
Appendix506

A Proofs507

We begin by stating and proving a result mentioned in the main text: once we construct an invariant508

separator, we can obtain a universal model by composing the separation with a standard fully509

connected neural network:510

Theorem A.1 (Separation Implies Universality). Let f : Rd×n → R be a G-invariant continuous511

function. If F : Rd×n → RM is an invariant separator, then for any compact set K ⊂ Rd×n, and512

any ϵ > 0, there exists a neural network N ϵ : RM → R such that sup
x∈K

| f(x)−N ϵ ◦ F (x) |< ϵ.513

Proof. Let ϵ > 0 and K ⊆ Rd×n be a compact set. Using Proposition 1.3 in Dym and Gortler [2023],
there exists a continuous f ϵ such that

|f(x)− f ϵ ◦ F (x)| < ϵ

2

The image of a compact set under a continuous function is a compact set, see Munkres [2000],
then S := Im (F) is compact. By the Universal Approximation Theorem Cybenko [1989], we can
approximate f ϵ with a fully-connected Neural Network with arbitrary precision, i.e. there exists a
Neural Network Function N ϵ such that for all x ∈ S,

|f ϵ(x)−N ϵ(x)| < ϵ

2

By the Triangle Inequality, for all x ∈ K,

|f(x)−N ϵ ◦ F (x)| ≤ |f(x)− f ϵ ◦ F (x)|+ |f ϵ ◦ F (x)−N ϵ ◦ F (x)| < ϵ

2
+
ϵ

2
= ϵ

514

Theorem 2.1. Two iterations of the 1-EWL test assign two point clouds X , Y ∈ R3×n
distinct the same515

value, if and only if X =
O[3,n]

Y .516

Proof. Assume we initialize the hidden states with null information. After a single iteration, we have517

h
(1)
i = {{∥xi − xj∥ | j ̸= i}} = d(i,X) (8)

By assumption, all h(1)i , i = 1,. . ., n, are distinct. Thus at the next iteration,518

h
(2)
i =

(
h
(1)
i , {{(h(1)j , ∥xi − xj∥) | j ̸= i}}

)
(9)

{{h(2)i | i ∈ [n]}} (10)

we know each node’s ordered distances from the other nodes, as the i− th node is uniquely (intra-519

point-cloud) determined by h(1)i . Thus we can recover the distance matrix520

h
(1)
1 h

(1)
2 . . h

(1)
n


∥x1 − x1∥ ∥x2 − x1∥ . . ∥xn − x1∥ h

(1)
1

∥x1 − x2∥ 0 . . . h
(1)
2

. . 0 . . .

. . . 0 . .

∥x1 − xn∥ ∥x2 − xn∥ . . ∥xn − xn∥ h
(1)
n

Thus, we can fully recover the point cloud up to Euclidean motion, see Victor Garcia Satorras [2021].521

In conclusion, if X,Y ∈ Rd×n are assigned the same value by 1-EWL, then they are identical up to522

permutation and Euclidean motion, i.e. an O[3, n] transformation.523

14

By Theorem 2.1, 1-EWL is complete on R3×n
distinct. We now show that 1-EWL is incomplete at most524

on a (non-trivial) measure-zero set, thus by definition, it is complete almost everywhere on the space525

of point clouds endowed with permutation, rotation, and reflection symmetries.526

Theorem A.2 (1-EWL Separates Almost All Complete Euclidean Graphs). Let µ be the Lebesgue527

measure on R3×n where n ≥ 3. Then, µ(R3×n \ R3×n
distinct) = 0.528

Proof. We defined R3×n
distinct = {X ∈ R3×n | d(i,X) ̸= d(j,X) ∀i ̸= j}.529

Then
R3×n \ R3×n

distinct = {X ∈ R3×n | ∃i ̸= j ∈ [n] s.t. d(j,X) = d(i,X)}
530

= {X ∈ R3×n | ∃i ̸= j ∈ [n] s.t. ∥ψpow(d(j,X))− ψpow(d(i,X)) ∥2 = 0} (11)
where ψpow is the power-sum polynomials defined as ψpow(x⃗) =(

∑n
i=1 xi, . . . ,

∑n
i=1 x

n
i), which is531

known to be injective on multisets with n elements.532

Equation 11 defines an algebraic manifold with a non-trivial polynomial equality constraint, thus is533

of dimension ≤ 3n− 1. If an algebraic manifold embedded in R3×n has dimension ≤ 3n− 1, then534

it has measure zero Basu et al. [2006a].535

536

Theorem 3.2. For every X,Y ∈ R3×n, a single iteration of the 2-SEWL test assigns X and Y the537

same value if and only if X =
SO[3,n]

Y .538

Proof. Let X, Y ∈ R3×n. Recall that a single iteration of the 2-SEWL assigns to each index pair i, j539

an initial coloring C(0)[i, j] = C(0)[i, j](X) corresponding to the 2× 2 Gram matrix of the points540

xi, xj . The coloring is then refined via541

C(1)(i, j) = Embed(0)
(
C(0)(i, j), {{

(
C(0)(k, j),C(0)(i, k), ⟨xi × xj , xk⟩

)
}}nk=1

)
.

and then a final global coloring is obtained from

CG = Embed(1)
(
{{C(1)(i, j)| (i, j) ∈ [n]2}}

)
Let us denote the global feature CG obtained from X by CG(X), and the global feature obtained542

from Y by CG(Y).543

By construction, if X =
SO[3,n]

Y then CG(X) = CG(Y). We need to prove that if CG(X) = CG(Y)544

then X =
O[3,n]

Y .545

To make the proof more readable, we introduce the following notation (we will later describe its546

significance):547

X[i,j] = [xi, xj , xi × xj] ∈ R3×3 (12)

P[i,j,k] = XT
[i,j]xk (13)

G[i,j](X) = XT
[i,j]X[i,j] (14)

h[i,j](X) = Embedα{{P[i,j,k] | k ∈ [n], k ̸= i, j}} (15)

m[i,j](X) =
(
G[i,j](X), h[i,j](X)

)
(16)

We now show that the multiset CG(X) = {{C(1)(i, j) | i, j ∈ [n]}} allows recovering the multiset548

hX := {{m[i,j] | i, j ∈ [n], i, j ∈ [n]}}.549

It is enough to show that we can recover m[i,j] from its corresponding C(1)[i, j] for every i, j ∈ [n]
and then the multiset equivalence follows immediately.Note that G[i,j] is the 3× 3 Gram matrix of
the vectors xi, xj , xi × xj . It can be recovered from C(0)(i, j), which is the 2× 2 Gram matrix of
xi, xj , because ⟨xi × xj , xk⟩ = ⟨xi × xj , xi⟩ = 0 and

∥xi × xj∥ = ∥xi∥∥xj∥| sin θ| = ∥xi∥∥xj∥
√

1− cos θ2 = ∥xi∥∥xj∥

√
1−
(

⟨xi, xj⟩
∥xi∥∥xj∥

)2

,

15

where θ is the angle between xi and xj . The quantity on the RHS of the equation can be extracted550

from C(0)(i, j).551

As for hi,j , we can recover it as a multiset since:552

P[i,j,k] =(⟨xi, xk⟩, ⟨xj , xk⟩, ⟨xi × xj , xk⟩) =
(
C(0)(i, k)[1, 2],C(0)(k, j)[1, 2], ⟨xi × xj , xk⟩

)
(17)

We saw that hX = Embed{{m[i,j](X)|i, j ∈ [n]}} can be recovered from CG(X) and thus in553

particular our assumption that CG(X) = CG(Y) implies that hX = hY . We will now use this to554

show that X =
SO[3,n]

Y .555

We first deal with the degenerate case where all points in X are identical, that is x1 = x2 = . . . = xn.556

In this case, all Gram matrices Gi,j(X), and all entries in each of the matrices, will be identical,557

and thus by assumption also all Gram matrices Gi,j(Y), and all their entries will be identical. This558

implies that Y also consists of a single point with the same norm as the one point in X , and therefore559

X =
SO[3,n]

Y .560

We can now assume that not all points in X are the same. Define r(X) = rank(X) =561

max
i,j∈[n]

rank(G[i,j](X)) (note that we assume that n ≥ 3). By assumption we have {{G[i,j](X)|i, j ∈562

[n]}} = {{G[i,j](Y)|i, j ∈ [n]}} , thus r(X) = r(Y) and there exist i ̸= j and s, t ∈ [n] such that563

G[i,j](X) = G[s,t](Y), (⋆) they both have rank r, and xi ̸= xj . Due to (*) it follows that ys ̸= yt564

and in particular s ̸= t.565

By Kraft and Procesi [1996], the equality of Gram matrices implies that there exists an orthogonal566

transformation, T ∈ O(3), such that567

T (xi) = ys, T (xj) = yt, T (xi × xj) = ys × yt. (18)

If xi × xs ̸= 0 we see that T preserves orientation and therefore T ∈ SO(3) (see Remark A.3).568

If not, and if T is a reflection, we can modify T to be a rotation which still satisfies (18) by com-569

posing it with a relfection that fixes the ≤ 1 dimensional subspace spanned by xi, xj . Thus in any570

case we can assume that T ∈ SO(3). By assumption and (⋆), we have {{P[i,j,k](X) k ̸= i, j}} =571

{{P[s,t,k](Y), k ̸= s, t}}.572

This implies that there exists some permutation σ ∈ Sn such that σ(i) = s.σ(j) = t and573

P[i,j,k](X) = P[s,t,σ(k)](Y) for all k ̸= i, j. We deduce that for all k ̸= i, j574

⟨ys, Txk⟩ = ⟨Txi, Txk⟩ = ⟨xi, xk⟩ = ⟨ys, yσ(k)⟩

and similarly575

⟨yt, Txk⟩ = ⟨yt, yσ(k)⟩
⟨ys × yt, Txk⟩ = ⟨ys × yt, yσ(k)⟩

Now note that each yk is in the span of ys, yt, ys × yt (even when r < 3), and similarly every xk576

is in the span of xi, xj , xi × xj and so Txk is also in the span of ys, yt, ys × yt. It follows that577

Txk − yσ(k) = 0, and thus we showed that X and Y are related by a SO[3, n] transformation.578

579

Remark A.3. In the proof above we said that if (18) holds, and ys×yt is not zero, then T is in SO(3).
This follows from the fact that for general orthogonal transformations and vectors a, b

(Ta)× (Tb) = det(T)T (a× b).

Setting a = xi, b = xj and using (18) we obtain that

ys × yt = det(T)(ys × yt)

and so if ys × yt is not zero, then det(T) = 1.580

Theorem 4.2. Let Fϕ denote the parametric function simulating the 2-SEWL test. Then for Lebesgue581

almost every ϕ the function Fϕ : R3×n → R6n+1 is separating with respect to the action of SO[3, n].582

16

Proof. We recall that Fϕ is defined to simulate a single iteration of the 2-SEWL test using sort-based583

injective multiset functions. In more detail, recall that the initial coloring corresponding to an index584

pair (i, j) and a point cloud X ∈ R3×n is given by the Gram matrix of xi, xj , and denoted by585

C(0)(i, j) = C(0)(i, j)(X). We then define586

C(1)(i, j) =
(
C(0)(i, j),Embedα

([
C(0)(k, j),C(0)(i, k), ⟨xi × xj , xk⟩

]n
k=1

))
.

and
CG = Embedβ

(
C(1)(i, j)| (i, j) ∈ [n]2

)
where Embedθ(y1, . . . , yn) is permutation invariant (=multiset function), continuous in θ and yi,587

and defined by588

Embedθ(y1, . . . , yn) = ⟨bj , Ψ
(
aTj y1 . . . , a

T
j yn

)
⟩, j = 1, . . . , 6n+ 1. (19)

with Ψ = sort (or alternatively, Ψ could be the power sum polynomials), and θ denoting the589

concatenation of all the mapping parameters ai and bj .590

We denote by ϕ = (α, β) the concatenation of the two parameter vectors of the Embed mappings in591

the constructions, and Fϕ(X) denoted the output CG = CG(X;ϕ) obtained by this construction.592

Since we already showed that the 2-SEWL test is complete, it is sufficient to show that for Lebesgue
almost every (α, β), the mapping Embedα is permutation invariant and separating on R3×n, and the
mapping Embedβ is permutation invariant and separating on the image of the mapping fα which we
define as

fα(X) =
(
C(1)(i, j)(X;α)| (i, j) ∈ [n]2

)
.

By Theorem 4.1 we know that Embedα is separating for Lebesgue almost every α. For fixed α, we
know that fα is a semi-algebraic mapping, since it is a composition of polynomials and the piecewise
linear sort function, which are semi-algebraic mappings, and as compositions of semi-algebraic
mappings are semi-algebraic mappings. The dimension of the image of a semi-algebraic mapping is
never larger than the dimension of the domain, and so fα(R3×n) is a semi-algebraic set of dimension
≤ dim(R3×n) = 3n (see Basu et al. [2006b] for the necessary real algebraic geometry statements re
composition and dimension). To apply Theorem 3.2 we need to work with a permutation invariant
domain, so we artifically enlarge the domain of Embedβ to be⋃

σ∈Sn2

σ(fα(R3×n))

which is a finite union of sets of dimension ≤ 3n and hence also has dimension ≤ 3n. It follows593

that for almost every β the function Embedβ is separating on this permutation invariant set, with594

embedding dimension of 6n + 1 as we defined in (19). Using Fubini’s theorem, this implies that595

for almost every (α, β) the functions Embedα and Embedβ are both separating, and this proves the596

theorem.597

Complexity We conclude by discussing the complexity of computing Fϕ. Calculating each598

C(1)(i, j) using sort-based embeddings Embedα requires O(n2 log(n)) operations.599

Since there are O(n2) such C(1)(i, j) the total complexity of computing all of them is O(n4 log(n)).600

In the second step we compute Embedβ on multisets of size D ×N where D = O(n), N = O(n2),601

and with embedding dimension of O(n). This requires O(n4 + n3 log(n)) operations , so the total602

complexity is O(n4 log(n))603

In Appendix D we extend our results to arbitrary d. In this case, we get a complexity of604

O(nd+1 log(n)) (where for simplicity we consider the limit n→ ∞ with d fixed, to cancel out some605

mixed terms in n, d which are negligible in this limit.).606

B Experiment Details607

As mentioned, we exemplified the viability of the theory presented by testing separation on challeng-608

ing point cloud pairs. We wished to address the following scenario: given a pair of point clouds, each609

labeled distinctly, what would be the accuracy score of SO[3, n] (or O[3, n]) invariant architectures610

in this classification task following training on a labeled dataset of these examples? This setup611

17

partly informs us of the separation capability of these architectures, i.e. how well do these models612

distinguish similar (for instance, 1-EWL equivalent), yet non-isomorphic, input?613

For implementation, we used code by Joshi et al. [2022] that implements several contemporary614

SO[3, n] invariant architectures and evaluated them as described below. This framework has several615

additional tests for geometric graphs, but they were irrelevant to our setting because they are redundant616

for the fully-connected geometric graphs we focus on. We modified the implementation of Joshi et al.617

[2022] by implementing our novel invariant architectures, 2-SEWLnet, implementing EGNN Victor618

Garcia Satorras [2021], and testing counterexample point cloud pairs from Pozdnyakov et al. [2020],619

Pozdnyakov and Ceriotti [2022]. We used implementation by Joshi et al. [2022] of MACE Batatia620

et al. [2022], TFN Thomas et al. [2018] and GVPGNN Jing et al. [2021]. The SO[3, n] invariant621

architectures are trained on replicas of each counterexample pair and then testing is performed on the622

same pair.623

B.1 Technical Details624

Hyperparameters 2-SEWLnet EGNN MACE TFN GVPGNN

Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001
Hidden Dimension 2 (Pair-wise) 1 2 64 64
Number of Layers 1 2 3 3 3
Batch size 1 1 1 1 1
Correlation NA NA 3 3 NA

Table 2: GNN implementations and code pipeline based on Joshi et al. [2022].

We trained the various invariant models on an NVIDIA A40 GPU implemented in PyTorch Paszke625

et al. [2019]. The hyperparameters were a learning rate of 0.0001 with Adam optimizer Kingma and626

Ba [2017], with the learning rate scheduler ReduceOnPLateau that reduces the learning rate once627

the loss stopped diminishing. We trained each model on a dataset of 50 copies of each pair for 100628

epochs, while injecting permutation and rotation to each point cloud during training. The test and629

validation datasets are each a pair of plain (no permutation or rotation injected) point clouds. Thus630

each epoch has ternary accuracy results, of 0%, 50%, and 100%. We then average the accuracy of631

the last 20% of epochs to obtain the overall accuracy. This was done to allow the model to converge632

while allowing for a sufficiently large test measurements to obtain statistical significance.633

B.2 2-SEWLnet634

2-SEWLnet is an implementation of a simulation of a single iteration of 2-SEWL, see 4. We imple-635

mented the architecture by directly embedding the multiset function Fϕ, using the low-dimensional636

invariant embeddings from Section 4. We chose the sort function as the one-dimensional permutation637

separating invariant, as it constitutes an isometry from Rn/Sn to Rn, then composing it with linear638

mappings, yields a Bi-Lipschitz mapping Balan et al. [2022], Dym and Gortler [2023]. We used639

differentiable sorting from PyTorch Paszke et al. [2019] to enable backpropagation. We note that the640

model is able to learn the classification task with backpropagation only using the sort vector-wise641

activation, i.e. without a fully-connected neural network composed on it. This is not a trivial result642

that is immediately implied by the completeness of 2-SEWL, as we aim to minimize the softmax643

cross-entropy loss and in practice reach almost zero loss, thus not only yielding two distinct embed-644

dings corresponding to each distinct point cloud (as guaranteed by Theorem 3.2) but learning them645

to be (approximately) one-hot encoded vectors using our injective continuous Embed functions.646

B.3 EGNN647

We used the EGNN version used for classification problems as described in Victor Garcia Satorras648

[2021], which does not use an equivariant coordinate update step. This version’s expressive power649

is bounded by 1-EWL. Interestingly, we found that using the original implementation did not yield650

sufficient separation for the classification task for the examples Hard1-3 in Table 1, yet when using651

sort and non-linear point-wise activations, rather than sums of neural network functions applied652

point-wise, led to perfect classification. The results in the table are reported with this implementation.653

18

C Background Theory654

C.1 Low Dimensional Separating Invariants655

In Section 4 We presented a condensed summary of the results from Dym and Gortler [2023] as656

they pertain to this paper’s scope. We devote this appendix to expound on the context of these657

results. In Subsection 4.1, we discussed the Power-Sum Symmetric Polynomials. These polynomials658

yield a separating invariant with respect to permutations of real-valued vectors in Rn. The invariant659

learning literature often discussed an extension of this characterization for vector-valued features,660

the Multi-Power-Sum Symmetric Polynomials, defined, for an input X = (x1 . . . xn) ∈ Rd×n and661

α = (α1, . . . , αd) ∈ Nd
≥0, as662

Pα(X) =

n∑
i=1

xαi (20)

P (X) =(Pα(X))α∈[n]d,|α|≤n (21)

where xα := xα1
1 . . . xαd

d and |α| :=
∑n

i=1 αi. These polynomials define a separating invariant for663

point clouds in Rd with respect to the permutation of the (n) columns Maron et al. [2019b]. Yet, its664

embedding dimension is
(
n+d
d

)
. The goal of Dym and Gortler [2023] was to reduce the embedding665

dimension to a complexity linear in the n · d dimension of the input.666

As a first example of such a result, Dym and Gortler [2023] show the for Lebesgue almost every667 (
n+d
d

)
dimensional vectors w1, . . . , w2nd+1668

X =
Sn

Y ⇐⇒ ⟨wi, P (X)⟩ = ⟨wi, P (Y)⟩, i = 1, . . . , 2 dim (M) + 1 (22)

Thus we obtain a separating invariant of dimension O(d · n) rather than O(n2d). Yet, we still had to669

calculate all of the O(n2d) polynomial entries. Therefore, computationally speaking, this approach670

did not yield much.671

To remedy this, Dym and Gortler [2023] proposed alternative invariants based on Rn permutation
invariants Ψ. Such a Ψ. and any choice of a vector a ∈ Rd, induces a permutation invariant on Rd×n

of the form
Rd×n ∋ (x1, . . . , xn) 7→ Ψ(aTx1, . . . , a

Txn).

This technique of producing high dimensional invariants from low dimensional ones is known as672

polarization. To obtain invariants that are also separating, we need (i) to choose Ψ to be invariant673

and separating on Rn. Two examples of such functions, are the functions Ψsort and Ψpow which we674

defined in (5):675

Ψsort(x1, . . . , xn) = sort(x1, . . . , xn) and Ψpow(x1, . . . , xn) =

(
n∑

i=1

xti

)n

t=1

.

Additionally, we need (ii) to choose not a single polarization function defined by a single a, but rather676

2nd+ 1 random vectors a1, . . . , a2nd+1. More precisely, Dym and Gortler [2023] showed that for677

Lebesgue almost every a1, . . . , a2nd+1 ∈ Rd and b1, . . . , b2nd+1 ∈ Rnthe function678

Embedθ(x1, . . . , xn) = ⟨bj , Ψ
(
aTj x1 . . . , a

T
j xn

)
⟩, j = 1, . . . , 2nd+ 1. (23)

defined in (6) is permutation invariant and separating. The role of the projection by the bj is to reduce679

the embedding dimension to 2nd+ 1 rather than the (2nd+ 1)n dimension we would get if these680

projections were not applied.681

We note that the complexity of a single invariant in (23) would be O(n log(n)) (assuming n > d)682

when using sorting or O(n2) when using power sum polynomials. Accordingly, the complexity of683

computing 2nd+ 1 invariants would be O(dn2 log(n)) using sorting or O(dn3) using power sum684

polynomials.685

Finally, we note that (as mentioned in the main text), if we’re interested in separation only on a686

semi-algebraic permutation invariant subset X ⊆ Rd×n with dimension DX , then the number of687

separating invariants needed in (23) would be 2DX + 1 rather than 2nd+ 1.688

19

D Extensions689

In the main text we described Vanilla k-WL tests which are well-defined for all k and d, and the690

2-SEWL test which is well-defined for the case d = 3 (since vector products are used). We now691

explain how to define a (d − 1) SEWL test for general d, and then explain how these tests can be692

easily modified to give a (d− 1)-EWL test with similar complexity, which is O[3, n] invariant and693

separating rather than SO[3, n] invariant and separating.694

D.1 SEWL for General Dimension d695

The complete 2-SEWL test for d = 3 point clouds can be generalized to a (d − 1)-SEWL test696

for general d-dimensional point clouds by a generalization of the cross-product operator. This697

generalization is formally known as the Hodge dual operator Jost [2017].698

For fixed xi1 , . . . , xid−i
∈ Rd, we define the following linear functional

f : Rd → R

f(x) = det (x, xi1 , . . . , xid−1
)

By Riesz’s Representation Theorem Bachman and Narici [2000], every linear functional on Rd is699

essentially a function in the form of a dot product against some (unique) vector in Rd. Thus, there700

exists some vector, denoted by x⋆ = x⋆(xi1 , . . . , xid−1
) ∈ Rd, such that701

det (x, xi1 , . . . , xid−1
) = f(x) = ⟨x, x⋆⟩. (24)

We see directly from the definition that x⋆ is orthogonal to xi1 , . . . , xid−1
and is non-zero if and only702

if these d− 1 vectors are linearly independent. Moreover, this choice of vector is SO(d) equivariant,703

which means that for any xi1 , . . . , xid−i
∈ Rd and R ∈ SO(d) we have704

x⋆(Rxi1 , . . . , Rxid−1
) = Rx⋆(xi1 , . . . , xid−1

). (25)

This is because for any x ∈ Rd we have705

det (x,Rxi1 , . . . , Rxid−1
) = det (RRTx,Rxi1 , . . . , Rxid−1

)

= det(R) det (RTx, xi1 , . . . , xid−1
)

= ⟨RTx, x⋆⟩
= ⟨x,Rx⋆⟩

Finally, we note that the coordinates of x∗ can be calculated by inserting the unit vectors e1, . . . , ed
into (24). That is

(x⋆)j = det
(
ej , xi1 , . . . , xid−1

)
where(x⋆)j is the j-th entry of x⋆. This requires computing d different determinants of d×dmatrices,706

and so the total complexity of computing x∗ is d4.707

The (d− 1)-SEWL test We have shown an extension of the definition of the cross-product that708

respects orientation, thus now we can naturally define a (d− 1)-SEWL test which will be SO[d, n]709

invariant and separating in d dimensions (generalizing the 2-SEWL test for d = 3).710

We define for each (d− 1)-tuple i ∈ [n]d−1 an initial coloring C(0)(i) = C(0)(i)(X) corresponding711

to the (d− 1)× (d− 1) Gram matrix of the points xi1 , . . . , xid−1
. We denote x∗(xi1 , . . . , xid−1

) by712

x∗(i). The coloring is then refined via713

C(1)(i) = Embed(0)
(
C(0)(i), {{

(
C(0)(i[k \ 1]), . . . ,C(0)(i[k \ (d− 1)]), ⟨x⋆(i), xk⟩

)
}}nk=1

)
.

where i[j \ t] is the multi-index i with its t-th coordinate replaced by j; e.g. for t = 1, i[j \ 1] =
(j, i2, . . . , ik). Then a final global coloring is obtained from

CG = Embed(1)
(
{{C(1)(i)| i ∈ [n]d−1}}

)
The (d− 1)-SEWL test can be shown to be SO[d, n] complete, using the same arguments used in714

the proof of Theorem 3.2.715

20

D.2 (d− 1)-EWL for general dimension d716

We now return to the case where reflections are also considered symmetries, and we’re looking for717

complete tests with respect to the group O[d, n]. The Vanilla-d-WL test will be O[d, n] complete.718

However, a more efficient test can be obtained by tweaking the (d − 1)-SEWL test which is not719

reflection-invariant, to attain a reflection invariant O[d, n] complete test.720

This tweaking is obtained as follows. We fix some reflection R0 (a reflection is an orthogonal matrix721

with a negative determinant). We define the (d− 1)-EWL test for a given X ∈ Rd×n by applying the722

(d− 1)-SEWL test to both X and R0X to obtain CG(X) and CG(R0X), and then computing a final723

global feature via724

Cref
G (X) = Embed(2){{CG(X),CG(R0X)}} (26)

In the following theorem, we show how the completeness of the (d − 1)-SEWL test implies the725

completeness of the (d− 1)-EWL test.726

Theorem D.1. For every X,Y ∈ Rd×n, a single iteration of the (d− 1)-EWL test assigns X and Y727

the same value if and only if X =
O[d,n]

Y .728

Proof. Invariance: We prove that for every R ∈ O(d) and permutation matrix P ∈ Sn we have729

that Cref
G (RXP) = Cref

G (X). We can divide into two cases: If R ∈ SO(d) then by the SO[d, n]730

invariance of CG(X) we have that731

CG(RXP) = CG(X)

CG(R0RXP) = CG((R0RR
T
0)R0XP) = CG(R0X)

On the other hand, if R is a reflection, then732

CG(RXP) = CG((RR
T
0)R0XP) = CG(R0X)

CG(R0RXP) = CG(X)

and so in both cases, we obtain that

Cref
G (RXP) = Embed(2){{CG(RXP),CG(R0RXP)}} = Embed(2){{CG(X),CG(R0X)}} = Cref

G (X)

Completeness: We prove that if X,Y ∈ Rd×n and Cref
G (X) = Cref

G (Y) then X and Y are related733

by a permutation and orthogonal transformation.734

Since Cref
G (X) = Cref

G (Y) it follows that either CG(X) = CG(Y) or CG(X) = CG(R0Y) . The735

completeness of the (d − 1)-SEWL test (Theorem 3.2) then implies that X is related to either Y736

or R0Y by an SO[d, n] transformation. In either case, this implies that X and Y are related by an737

O[d, n] transformation.738

D.3 Continuous Implementation and Computational Complexity739

In Section 4 we showed how the 2-SEWL test can be realized by a continuous piecewise differentiable740

architecture that uses sort-based multi-set injective functions. The complexity of this construction741

was O
(
n4 log(n)

)
. Similarly, the (d − 1)-SEWL and (d − 1)-EWL tests can be computed with742

complexity of O
(
nd+1 log(n)

)
(in the scenario where d stays constant and n→ ∞) . The leading743

order of the computation complexity stems from computing the nd−1 colorings
(
C(1)(i), i ∈ [n]d−1

)
744

and embedding their corresponding multisets, each one of those requires O(n2 log(n)) operations.745

21

	Proofs
	Experiment Details
	Technical Details
	2-SEWLnet
	EGNN

	Background Theory
	Low Dimensional Separating Invariants

	Extensions
	 SEWL for General Dimension d
	 (d-1)-EWL for general dimension d
	Continuous Implementation and Computational Complexity

