506

507

508
509
510

511
512
513

514

515
516

517

518

519

520

521
522
523

Appendix

A Proofs

We begin by stating and proving a result mentioned in the main text: once we construct an invariant
separator, we can obtain a universal model by composing the separation with a standard fully
connected neural network:

Theorem A.1 (Separation Implies Universality). Let f : R*" — R be a G-invariant continuous
function. If F : R™ — RM s an invariant separator; then for any compact set K C R*", and

any € > 0, there exists a neural network N : RM — R such that sup | f(z) — N€o F(z) |< e.
zeK

Proof. Lete > 0and K C R%*" be a compact set. Using Proposition 1.3 in Dym and Gortler [2023],
there exists a continuous f€ such that

F(2) = o Fla)| < 5

The image of a compact set under a continuous function is a compact set, see Munkres [2000],
then S := Im (F') is compact. By the Universal Approximation Theorem Cybenko [1989], we can
approximate f€ with a fully-connected Neural Network with arbitrary precision, i.e. there exists a
Neural Network Function A€ such that for all z € S,

€ € €
£5(2) = N (@) < &
By the Triangle Inequality, for all x € K,

(@) =N F@)] < |f(@) = [0 F@)| +|f o F(x) =N o F(x)| < 5 + 5 = ¢
O

Theorem 2.1. Two iterations of the 1-EWL test assign two point clouds XY € R3*"™. _ the same

I - p Ivif X % distinct
value, if and only if Ol

Proof. Assume we initialize the hidden states with null information. After a single iteration, we have

WY = s — ;] | G #1i} = di,X) ®)
By assumption, all hgl), i=1,...,n, are distinct. Thus at the next iteration,
2 1 . .
B = (W {0, Nl = wsll) | #i}) ©)
{n? | ienl} (10)

we know each node’s ordered distances from the other nodes, as the ¢ — th node is uniquely (intra-
point-cloud) determined by hl(.l). Thus we can recover the distance matrix

hiv M o i
o=l flzz—aill el R
H.’El — xQH 0 . . . h2

. 0o .
0 . .
1 = all 2z —2all - o ew =zl A

Thus, we can fully recover the point cloud up to Euclidean motion, see Victor Garcia Satorras [2021].
In conclusion, if X, Y € RY*™ are assigned the same value by 1-EWL, then they are identical up to
permutation and Euclidean motion, i.e. an O[3, n] transformation. O

14

524
525
526

527
528

529

530

531

533
534
535

536

537
538

539
540
541

542
543

544

545

546
547

548

By Theorem 2.1, 1-EWL is complete on R3X" = . We now show that 1-EWL is incomplete at most
on a (non-trivial) measure-zero set, thus by definition, it is complete almost everywhere on the space

of point clouds endowed with permutation, rotation, and reflection symmetries.

Theorem A.2 (1-EWL Separates Almost All Complete Euclidean Graphs). Let i be the Lebesgue
measure on R3*™ where n > 3. Then, u(R3*" \R3X") =0.

distinct

Proof. We defined R3*" = {X ¢ R®*™ | d(i, X) #d(j, X) Vi # j}.

distinct
Then
R¥P\RE™ ={X eR>™™ | Ji#j€n]st d(j,X) =d(i,X)}
= {X € R¥*" | Ji#j€ [n] s.l. ||¢pow(d(ij)) - "/)p()W(d(ivX)) ||2 = 0} (11)
where 10, is the power-sum polynomials defined as ¢pow (Z) = (O y T4, - - -, 2y 1), which is

known to be injective on multisets with n elements.

Equation [TT]defines an algebraic manifold with a non-trivial polynomial equality constraint, thus is
of dimension < 3n — 1. If an algebraic manifold embedded in R3*™ has dimension < 3n — 1, then
it has measure zero Basu et al. [2006a].

O

Theorem 3.2. For every X,Y € R3*", q single iteration of the 2-SEWL test assigns X and Y the
Y

same value if and only if X =
O[3,n]

Proof. Let X, Y € R3*", Recall that a single iteration of the 2-SEWL assigns to each index pair i, j
an initial coloring C)[4, j] = C ()[4, j](X) corresponding to the 2 x 2 Gram matrix of the points
x4, ;. The coloring is then refined via

C(1)(i,j) = Embed"” (C o) (i,), { (C(o) (. 4), C(o) (i, k), (wi x 2, xx)) Jrey) -
and then a final global coloring is obtained from
Cg = Embed" ({C()(i.5)| (i.J) € [1]°})

Let us denote the global feature Cg obtained from X by Cg(X), and the global feature obtained
fromY by Cg(Y).

By construction, if X SO[: | Y then Cg(X) = Cg(Y). We need to prove that if Cg(X) = Cg(Y)
n

then X = 7
O[3,n]

To make the proof more readable, we introduce the following notation (we will later describe its
significance):

Xig) = [xi, x5, 05 X x5] € R3%3 (12)
Pi g = X[5% (13)
G (X) = X1 X (14)
hii 1(X) = Embedo { P j) | k€ [n], K # 4,7} (15)
mpij)(X) = (Gli) (X), hii) (X)) (16)

We now show that the multiset Cg(X) = {C(1)(i,j) | i,j € [n]} allows recovering the multiset
hx = {m[i,j] | 1,] € [n],i,j S [TL}}

It is enough to show that we can recover my; ; from its corresponding C) [i, 7] for every i, j € [n]
and then the multiset equivalence follows immediately.Note that G; ; is the 3 X 3 Gram matrix of
the vectors x;, x;, x; X x;. It can be recovered from C(O) (i,j), which is the 2 x 2 Gram matrix of
x;, xj, because (z; X xj, xx) = (x; X z;,2;) = 0and

s x @jl| = llzillllz;ll| sin 6] = [|lzi|[l2;] V1 — cos 62 = IIxillmjl\/l - (J :

[EAlER

15

550
551

552

553

554
555

556
557
558
559
560

561
562

563
564
565

566

568
569
570
571
572
573
574

575

576
577
578

579

580

581
582

where 0 is the angle between x; and x;. The quantity on the RHS of the equation can be extracted
from C g (i, j).

As for h; ;, we can recover it as a multiset since:

Pliiag = (i, o), (g, wn), (2 x 25, 20) = (Co) (4, K)[L, 2], Co) (K, 5)[1, 2], (i x Ij7xk>()17)
We saw that hx = Embed{my; ;(X)|i,j € [n]} can be recovered from Cg(X) and thus in

particular our assumption that Cg(X) = Cg(Y') implies that hx = hy. We will now use this to

showthat X = Y.
SOI[3,n]

We first deal with the degenerate case where all points in X are identical, thatis 1 = 22 = ... = x,.
In this case, all Gram matrices G; ;(X), and all entries in each of the matrices, will be identical,
and thus by assumption also all Gram matrices G; ;(Y'), and all their entries will be identical. This
implies that Y also consists of a single point with the same norm as the one point in X, and therefore

SO[3,n]

We can now assume that not all points in X are the same. Define r(X) = rank(X) =
_ma[x] rank(GT; ;1(X)) (note that we assume that n > 3). By assumption we have {G; ;1(X)|i, j €
1,J€|Nn

]} = {G.;(Y)li,j € [n]} , thus r(X) = (Y) and there exist i # j and s,t € [n] such that
Gi.5)(X) = G5 4(Y), (%) they both have rank 7, and x; # z;. Due to (¥) it follows that y, # y;
and in particular s # t.

By Kraft and Procesi [1996], the equality of Gram matrices implies that there exists an orthogonal
transformation, 7" € O(3), such that

T(x;) =ys, T(z;) =y, T(xi X Tj) = Ys X Yt (18)

If x; X zs # 0 we see that T preserves orientation and therefore 7' € SO(3) (see Remark .
If not, and if T is a reflection, we can modify T to be a rotation which still satisfies (I8 by com-
posing it with a relfection that fixes the < 1 dimensional subspace spanned by z;, z;. Thus in any
case we can assume that 7" € SO(3). By assumption and (x), we have { P, ; 1(X)k # 4,7} =

{{P[s,t,k] (Y)7 k 7é S,t}}
This implies that there exists some permutation o € S, such that o(i) = s.o(j) = ¢ and
Py j 1) (X) = Prst.o@k))(Y) forall k # 4, j. We deduce that for all k # i, j

(ys, Tog) = Ty, Toy) = (Ti, T) = (Ys) Yo (k)

and similarly

<ytaT:L‘k>> = <yt7ya(k)>
(Ys X Y, T) = (Ys X Yts Yo ()

Now note that each yy, is in the span of ys, ¥, ys X y: (even when r < 3), and similarly every xy,
is in the span of x;,x;,x; X x; and so Tz, is also in the span of y,, y;,ys X y;. It follows that
T — Yo(ry = 0, and thus we showed that X and Y are related by a SO[3, n] transformation.

O

Remark A.3. In the proof above we said that if (T8) holds, and y, X y; is not zero, then T" is in SO(3).
This follows from the fact that for general orthogonal transformations and vectors a, b

(Ta) x (Th) = det(T)T'(a x b).
Setting a = x;, b = z; and using (I8) we obtain that
Ys ¥ yr = det(T)(ys X yt)
and so if ys x y; is not zero, then det(7T") = 1.

Theorem 4.2. Let Fy, denote the parametric function simulating the 2-SEWL test. Then for Lebesgue
almost every ¢ the function Fy : R3*™ — R+ js separating with respect to the action of SO[3,n.

16

583
584
585
586

587
588

589
590

591
592

593
594
595
596

598
599

600
601

602
603

604
605
606

607

608
609
610
611

Proof. We recall that I is defined to simulate a single iteration of the 2-SEWL test using sort-based
injective multiset functions. In more detail, recall that the initial coloring corresponding to an index
pair (,7) and a point cloud X € R3*" is given by the Gram matrix of x;, 2, and denoted by
C(0)(4,7) = C() (4,)(X). We then define

C(l)(i,j) = (C(O) (i,j)7Embeda ([C(O)(k’,j), C(O) (i, k‘), <$CZ' X xj,xkﬂ Z=1>> .

and

Cg = Embed;; (C()(i. j)| (i,) € [n]?)
where Embedy(y1, . .., y,) is permutation invariant (=multiset function), continuous in 6 and y;,
and defined by

Embedy(y1,...,yn) = (bj, ¥(aly1...,a) ya)), j=1,...,6n+1. (19)

with ¥ = sort (or alternatively, ¥ could be the power sum polynomials), and # denoting the
concatenation of all the mapping parameters a; and b;.

We denote by ¢ = («, 3) the concatenation of the two parameter vectors of the Embed mappings in
the constructions, and F4 (X)) denoted the output Cg = Cg(X; ¢) obtained by this construction.

Since we already showed that the 2-SEWL test is complete, it is sufficient to show that for Lebesgue
almost every (a, 3), the mapping Embed,, is permutation invariant and separating on R3>*™, and the
mapping Embed is permutation invariant and separating on the image of the mapping f, which we

define as
fa(X) = (Cay (i, (X3)] (i,) € [n]*) -

By Theorem 4.1 we know that Embed,, is separating for Lebesgue almost every «. For fixed o, we
know that f, is a semi-algebraic mapping, since it is a composition of polynomials and the piecewise
linear sort function, which are semi-algebraic mappings, and as compositions of semi-algebraic
mappings are semi-algebraic mappings. The dimension of the image of a semi-algebraic mapping is
never larger than the dimension of the domain, and so f, (R3*") is a semi-algebraic set of dimension
< dim(R3*™) = 3n (see Basu et al. [2006b] for the necessary real algebraic geometry statements re
composition and dimension). To apply Theorem 3.2 we need to work with a permutation invariant
domain, so we artifically enlarge the domain of Embedg to be

U o(fa@®>m)

o'ESn2

which is a finite union of sets of dimension < 3n and hence also has dimension < 3n. It follows
that for almost every S the function Embedg is separating on this permutation invariant set, with
embedding dimension of 6n + 1 as we defined in (T9). Using Fubini’s theorem, this implies that
for almost every («,) the functions Embed,, and Embedg are both separating, and this proves the
theorem. O

Complexity We conclude by discussing the complexity of computing Fjs. Calculating each
C(1)(i, j) using sort-based embeddings Embed,, requires O(n? log(n)) operations.

Since there are O(n?) such C(1(4, j) the total complexity of computing all of them is O(n* log(n)).
In the second step we compute Embed s on multisets of size D x N where D = O(n), N = O(n?),
and with embedding dimension of O(n). This requires O(n* + n3 log(n)) operations , so the total
complexity is O(n*log(n))

In Appendix [D] we extend our results to arbitrary d. In this case, we get a complexity of
O(n%*t11og(n)) (where for simplicity we consider the limit n — oo with d fixed, to cancel out some
mixed terms in n, d which are negligible in this limit.).

B Experiment Details

As mentioned, we exemplified the viability of the theory presented by testing separation on challeng-
ing point cloud pairs. We wished to address the following scenario: given a pair of point clouds, each
labeled distinctly, what would be the accuracy score of SO[3,n] (or O[3, n]) invariant architectures
in this classification task following training on a labeled dataset of these examples? This setup

17

612
613

614
615
616
617
618
619

621
622
623

624

625
626
627
628
629
630
631
632
633

634

635
636
637
638
639
640
641
642
643
644
645
646

647

648
649
650

652
653

partly informs us of the separation capability of these architectures, i.e. how well do these models
distinguish similar (for instance, I-EWL equivalent), yet non-isomorphic, input?

For implementation, we used code by Joshi et al. [2022] that implements several contemporary
SO[3, n] invariant architectures and evaluated them as described below. This framework has several
additional tests for geometric graphs, but they were irrelevant to our setting because they are redundant
for the fully-connected geometric graphs we focus on. We modified the implementation of Joshi et al.
[2022] by implementing our novel invariant architectures, 2-SEWLnet, implementing EGNN Victor
Garcia Satorras [2021], and testing counterexample point cloud pairs from Pozdnyakov et al. [2020],
Pozdnyakov and Ceriotti [2022]. We used implementation by Joshi et al. [2022] of MACE Batatia
et al. [2022], TEN Thomas et al. [2018] and GVPGNN Jing et al. [2021]. The SO[3, n] invariant
architectures are trained on replicas of each counterexample pair and then testing is performed on the
same pair.

B.1 Technical Details

Hyperparameters 2-SEWLnet EGNN MACE TFN GVPGNN

Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001
Hidden Dimension 2 (Pair-wise) 1 2 64 64
Number of Layers 1 2 3 3 3
Batch size 1 1 1 1 1
Correlation NA NA 3 3 NA

Table 2: GNN implementations and code pipeline based on Joshi et al. [2022].

We trained the various invariant models on an NVIDIA A40 GPU implemented in PyTorch Paszke
et al. [2019]. The hyperparameters were a learning rate of 0.0001 with Adam optimizer Kingma and
Ba [2017], with the learning rate scheduler ReduceOnPLateau that reduces the learning rate once
the loss stopped diminishing. We trained each model on a dataset of 50 copies of each pair for 100
epochs, while injecting permutation and rotation to each point cloud during training. The test and
validation datasets are each a pair of plain (no permutation or rotation injected) point clouds. Thus
each epoch has ternary accuracy results, of 0%, 50%, and 100%. We then average the accuracy of
the last 20% of epochs to obtain the overall accuracy. This was done to allow the model to converge
while allowing for a sufficiently large test measurements to obtain statistical significance.

B.2 2-SEWLnet

2-SEWLnet is an implementation of a simulation of a single iteration of 2-SEWL, see 4. We imple-
mented the architecture by directly embedding the multiset function F7, using the low-dimensional
invariant embeddings from Section 4. We chose the sort function as the one-dimensional permutation
separating invariant, as it constitutes an isometry from R" /S, to R™, then composing it with linear
mappings, yields a Bi-Lipschitz mapping Balan et al. [2022], Dym and Gortler [2023]. We used
differentiable sorting from PyTorch Paszke et al. [2019] to enable backpropagation. We note that the
model is able to learn the classification task with backpropagation only using the sort vector-wise
activation, i.e. without a fully-connected neural network composed on it. This is not a trivial result
that is immediately implied by the completeness of 2-SEWL, as we aim to minimize the softmax
cross-entropy loss and in practice reach almost zero loss, thus not only yielding two distinct embed-
dings corresponding to each distinct point cloud (as guaranteed by Theorem 3.2) but learning them
to be (approximately) one-hot encoded vectors using our injective continuous Embed functions.

B.3 EGNN

We used the EGNN version used for classification problems as described in Victor Garcia Satorras
[2021], which does not use an equivariant coordinate update step. This version’s expressive power
is bounded by 1-EWL. Interestingly, we found that using the original implementation did not yield
sufficient separation for the classification task for the examples Hard1-3 in Table 1, yet when using
sort and non-linear point-wise activations, rather than sums of neural network functions applied
point-wise, led to perfect classification. The results in the table are reported with this implementation.

18

654

655

656
657
658
659
660
661
662

663
664

665
666

667
668

669
670
671

672
673
674
675

676
677
678

C Background Theory

C.1 Low Dimensional Separating Invariants

In Section 4 We presented a condensed summary of the results from Dym and Gortler [2023] as
they pertain to this paper’s scope. We devote this appendix to expound on the context of these
results. In Subsection 4.1, we discussed the Power-Sum Symmetric Polynomials. These polynomials
yield a separating invariant with respect to permutations of real-valued vectors in R™. The invariant
learning literature often discussed an extension of this characterization for vector-valued features,
the Multi-Power-Sum Symmetric Polynomials, defined, for an input X = (x;...2,) € R¥" and
a=(ag,...,aq) € NL, as

P.(X) = Z ¢ (20)
i=1
P(X) :(PQ(X))ae[n]dJa\Sn 2h
where 2 := z{" ... z5? and |a| := Y. | ;. These polynomials define a separating invariant for

point clouds in R¢ with respect to the permutation of the (n) columns Maron et al. [2019b]. Yet, its

embedding dimension is (";d). The goal of Dym and Gortler [2023] was to reduce the embedding
dimension to a complexity linear in the n - d dimension of the input.

As a first example of such a result, Dym and Gortler [2023] show the for Lebesgue almost every

(";d) dimensional vectors w1, . .., Wand+1

X =Y < (w,PX))=(w;, P(Y)),i=1,...,2dim (M) + 1 (22)
Thus we obtain a separating invariant of dimension O(d - n) rather than O(n2?). Yet, we still had to
calculate all of the O(n??) polynomial entries. Therefore, computationally speaking, this approach
did not yield much.

To remedy this, Dym and Gortler [2023] proposed alternative invariants based on R™ permutation
invariants W. Such a W. and any choice of a vector a € R, induces a permutation invariant on Rdxn
of the form

R>*™ 5 (21,...,2,) = U(aT2y,...,aTx,).

This technique of producing high dimensional invariants from low dimensional ones is known as
polarization. To obtain invariants that are also separating, we need (i) to choose ¥ to be invariant
and separating on R™. Two examples of such functions, are the functions ¥,,; and ¥,,,,, which we
defined in (5):

n n
Uoort(x1, ..., 2n) =sort(z1,...,2,) and Upop(x1,...,2,) = (Z xﬁ)
i=1 t=1

Additionally, we need (ii) to choose not a single polarization function defined by a single a, but rather

2nd + 1 random vectors ay, . . ., G2, 4+1. More precisely, Dym and Gortler [2023] showed that for
Lebesgue almost every aq, . .., G2p4+1 € R< and b1,...,banq+1 € R™the function
Embedy(z1,...,2,) = (b, ¥ (az1...,a] x,)), j=1,...,2nd + 1. (23)

defined in (6) is permutation invariant and separating. The role of the projection by the b; is to reduce
the embedding dimension to 2nd + 1 rather than the (2nd 4+ 1)n dimension we would get if these
projections were not applied.

We note that the complexity of a single invariant in (23) would be O(n log(n)) (assuming n > d)
when using sorting or O(n?) when using power sum polynomials. Accordingly, the complexity of
computing 2nd + 1 invariants would be O(dn? log(n)) using sorting or O(dn?) using power sum
polynomials.

Finally, we note that (as mentioned in the main text), if we’re interested in separation only on a
semi-algebraic permutation invariant subset X C R*" with dimension D, then the number of
separating invariants needed in (23] would be 2D y + 1 rather than 2nd + 1.

19

689

690
691
692
693
694

695

696
697
698

699
700
701

702

704

705

707

708
709
710

71
712
713

714
715

D Extensions

In the main text we described Vanilla k-WL tests which are well-defined for all k£ and d, and the
2-SEWL test which is well-defined for the case d = 3 (since vector products are used). We now
explain how to define a (d — 1) SEWL test for general d, and then explain how these tests can be
easily modified to give a (d — 1)-EWL test with similar complexity, which is O[3, n] invariant and
separating rather than SO[3, n] invariant and separating.

D.1 SEWL for General Dimension d

The complete 2-SEWL test for d = 3 point clouds can be generalized to a (d — 1)-SEWL test
for general d-dimensional point clouds by a generalization of the cross-product operator. This
generalization is formally known as the Hodge dual operator Jost [2017].

For fixed z;,,...,2;, , € R% we define the following linear functional
f:R* SR
fz) =det (z, @iy, 2i,_,)

By Riesz’s Representation Theorem Bachman and Narici [2000], every linear functional on R¢ is
essentially a function in the form of a dot product against some (unique) vector in R?. Thus, there

exists some vector, denoted by »* = 2*(z;,,...,7;, ,) € RY, such that
det (z, 24y, ..., 25, ,) = f(x) = (x,2%). (24)
We see directly from the definition that «* is orthogonal to x;, , ..., x;, , and is non-zero if and only
if these d — 1 vectors are linearly independent. Moreover, this choice of vector is SO(d) equivariant,
which means that for any z;,,...,z;, , € R%and R € SO(d) we have
x*(Rxy, ..., Rei,) = Re™(ziy, ... Tiy_,)- (25)

This is because for any x € R? we have
det (x, Rzy,, ..., Rx;,) =det (RR"z, Rx;,,...,Rx;,)
= det(R)det (RT @, 2;,,..., i,)

= (RTz,2*)
= (x, Rx™)
Finally, we note that the coordinates of =* can be calculated by inserting the unit vectors ey, ..., eq
into (24). That is
(:E*)j = det(ej, Liyyoo ,xidil)

where(z*)j is the j-th entry of 2*. This requires computing d different determinants of d x d matrices,
and so the total complexity of computing z* is d*.

The (d — 1)-SEWL test We have shown an extension of the definition of the cross-product that
respects orientation, thus now we can naturally define a (d — 1)-SEWL test which will be SO[d, n]
invariant and separating in d dimensions (generalizing the 2-SEWL test for d = 3).

We define for each (d — 1)-tuple i € [n]¢~! an initial coloring C(g)(i) = C(o)(i)(X) corresponding
to the (d — 1) x (d — 1) Gram matrix of the points z;, , ..., x;,_,. We denote x*(x;,,...,2;,_,) by
2*(1). The coloring is then refined via

C1)(1) = Embed™ (C)(1), {(C(o)(i[k \ 1]), ..., Cioy(ilk \ (d = 1)), {&* (D), 1)) Fiy) -

where i[j \ ¢] is the multi-index i with its ¢-th coordinate replaced by j; e.g. fort = 1,i[j \ 1] =
(j, 42, ...,ik). Then a final global coloring is obtained from

Cg = EmbedV) ({C(y(i)|i € [n)*'})

The (d — 1)-SEWL test can be shown to be SO[d, n| complete, using the same arguments used in
the proof of Theorem 3.2.

20

716 D.2 (d — 1)-EWL for general dimension d

717 We now return to the case where reflections are also considered symmetries, and we’re looking for
718 complete tests with respect to the group O[d, n]. The Vanilla-d-WL test will be O[d, n] complete.
719 However, a more efficient test can be obtained by tweaking the (d — 1)-SEWL test which is not
720 reflection-invariant, to attain a reflection invariant O[d, n] complete test.

721 This tweaking is obtained as follows. We fix some reflection R (a reflection is an orthogonal matrix
722 with a negative determinant). We define the (d — 1)-EWL test for a given X € R?*" by applying the
723 (d — 1)-SEWL test to both X and Ry X to obtain Cg(X) and Cg(RyX), and then computing a final
724 global feature via

Cy (X) = Embed® {Cg(X), Cg(RoX)} (26)

725 In the following theorem, we show how the completeness of the (d — 1)-SEWL test implies the
726 completeness of the (d — 1)-EWL test.

727 Theorem D.1. For every X,Y € RYX" a single iteration of the (d — 1)-EWL test assigns X and Y
728 the same value if and only if X O[? Y.

]

729 Proof. Invariance: We prove that for every R € O(d) and permutation matrix P € S,, we have
730 that C’gef (RXP) = Cgef (X). We can divide into two cases: If R € SO(d) then by the SO[d, n]
731 invariance of Cg(X) we have that
Cg(RXP) = Cg(X)
Cg(RoRXP) = Cg((RoRRj)RoX P) = Cg(RoX)

732 On the other hand, if R is a reflection, then

Cg(RXP) = Cg((RRg)Ry X P) = Cg(RoX)
Cg(RoRXP) = Cg(X)

and so in both cases, we obtain that

Ci (RXP) = Embed® {Cg(RX P), Cg(RyRX P)} = Embed® {Cg(X), Cg(RoX)} = C47(X)

733 Completeness: We prove that if X, Y € R4*" and C’gef (X)= C’gef (Y) then X and Y are related
734 by a permutation and orthogonal transformation.

75 Since C57 (X) = C57 (V) it follows that either Cg(X) = Cg(Y) or Cg(X) = Cg(RoY) . The
736 completeness of the (d — 1)-SEWL test (Theorem 3.2) then implies that X is related to either Y
737 or RyY by an SO[d, n] transformation. In either case, this implies that X and Y are related by an
738 O[d, n] transformation. O

739 D.3 Continuous Implementation and Computational Complexity

740 In Section 4 we showed how the 2-SEWL test can be realized by a continuous piecewise differentiable
741 architecture that uses sort-based multi-set injective functions. The complexity of this construction
742 was O (n*log(n)). Similarly, the (d — 1)-SEWL and (d — 1)-EWL tests can be computed with

743 complexity of O (n‘“rl log(n)) (in the scenario where d stays constant and n — 00) . The leading
744 order of the computation complexity stems from computing the n%~! colorings (C(l) (i), i € [n]? 1)
745 and embedding their corresponding multisets, each one of those requires O(n? log(n)) operations.

21

	Proofs
	Experiment Details
	Technical Details
	2-SEWLnet
	EGNN

	Background Theory
	Low Dimensional Separating Invariants

	Extensions
	 SEWL for General Dimension d
	 (d-1)-EWL for general dimension d
	Continuous Implementation and Computational Complexity

