = −
∫

Ω
∇x ·

(
ρ̄(x, t) ∇xΦ

)
Ψ dx (87)

By substituting (87) into (86), we get

I(Φ, Ψ) =
∫

Ω

(
1
2

∫
Ω

pdata(x̄) ρ(x | x̄, t)
(
γ(x, x̄, t) − γ̄(x, x̄, t)

)
dx̄ −

∫
Ω

∇x ·
(
ρ̄(x, t) ∇xΦ

))
Ψ dx (88)

and equating it to zero, we obtain the weak formulation (21) of the density-weighted Poisson’s equation.

Given that the Poincaré inequality (23) holds, Theorem 2.2 of Laugesen et al. (2015) presents a rigorous
proof of existence and uniqueness for the solution of the weak formulation (21), based on the Hilbert-space
form of the Riesz representation theorem.
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D Experimental Details

D.1 Model architecture

Our network architectures for the autonomous and time-varying VAPO models are based on the WideResNet
(Zagoruyko & Komodakis, 2016) and the U-Net (Ronneberger et al., 2015), respectively. For WideResNet, we
include a spectral regularization loss during model training to penalize the spectral norm of the convolutional
layer. Also, we apply weight normalization with data-dependent initialization (Salimans & Kingma, 2016)
on the convolutional layers to further regularize the model’s output. Our WideResNet architecture adopts
the model hyperparameters reported by Xiao et al. (2021a). For U-Net, we remove the final scale-by-sigma
operation (Kim et al., 2021; Song et al., 2021) and replace it with the Euclidean norm 1

2 ∥x − fθ(x)∥2

computed between the input x(t) and the output of the U-Net fθ(x). Our U-Net architecture adopts the
hyperparameters used by Lipman et al. (2023). In both the WideResNet and U-Net models, we replace
LeakyReLU activations with Gaussian Error Linear Unit (GELU) activations (Hendrycks & Gimpel, 2017),
which we find improves training stability and convergence.

D.2 Training

We use the Lamb optimizer (You et al., 2020) and a learning rate of 10−3 for all the experiments. We find
that Lamb performs better than Adam over large learning rates. We use a batch size of 128 and 64 for
training CIFAR-10 and CelebA, respectively. For all experiments, we set a cutoff time of tmax = 1 − 10−5,
a terminal time of tend = 1, a decay exponent of κ = 1.5, and a spectral gap constant of η = 10−4 during
training. Here, the mean and standard deviation scheduling functions µ(t) = t and σ(t) = 1 − t follow those
defined by the OT-FM path. All models are trained on a single NVIDIA A100 (80GB) GPU until the FID
scores, computed on 5k samples, no longer show improvement. We observe that the models converge within
300k training iterations.

D.3 Numerical Solver

In our experiments, the default ODE solver is the black-box solver from the SciPy library using the RK45
method (Dormand & Prince, 1980), following the approach of Xu et al. (2022). We allow additional ODE
iterations to further refine the samples in regions of high likelihood, which we observe improves the quality of
the generated images. This is achieved by extending the time horizon; our experiments indicate that setting
the terminal time to tend = 1.575 yields the best ODE sampling results.

D.4 Datasets

We conduct our experiments using the CIFAR-10 (Krizhevsky, 2009) and CelebA (Liu et al., 2015) datasets.
CIFAR-10 consists of 50, 000 training images and 10, 000 test images at a resolution of 32 × 32. The CelebA
dataset contains 202, 599 face images, with 162, 770 used for training and 19, 962 for testing. Each image is
first cropped to 178 × 178 before being resized to 64 × 64. During resizing, we enable anti-aliasing by setting
the antialias parameter to True. Additionally, we apply random horizontal flipping as a data augmentation
technique.

D.5 Quantitative Evaluation

We employ the FID and inception scores as quantitative evaluation metrics for assessing the quality of
generated samples. For CIFAR-10, the FID is computed between 50, 000 samples and the pre-computed
statistics from the training set, following Heusel et al. (2017). For CelebA 64×64, we adopt the setting from
Song & Ermon (2020), computing the FID between 5, 000 samples and the pre-computed statistics from the
test set. For model selection, we follow Song et al. (2021), selecting the checkpoint with the lowest FID
score, computed on 2, 500 samples every 10, 000 iterations.

34



Published in Transactions on Machine Learning Research (05/2025)

Figure 7: Additional uncurated samples on unconditional CIFAR-10 32 × 32.
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Figure 8: Additional uncurated samples on unconditional CelebA 64 × 64.
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Figure 9: Additional interpolation results on unconditional CIFAR-10 32 × 32.
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Figure 10: Additional interpolation results on unconditional CelebA 64 × 64.
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Figure 11: Validation of a Poincaré lower bound using the ratio of the gradient norm to the energy norm on
CIFAR-10.

Figure 12: Long-run ODE (RK45) sampling using autonomous potential energy Φ(x) on CIFAR-10 (left)
and CelebA (right).
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Figure 13: Long-run ODE (RK45) sampling using time-varying potential energy Φ(x, t) on CelebA.

Figure 14: Validation of the convergence of gradient norm and energy norm in long-run ODE (RK45)
sampling on CelebA.
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Figure 15: Long-run SGLD sampling using the Boltzmann energy with λ = 0.35 on CelebA.

Figure 16: Validation of the convergence of the gradient norm and the energy norm in long-run SGLD
sampling on CelebA.
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Figure 17: Long-run SGLD sampling using the Boltzmann energy with λ = 0.35 on CIFAR-10.

Figure 18: Validation of the convergence of the gradient norm and the energy norm in long-run SGLD
sampling on CIFAR-10.
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Figure 19: Long-run SGLD sampling using the Boltzmann energy on CIFAR-10 for loss configuration (D).

Figure 20: Validation of the convergence of gradient norm and energy norm in long-run SGLD sampling
with loss configuration (D) on CIFAR-10.
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Figure 21: Long-run SGLD sampling using the Boltzmann energy with loss configuration (E) on CIFAR-10.

Figure 22: Validation of the convergence of gradient norm and energy norm in long-run SGLD sampling
with loss configuration (E) on CIFAR-10.
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