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In this supplementary material we discuss the arrival order interpretation, present the proofs of all
results, and discuss a notion of joint symmetry obtained by removing conditions 2 and 3 from JSY.

A ARRIVAL ORDER INTERPRETATION

As discussed in the paper, the joint Shapley value can be viewed in terms of the worth brought by
‘arriving’ agents but, rather than arriving one at time, they can now also arrive in coalitions. To
be precise, consider this procedure: at time 0, no agents have arrived; at each t ∈ {1, 2, . . .}, the
next set of agents to arrive is chosen uniformly from the set of non-empty subsets of size at most
k of the remaining (yet to arrive) agents. Then φJT is the expected worth brought by coalition T
when it arrives (a coalition is assigned zero worth if it does not arrive at any time). To see this,
denote by Ai the coalition to arrive at time i, by Bi the union of all coalitions that have arrived
up to time i: Bi =

⋃
j≤iAj , and by pT the probability that at some time coalition T arrives,

pT = P(∃ i : Bi = T ). We have the recursive relationship:

pT =

n∑
i=1

∑
S(T :

|S|≥|T |−k

P(Bi−1 = S)P(Ai = T \ S | Bi−1 = S)

=

n∑
i=1

∑
S(T :

|S|≥|T |−k

P(Bi−1 = S)

(n−|S|)∧k∑
r=1

(
n− |S|
r

)−1 =

|T |−1∑
s=(|T |−k)∨0

(
t

s

)
pS

(n−s)∧k∑
r=1

(
n− s
r

)−1 ,
where in the last line S is any set of size s. Thus we see that pT only depends on T through its
cardinality, and defining

p̂t := pT

(n−t)∧k∑
r=1

(
n− t
r

)−1

for any T with |T | = t, the expected worth brought by coalition T under this procedure is

n∑
i=1

∑
S⊆N\T

P(Bi−1 = S, Ai = T )[v(S ∪ T )− v(S)] =
∑

S⊆N\T

p̂|S|[v(S ∪ T )− v(S)].

Further, we have the relationship

p̂t =

∑t−1
s=(t−k)∨0

(
t
s

)
ps∑(n−t)∧k

r=1

(
n−t
r

)
and since we know that p0 = 1 (we start with no agents having arrived) and pn = 1 (we finish with
all agents having arrived) we also have the identities:

1 =

n−1∑
s=n−k

(
n

s

)
p̂s, 1 = p̂0

k∑
r=1

(
n

s

)
.

By comparing with the identities defining (q0, . . . , qn−1), we deduce that p̂t = qt for all t ∈
{0, . . . , n− 1}, which verifies this arrival interpretation.
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B PROOFS

Proof of Lemma 2. For the first statement, for each ∅ 6= S ⊆ N \ T consider the game

vS(R) =

{
1 if R = S or R = S ∪ T,
0 otherwise.

Then for such S, by JNU, φT (vS) = 0. By this equality, Lemma 1, and the definition of vS ,

0 = φT (vS) =
∑
R⊆N

aTRvS(R) = aTS + aTS∪T .

For the second statement, for each ∅ 6= H ( T let αH be a constant and for S ⊆ N \ T , consider
the game

xαS (R) =

{
αH if R = S ∪H for some ∅ 6= H ( T,

0 otherwise.

By JNU, φT (xαS ) = 0 for every S ⊆ N \ T . Thus by Lemma 1

0 = φT (x
α
S ) =

∑
R⊆N

aTRx
α
S =

∑
∅ 6=H(T

aTS∪Hx
α
S (S ∪H) =

∑
∅ 6=H(T

aTS∪HαH .

Since this holds for every choice of constants αH , it follows that aTS∪H = 0 for all S ⊆ N \ T and
∅ 6= H ( T , as required.

Proof of Proposition 1. By Lemma 1 there exist constants {aTS}S⊆N,∅ 6=T⊆N such that for every v
and ∅ 6= T ⊆ N ,

φT (v) =
∑
S⊆N

aTSv(S) =
∑

S⊆N\T

aTSv(S) + ∑
∅ 6=H(T

aTS∪Hv(S ∪H) + aTS∪T v(S ∪ T )


=

∑
S⊆N\T

(aTSv(S) + aTS∪T v(S ∪ T )) =
∑

S⊆N\T

aTS∪T [v(S ∪ T )− v(S)];

where the last two equalities owe to Lemma 2. The proof is complete by setting pT (S) = aTS∪T .

Proof of Proposition 2. Suppose φ satisfies axioms JLI, JNU and JEF. Then by Proposition 1 the
constants {pT (S)} exist, such that for every v and ∅ 6= T ⊆ N ,

φT (v) =
∑

S⊆N\T

pT (S)[v(S ∪ T )− v(S)].

Now for each ∅ 6= R ⊆ N consider the identity game

wR(S) =

{
1 if S = R,

0 otherwise.

Then for every ∅ 6= T ⊆ N with |T | ≤ k,

φT (wR) =
∑

S⊆N\T

pT (S)[wR(S ∪ T )− wR(S)].

Note that the term wR(S ∪ T ) − wR(S) in the above sum is equal to 1 only when S ( R and
T = R \ S, i.e. only when S = R \ T and ∅ 6= T ⊆ R. Further note that this term is equal to −1
only when S = R and T 6= ∅, i.e. when S = R and ∅ 6= T ⊆ N \R (as must have S ∩ T = ∅). In
all other cases, this term is 0. Hence we deduce from JEF that

δN (R) = wR(N) =
∑

∅6=T⊆R:
|T |≤k

pT (R \ T )−
∑

∅ 6=T⊆N\R:
|T |≤k

pT (R).
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Now we show the implication in the other direction. If φT (v) =
∑
S⊆N\T p

T (S)[v(S ∪ T )− v(S)]
then it is immediate that JLI and JNU are satisfied. For JEF, we wish to show that for every v,∑

∅6=T⊆N :
|T |≤k

∑
S⊆N\T

pT (S)[v(S ∪ T )− v(S)] = v(N).

Note that for each ∅ 6= R ⊆ N , the coefficient of v(R) on the left-hand side in the above equation is∑
∅ 6=T⊆R:
|T |≤k

pT (R \ T )−
∑

∅6=T⊆N\R:
|T |≤k

pT (R).

But by equation (4), this is equal to δN (R).

Proof of Proposition 3. In light of Proposition 2 we just have to consider JAN.

Only if: Suppose φ satisfies JLI, JNU, JEF and JAN. First, we shall establish that

pT (S) = pT (S′) ∀∅ 6= T ⊆ N, S, S′ ⊆ N \ T s.t. s = s′. (8)

Fix such a T , S and S′. Consider again the identity game, wS and let σ be a self-inverse permutation
such that S 7→ S′, S′ 7→ S, and σ ({i}) = {i} for all i 6∈ S ∪ S′. As T ⊆ N \ (S ∪ S′) and
σ (T ) = T , we have by JAN

φT (wS) = φσ−1(T ) (wS) = φT (σwS)

where

σwS (R) = wS
(
σ−1 (R)

)
=

{
1 if R = σ (S) = S′

0 otherwise

}
= wS′ (R) .

Hence we obtain φT (wS) = φT (σwS) = φT (wS′). Next, from Proposition 1 we have

φT (wS) =
∑

Q⊆N\T

pT (Q) [wS (Q ∪ T )− wS (Q)] = −pT (S) ,

and similarly φT (wS′) = −pT (S′). Hence we obtain pT (S) = pT (S′), showing (8).

Using induction on s, we now establish that (5) holds. Fix T and T ′ of the same size. For the base
case, suppose s = s′ = n − t. For S ⊆ N \ T and S′ ⊆ N \ T ′, this forces S = N \ T and
S′ = N \ T ′. Now consider the game

xn (R) =

{
1 if r = n

0 otherwise,

so that xn (R) = 1 if and only if R = N . Define a self-inverse permutation σ so that σ (T ) = T ′,
σ (T ′) = T and σ ({i}) = {i} for all i 6∈ (T ∪ T ′). Then by JAN and as σxn = xn,

φT (xn) = φσ−1(T ′)(xn) = φT ′(σxn) = φT ′(xn).

Next, from Proposition 1,

φT (xn) =
∑

Q⊆N\T

pT (Q) [xn (T ∪Q)− xn (Q)] = pT (N \ T ) ,

and similarly φT ′ (wn) = pT
′
(N \ T ′). Hence we obtain pT (N \ T ) = pT

′
(N \ T ′) which

establishes the base case.

We now suppose that pT (S) = pT
′
(S′) for all s = s′ ≥ n− c where S ⊆ N \ T , S′ ⊆ N \ T ′ and

c is a positive integer. We shall show that pT (S) = pT
′
(S′) for all s = s′ ≥ n− c− 1 where where

S ⊆ N \ T and S′ ⊆ N \ T ′. To this end, consider the game

x (R) =

{
1 if r ≥ n− c− 1 + t,

0 otherwise
.
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Thus, as before, we may write

φT (x) =
∑

Q⊆N\T

pT (Q) [x (Q ∪ T )− x (Q)] =
∑

Q⊆N\T
n−c−1≤q<n−c−1+t

pT (Q) .

Similarly,
φT ′ (x) =

∑
Q′⊆N\T ′

n−c−1≤q′<n−c−1+t

pT (Q) .

Again, by JAN, we prove that φT (x) = φT ′ (x). Define a self-inverse permutation σ so that σ (T ) =
T ′, σ (T ′) = T and σ ({i}) = {i} for all i 6∈ (T ∪ T ′). As worth in game x depends only on a
coalition’s cardinality, we have σx = x. Thus, by JAN, φT (x) = φσ(T )(σx) = φσ(T )(x) = φT ′(x).

However,

φT (x) =
∑

Q⊆N\T
q=n−c−1

pT (Q)+
∑

Q⊆N\T
n−c−1<q<n−c−1+t

pT (Q) =
∑

Q⊆N\T
q=n−c−1

pT (Q)+
∑

Q′⊆N\T ′
n−c−1<q′<n−c−1+t

pT
′
(Q′) ;

and
φT ′ (x) =

∑
Q′⊆N\T ′
q′=n−c−1

pT
′
(Q′) +

∑
Q′⊆N\T ′

n−c−1<q′<n−c−1+t

pT
′
(Q′)

which gives, by the inductive hypothesis and φT (x) = φT ′(x),∑
Q⊆N\T
q=n−c−1

pT (Q) =
∑

Q′⊆N\T ′
q′=n−c−1

pT
′
(Q′) .

But by (8), pT (Q) = pT (Q′) if q = q′. Thus the above equation becomes(
n− t

n− c− 1

)
pT (Q) =

(
n− t

n− c− 1

)
pT
′
(Q′)

for any Q ⊆ N \T and Q′ ⊆ N \T ′ with q = q′ = n− c−1. Thus, pT (Q) = pT
′
(Q′), completing

the inductive step, and the ‘only if’ statement.

If: Suppose (5) is satisfied. Fix a permutation σ on N and game v ∈ GN . Then for any ∅ 6= T ⊆ N ,

φT (σv) =
∑

S⊆N\T

pT (S) [σv (S ∪ T )− σv (S)] =
∑

S⊆N\T

pT (S)
[
v
(
σ−1 (S ∪ T )

)
− v

(
σ−1 (S)

)]
=

∑
S⊆N\T

pT (S)
[
v
(
σ−1 (S) ∪ σ−1 (T )

)
− v

(
σ−1 (S)

)]
.

Defining the set S′ = σ−1 (S) allows us to rewrite the above as

φT (σv) = · · · =
∑

S′⊆N\σ−1(T )

pT (σ (S′))
[
v
(
S′ ∪ σ−1 (T )

)
− v (S′)

]
=

∑
S′⊆N\σ−1(T )

pσ
−1(T ) (S′)

[
v
(
S′ ∪ σ−1 (T )

)
− v (S′)

]
= φσ−1(T )(v),

with the penultimate step due to condition (5).

Proof of Proposition 4. In light of Proposition 2 we just have to consider JSY.

Only if: Suppose φ satisfies JLI, JNU, JEF and JSY, fix ∅ 6= T, T ′ ⊆ N , and consider again the
identity game wR. Then for any ∅ 6= R ⊆ N \ (T ∪ T ′),

• wR(S ∪ T ) = 0 = wR(S ∪ T ′) for all S ⊆ N \ (T ∪ T ′),
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• wR(S ∪ T ) = 0 = wR(S) for all S ⊆ N \ T such that S ∩ T ′ 6= ∅,

• wR(S ∪ T ′) = 0 = wR(S) for all S ⊆ N \ T ′ such that S ∩ T 6= ∅.

Hence by JSY φT (wR) = φT ′(wR). But φT (wR) = pT (R) and φT ′(wR) = pT (R). This shows
that pT (R) = pT

′
(R) for all ∅ 6= R ⊆ N \ (T ∪ T ′). To show that pT (∅) = pT

′
(∅) we consider

the game

w∗(S) =

{
1 if S 6= ∅,
0 otherwise.

Then

• w∗(S ∪ T ) = 1 = w∗(S ∪ T ′) for all S ⊆ N \ (T ∪ T ′),

• w∗(S ∪ T ) = 1 = w∗(S) for all S ⊆ N \ T such that S ∩ T ′ 6= ∅ (since then S 6= ∅),

• w∗(S ∪ T ′) = 1 = w∗(S) for all S ⊆ N \ T ′ such that S ∩ T 6= ∅ (since then S 6= ∅).

It thus follows by JSY that φT (w∗) = φT ′(w
∗). However, φT (w∗) = pT (∅) and φT ′(w∗) =

pT
′
(∅), which gives the required identity and shows that (6) holds.

If: Now we show the implication in the other direction. Suppose (6) holds and v ∈ GN satisfies the
three conditions in JSY. Then

φT (v) =
∑

S⊆N\T

pT (S)[v(S ∪ T )− v(S)] =
∑

S⊆N\(T∪T ′)

pT (S)[v(S ∪ T )− v(S)]

=
∑

S⊆N\(T∪T ′)

pT
′
(S)[v(S ∪ T ′)− v(S)] =

∑
S⊆N\T ′

pT
′
(S)[v(S ∪ T ′)− v(S)] = φT ′(v).

Hence JSY is satisfied.

Proof of Theorem 1. We have to show that there exists exactly one choice of constants {pT (S)}
which satisfy equations (4)–(6). Notice that satisfying (5) and (6) is equivalent to satisfying

pT (S) = pT
′
(S)∀S ⊆ N \ T, S′ ⊆ N \ T ′ s.t. s = s′.

Thus pT (S) does not depend on T at all, and only depends on the cardinality of S. Let qs denote
pT (S) for any S ⊆ N \ T . Then we can re-write equation (4) in terms of qs as

1 =

n−1∑
i=n−k

(
n

i

)
qi, (9)

qs =

∑s−1
i=(s−k)∨0

(
s
i

)
qi∑k∧(n−s)

i=1

(
n−s
i

) ∀ s ∈ {1, . . . , n− 1}. (10)

Note that for any q0, equation (10) fully determines all other qi, for i ∈ {1, . . . , n − 1} and q0 is
then determined by (9). Thus there is at most one solution. However, we have already identified
(see the arrival-order discussion in Appendix A) that a solution to this recurrence is given by

(q0, . . . , qn−1) = (p̂0, . . . , p̂n−1), for which p̂0 =
(∑k

i=1

(
n
i

))−1
.

C STRONG JOINT SYMMETRY

We examine the effect of removing conditions 2 and 3 from JSY. As it turns out, this leads to the
non-existence of an interaction index. To be precise, we consider replacing axioms JAN and JSY
with:

SJS strong joint symmetry : fix ∅ 6= T, T ′ ⊆ N . Then

v (S ∪ T ) = v (S ∪ T ′)∀S ⊆ N\ (T ∪ T ′)
⇒ φT (v) = φT ′ (v) .
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Proposition C.1. There is no interaction index φ satisfying axioms JLI, JNU, JEF, and SJS that is
guaranteed to exist for all games.

Proof. Since φ satisfies JLI, JNU, and JEF, by Proposition 2,

φT (v) =
∑

S⊆N\T

pT (S)[v(S ∪ T )− v(S)]

with {pT (S)} satisfying (4), for any game v ∈ GN . We consider two games v1, v2 ∈ G{1,2}. As
N = {1, 2}, (4) gives p{1}(∅) = p{2}({1}), p{2}(∅) = p{1}({2}), and p{1,2}(∅) + p{1}(∅) +
p{2}(∅) = 1.

Suppose v1({1}) = v1({1, 2}) = 1, v1({2}) = 0. SJS thus gives that φ{1}(v1) = φ{1,2}(v1), i.e.
p{1,2}(∅) = p{1}(∅) + p{2}(∅) which implies p{1,2}(∅) = 1/2.

Suppose also that v2({1}) = v2({1, 2}) = v2({2}) = 1. SJS gives that φ{1}(v2) = φ{2}(v2) =

φ{1,2}(v2), i.e. p{1,2}(∅) = p{1}(∅) = p{2}(∅) which implies p{1,2}(∅) = 1/3, giving a contra-
diction.

Thus, SJS is too strong a notion of symmetry, imposing linear restrictions on sets of unequal sizes.
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