
Published as a conference paper at ICLR 2025

APPROXIMATING FULL CONFORMAL PREDICTION
FOR NEURAL NETWORK REGRESSION WITH GAUSS-
NEWTON INFLUENCE

Dharmesh Tailor1∗, Alvaro H.C. Correia2, Eric Nalisnick3, Christos Louizos2
1University of Amsterdam 2Qualcomm AI Research† 3Johns Hopkins University

ABSTRACT

Uncertainty quantification is an important prerequisite for the deployment of deep
learning models in safety-critical areas. Yet, this hinges on the uncertainty esti-
mates being useful to the extent the prediction intervals are well-calibrated and
sharp. In the absence of inherent uncertainty estimates (e.g., pretrained models
predicting only point estimates), popular approaches that operate post-hoc include
Laplace’s method and split conformal prediction (split-CP). However, Laplace’s
method can be miscalibrated when the model is misspecified and split-CP requires
sample splitting, and thus comes at the expense of statistical efficiency. In this
work, we construct prediction intervals for neural network regressors post-hoc
without held-out data. This is achieved by approximating the full conformal pre-
diction method (full-CP). Whilst full-CP nominally requires retraining the model
for every test point and candidate label, we propose to train just once and locally
perturb model parameters using Gauss-Newton influence to approximate the effect
of retraining. Coupled with linearization of the network, we express the absolute
residual nonconformity score as a piecewise linear function of the candidate label
allowing for an efficient procedure that avoids the exhaustive search over the out-
put space. On standard regression benchmarks and bounding box localization, we
show the resulting prediction intervals are locally-adaptive and often tighter than
those of split-CP.

1 INTRODUCTION

Despite impressive advancements in machine learning, most models, particularly neural networks,
are still designed and trained to provide only point estimates, lacking the ability to rigorously quan-
tify uncertainty in their predictions. This poses a significant challenge, as reliable decision-making
depends on trustworthy uncertainty representation. This need has drawn increased attention to un-
certainty quantification in machine learning research, especially as the use of these models becomes
more widespread and permeate safety-sensitive fields such as healthcare and autonomous driving.

Conformal Prediction (CP) (Vovk et al., 2005) is a class of uncertainty quantification methods
that represent uncertainty via prediction intervals. These intervals intuitively convey the degree
of uncertainty—the larger the interval, the greater the uncertainty. What sets CP apart is a rigorous,
distribution-free coverage guarantee: conformal prediction intervals contain the true label with a
probability of at least 1 − α, where α is a user-defined miscoverage rate. In recent years, a variant
known as split (or inductive) CP (Papadopoulos et al., 2002) has gained traction in the machine learn-
ing community due to its ease of use and low computational cost. Split-CP, as the name suggests,
divides the available data into training and calibration sets, using the former to fit a model and the
latter to construct prediction intervals. Yet, split-CP is statistically inefficient as it cannot leverage
all available data for model fitting, which hinders overall model performance. In contrast, full (or
transductive) CP uses all data for both training and calibration but incurs high computational costs.
It requires retraining the model multiple times—once for each test point and possible label—which
is prohibitively expensive for deep learning applications.

∗Work done while at Qualcomm AI Research. †Qualcomm AI Research is an initiative of Qualcomm
Technologies, Inc. and/or its subsidiaries.

1

Published as a conference paper at ICLR 2025

0 200 400 600 800 1000

Test point index

2× 102

3× 102

4× 102

In
te

rv
al

w
id

th

ACP-GN(ours) SCP LA

y

ab
so

lu
te

re
si

d
u

al
s

|y − f lin
N+1(θ̂+

∗ (y))|

|yi − f lin
i (θ̂+

∗ (y))|

0

1

p
-v

al
u

e

Figure 1: Our approx. full-CP via Gauss-Newton influence (ACP-GN) produces adaptive intervals
(bottom left figure)—similar to Bayes via Laplace approximation (LA)—while satisfying coverage
as seen in the high-overlap with split-CP (SCP) close to the data (white dots with black edge in top
left figure). In the top right, we show the absolute residuals for the training points (in gray) and test
point (in pink) as function of the postulated label for the test point xN+1. The conformal p-values,
in the bottom right, only change when the pink line crosses a gray line, the so-called “changepoints”,
reducing the search space over candidate labels to incorporate in the prediction set.

In this work, we scale full-CP to neural network regression by (i) eliminating the need for retraining
through a Gauss-Newton influence approximation, and (ii) avoiding an exhaustive search over the
label space via network linearization. This gives a new, scalable full-CP method for neural network
regression we dub approximate full-CP via Gauss-Newton influence (ACP-GN). As a second contri-
bution, we show the same tools can be applied to enhance split-CP via normalization, yielding a new
adaptable split-CP method we call SCP-GN. We validate ACP-GN and SCP-GN in several regres-
sion and bounding box prediction tasks, showing they satisfy coverage in most cases and produce
tight, adaptable prediction intervals (see Fig. 1 for results with ACP-GN).

2 BACKGROUND ON CONFORMAL PREDICTION

Neural network regression follows the canonical empirical risk minimization framework. Given a
dataset DN := {(xi, yi)}Ni=1 consisting of N examples with inputs xi ∈ RI and targets yi ∈ R, we
minimize the (regularized) empirical risk:

θ∗ = argminθ

(∑N
i=1 ℓ(yi, fi(θ)) +

1
2δ ∥θ∥

2
)

(1)

where fi(θ) is shorthand for f(xi;θ), the output of a deep neural network (DNN) at xi with param-
eters θ ∈ RD, ℓ(y, f) is a loss function, and δ is an L2 regularizer (i.e. weight decay). In this work,
we restrict our attention to the squared-error loss: ℓ(y, f) = 1

2 (y − f)
2. As is standard practice,

the problem in Eq. (1) is approached using stochastic-gradient methods. For an unseen input xN+1,
this gives us a point prediction fN+1(θ∗). However, in an ideal scenario, we would like a prediction
interval whose width reflects the uncertainty associated with that input. This is where conformal
prediction (Vovk et al., 2005) comes into play. It provides a framework for constructing prediction
intervals while satisfying the following frequentist coverage guarantee known as marginal coverage

P (yN+1 ∈ Cα(xN+1)) ≥ 1− α, (2)

2

Published as a conference paper at ICLR 2025

where yN+1 is the unseen target, Cα(xN+1) is the prediction interval with desired miscoverage rate
α ∈ (0, 1), and the probability is over all samples {(xi, yi)}N+1

i=1 , hence the name marginal coverage.

The prediction interval Cα(xN+1) is constructed using nonconformity scores, which quantify how
unusual a sample (xi, yi) is compared to other samples in a set. In the context of regression, which
is the focus of this paper, the absolute residual Ri = R(xi, yi) = |yi − fi(θ)| is the most common
score (Kato et al., 2023). Given the data DN and a score function, Cα(xN+1) is defined as

Cα(xN+1) = {y ∈ R : π(y) ≤ ⌈(1− α)(N + 1)⌉} , (3)

where π(y) =
∑N+1

i=1 1{Ri ≤ R(xN+1, y)} is the rank of R(xN+1, y) among the other N resid-
uals. Remarkably, the only requirement for prediction intervals constructed as in Eq. (3) to satisfy
marginal coverage is that the set of scores {R(xi, yi)}N+1

i=1 be exchangeable. This is equivalent to
assuming the data is exchangeable and the score function (and consequently the regressor) preserves
this exchangeability by treating data points symmetrically. Thus, Eq. (2) is a distribution-free guar-
antee that remains valid even if the model is misspecified. This contrasts with Bayesian methods, the
dominant approach for uncertainty quantification in deep learning, which are often poorly calibrated
under model misspecification (Dawid, 1982; Fraser, 2011; Grünwald & van Ommen, 2017).

2.1 SPLIT CONFORMAL PREDICTION

As stated in the introduction, CP methods can generally be categorized into split-CP and full-CP
variants. The primary distinction between these two families of methods lies in how they ensure
the exchangeability of the set of scores {R(xi, yi)}Ni=1 ∪ {R(xN+1, y)}. Essentially, this means
that all samples, including the test sample (xN+1, yN+1), must exert the same influence over the
prediction model f(·;θ). Split-CP offers the simplest and most computationally efficient solution.
By keeping the model fixed when computing the scores of each of the N + 1 samples, it ensures
the scores are exchangeable, as the score function is applied elementwise. However, this approach
is data inefficient because it prevents using the first N samples to fit the model, requiring a separate
training dataset. This statistical inefficiency can negatively impact the quality of the final prediction
intervals in two key ways. Since any conformal prediction method is designed to achieve coverage
as described in Eq. (2), different approaches are compared in terms of their efficiency—how small
the prediction intervals are—and adaptability—how much the size of the prediction intervals varies
across samples. To be informative about both the true label and predictive uncertainty, prediction
intervals must be both efficient and adaptable. However, in split-CP, efficiency is compromised
because not all data is used for calibration, while fixing the model parameters reduces adaptability.

2.2 FULL CONFORMAL PREDICTION

Full-CP uses all available data for both training the model and computing prediction intervals. The
main challenge in full-CP is that exchangeability of scores requires treating all data points symmet-
rically, meaning the model should be fit on {(xi, yi)}Ni=1 as well as (xN+1, yN+1). Since yN+1 is
unknown a priori, this necessitates retraining the model for all possible values yN+1 can take. To be
precise, full-CP requires the following modification to the optimization problem in Eq. (1)

θ+
∗ (y) = argminθ

(∑N
i=1 ℓ(yi, fi(θ)) + ℓ(y, fN+1(θ)) +

1
2δ ∥θ∥

2
)
, (4)

where θ+
∗ (y) is the optimal model parameters for the augmented training set DN+1(y) := DN ∪

{(xN+1, y)} that includes the test point xN+1 plus a candidate label y for yN+1. With a slight abuse
of notation, we use Ri(y) to denote the residual with model parameters θ+

∗ (y), that is,

Ri(y) = |yi − fi(θ
+
∗ (y))| ∀i = 1, . . . , N and RN+1(y) = |y − fN+1(θ

+
∗ (y))|. (5)

From here we can construct prediction intervals as in Eq. (3), but now the residuals vary for each
test point xN+1 and candidate label y ∈ R. As mentioned before, this has two major limitations.
Firstly it requires retraining the model for every candidate label y which is infeasible for DNNs.
Secondly in theory the method asks to consider an uncountable set (i.e. all real numbers). Therefore,
in practice a finite grid of possible labels for y is used, typically delimited by the training targets.
Evidently, the grid imposes computation-precision trade-off and has implications for the coverage
if a valid candidate happens to lie between two grid points (Chen et al., 2018). In a few cases, the

3

Published as a conference paper at ICLR 2025

prediction set can be computed efficiently and exactly without the need to try candidate labels of y.
In addition, this procedure only depends on a single fit on the original (unaugmented) dataset which
can be efficiently updated not only for variations in y but also for different inputs xN+1. These
include the Lasso (Lei, 2019), k-Nearest Neighbours Regression (Papadopoulos et al., 2011), and
ridge regression (Nouretdinov et al., 2001; Burnaev & Vovk, 2014). There are also approaches based
on homotopy continuation methods (Ndiaye & Takeuchi, 2019) and algorithmic stability (Ndiaye,
2022) that hold in more general settings. In the following section, we review conformalized ridge
regression which is the basis of our approximate full-CP procedure.

2.3 CONFORMALIZED RIDGE REGRESSION (CRR)

Ridge regression is a special case of Eq. (1) where we have a linear model fi(θ) := x⊤
i θ. In this

case, the absolute residual can be written as a piecewise linear function of the candidate y with
Ri(y) = |ai + biy|, where ai and bi are coefficients capturing information from the training data
and test point, resp. It is then convenient to express the rank as π(y) =

∑N+1
i=1 1{y ∈ Si}, with

Si = {y : Ri(y) ≤ RN+1(y)} = {y : |ai + biy| ≤ |aN+1 + bN+1y|}. (6)
Each set Si can be an interval, a point, a ray, a union of two rays, the real line, or the empty set.
Eq. (6) suggests that the rank for a given y can only change at points where Ri(y) = RN+1(y) to
which we refer as “changepoints”. For the absolute residual, these changepoints fall into one of the
following two cases, where we assume bi ≥ 0 (if needed, multiplying ai and bi by −1):

• If bi ̸= bN+1, then Si is an interval or a union of two rays, and we have two changepoints,
−(ai − aN+1)/(bi − bN+1) and −(ai + aN+1)/(bi + bN+1).

• If bi = bN+1 ̸= 0, then Si is a ray, unless ai = aN+1, in which case Si = R. Here we
have single changepoint −(ai + aN+1)/2bi.

This leads to an exact form of the prediction set by taking the union of finitely many intervals and
rays whose endpoints are given by the changepoints sorted in increasing order. Given the change-
points, different implementations have been proposed with varying time complexity. For the smaller
datasets, we use the ridge regression confidence machine algorithm (Nouretdinov et al., 2001; Vovk
et al., 2005), which uses the absolute residual and changepoints described above.

There is also a simpler, asymmetric version of CRR that uses the signed residuals (Burnaev & Vovk,
2014). It allows us to compute the lower and upper bounds of Cα(xN+1) separately, using residuals
fi(θ) − yi for the lower bound, and yi − fi(θ) for the upper bound. This is the version we use for
the larger datasets and that appears in the depiction of our method in Alg. 2, where we use li and ui

to denote the changepoints for the lower and upper bounds, resp. When using signed residuals, Si

is either a ray with changepoint li = ui = (ai−aN+1)/(bN+1−bi) if bN+1 − bi > 0 or otherwise,
Si = R with li = −∞ and ui =∞.

Finally, we need to write down the expression for coefficients ai and bi. Using the Sherman-
Morrison formula, a widely-used tool of the regressions diagnostics literature (Cook, 1977), Burnaev
& Vovk (2014) showed that the required coefficients a1, . . . , aN+1 and b1, . . . , bN+1 for the CRR
procedure can be efficiently computed for different xN+1 by a simple rank-1 update or perturbation
to the ridge solution on DN (see App. A for derivation):

yi − xT
i θ

+
∗ (y) = yi − xT

i θ∗ +
hi,N+1

1 + hN+1
x⊤
N+1θ∗︸ ︷︷ ︸

ai

− hi,N+1

1 + hN+1︸ ︷︷ ︸
bi

y (7)

y − xT
N+1θ

+
∗ (y) = −

1

1 + hN+1
x⊤
N+1θ∗︸ ︷︷ ︸

aN+1

+
1

1 + hN+1︸ ︷︷ ︸
bN+1

y (8)

where hN+1 = x⊤
N+1H

−1
∗ xN+1 with Hessian matrix H∗ =

∑N
i=1 xix

⊤
i + δI.

2.4 NORMALIZED NONCONFORMITY SCORES

In the previous section, we derived CRR using the nonconformity score given in Eq. (5), which is
often referred to as add-one-in (AOI). In this section, we also consider the leave-one-out (LOO) and

4

Published as a conference paper at ICLR 2025

studentized scores, which lead to the variants CRR-deleted and CRR-studentized and their corre-
sponding extensions to neural network regression given by our approximate full-CP method. All
those variants are valid choices (Vovk et al., 2005; Shafer & Vovk, 2008), and the literature is not
conclusive regarding which one is to be preferred (Fong & Holmes, 2021; Fontana et al., 2023). Yet,
in our neural network regression experiments, the studentized variant outperformed the other two.

In the leave-one-out (LOO) variety (also known as jackknife), scores RLOO
i are computed by ex-

cluding the ith data point from the augmented data DN+1(y) before retraining the model. The only
exception being RLOO

N+1, which requires no retraining, as θ∗ already ignores the (N +1)th data point.
In the case of ridge regression with absolute residuals, we can derive the jackknife score from the
standard one as (Vovk et al., 2005)

RLOO
i = Ri/(1−h̄i), (9)

where we have included the leverage score with respect to the augmented problem h̄i = x⊤
i H̄

−1
∗ xi,

with H̄∗ =
∑N+1

i=1 xix
⊤
i + δI. The leverage score (Chatterjee & Hadi, 1986) can be viewed as

a diagnostics measure for measuring the sensitivity of the prediction to changes in the target. The
formula is a consequence of the exact rank-1 updates available in ridge regression. This leads to the
deleted-CRR method which proceeds in the same way as standard CRR except it uses the normalized
coefficients: ai ← ai/(1− h̄i) and bi ← bi/(1− h̄i) for i = 1, . . . , N + 1. Such relations can also
be used to recover the standard score starting from the jackknife one:

Ri = RLOO
i /

(
1+h̄

\i
i

)
, (10)

where h̄\i
i = x⊤

i H̄
\i
∗ xi with H̄

\i
∗ =

∑N+1
j=1,j ̸=i xjx

⊤
j + δI. Papadopoulos (2024) gave an interpreta-

tion of this relation as locally-weighted conformal prediction (Papadopoulos et al., 2008) where the
expression in the denominator can be seen as the leave-one-out predictive variance from a Bayesian
perspective. This can be seen as a measure of the difficulty of the ith example. Similar normalizations
can also be applied to nonconformity scores in a split-CP framework (Vovk et al., 2005). Finally, the
studentized-CRR can be interpreted as a compromise between standard and deleted-CRR. It uses a
similar normalization and defines nonconformity scores as

Rstudent
i = Ri/

√
1−h̄i. (11)

This transformation is applied analogously to the CRR coefficients with ai and bi.

3 APPROXIMATE FULL-CP FOR NEURAL NETWORK REGRESSION

In previous work, (Martinez et al., 2023) used influence function (Jaeckel, 1972; Cook & Weis-
berg, 1980) to approximate the retraining step in full-CP by locally perturbing the solution on the
unaugmented dataset. This ensures that a neural network is trained only once on the original data.
However, this was restricted to classification problems and so their approach requires discretizing
the (continuous) target space. This introduces an additional computational burden and must be done
in a careful way to avoid further increasing the coverage gap (Chen et al., 2018). We propose to use
a local perturbation closely related to influence function alongside network linearization in order to
express the residual nonconformity score as a linear function of the candidate label that recovers
Eqs. (7) and (8) as a special case. Then by leveraging the conformalized ridge regression framework
(Nouretdinov et al., 2001), we can eliminate the need to specify a grid of candidate labels.

We propose Gauss-Newton influence to approximate the solution to the augmented problem
θ̂+
∗ (y) ≈ θ+

∗ (y),

θ̂+
∗ (y) = θ∗ +

êN+1(y)

1 + ĥN+1

H−1
GNϕN+1, (12)

where ϕi := ∇θfi(θ∗)
⊤ is the Jacobian of the neural network at θ∗, HGN =

∑N
i=1 ϕiϕ

⊤
i + δI

is the Gauss-Newton approximation to the Hessian, êN+1(y) = y − fN+1(θ∗) is the residual for
the (N + 1)th example and ĥN+1 = ϕ⊤

N+1H
−1
GNϕN+1 can be interpreted as a kind of generalized

leverage score (Wei et al., 1998). This is a specialization of Newton-step (NS) influence (Pregibon,
1981; Beirami et al., 2017), a technique closely related to influence function (Jaeckel, 1972; Koh &
Liang, 2017), by approximating the Hessian by the Gauss-Newton matrix (Martens, 2010) followed
by a rank-one update (see App. B for the derivation). Whilst such influence measures are commonly

5

Published as a conference paper at ICLR 2025

used for estimating the effect of removing a single example (or group of examples) on the model, we
extend this for adding an example, that is add-one-in (AOI) estimation. Previous work has shown
that NS influence more accurately estimates the solution to the modified problem than influence
function (Pregibon, 1981; Rad & Maleki, 2020). However, at present influence function is the more
common choice since in its standard form NS influence requires recomputing and inverting the
Hessian matrix whenever a different target effect (e.g. change in removed example(s)) is desired,
thus incurring a higher computational cost. Our use of the Gauss-Newton approximation leads to a
form amenable to a rank-one update, similar to generalized linear models (Pregibon, 1981), bringing
down the complexity to that of influence function.

Next we show that using Eq. (12) along with linearization of the neural network, we can approximate
the residual as a linear function of the postulated label y recovering an identical form to that of
conformalized ridge regression in Eqs. (7) and (8),

yi − fi(θ
+
∗ (y)) ≈ yi − fi(θ∗) +

ĥi,N+1

1 + ĥN+1

fN+1(θ∗)︸ ︷︷ ︸
ai

− ĥi,N+1

1 + ĥN+1︸ ︷︷ ︸
bi

y (13)

y − fN+1(θ
+
∗ (y)) ≈ −

1

1 + ĥN+1

fN+1(θ∗)︸ ︷︷ ︸
aN+1

+
1

1 + ĥN+1︸ ︷︷ ︸
bN+1

y (14)

where ĥi,N+1 = ϕ⊤
i H

−1
GNϕN+1 (see App. C for the derivation and App. D for the extension to

the multi-output setting). This is not surprising as it is known that NS influence recovers the exact
leave-one-out diagnostics in linear regression (Allen, 1974; Cook, 1977), which is not the case for
influence function. The coefficients can be readily adapted for normalized nonconformity scores
as outlined in Sec. 2.4. Our use of network linearization is akin to the “direct” approach used in
Martinez et al. (2023) to approximate the nonconformity scores on the augmented solution directly.

In Alg. 2, we outline a simplified but complete algorithmic depiction of our method, which we dub
approximate full-CP via Gauss-Newton influence (ACP-GN). We contrast it with standard full-CP
in Alg. 1, highlighting the costly grid search and retraining steps (see App. G for a time complexity
analysis). Note that in ACP-GN there is no grid search and the model is fit only once on all available
data DN , as indicated in blue. At test time, instead of retraining the model for each xN+1, ACP-GN
only computes the CRR coefficients {(ai, bi)}N+1

i=1 using Gauss-Newton influence as in Eq. (13) and
Eq. (14). These are then used to derive the prediction set in closed form either using the method of
(Nouretdinov et al., 2001) or the asymmetric one of (Burnaev & Vovk, 2014) that we show in Alg. 2.

Algorithm 1: Standard Full-CP.
for each test point xN+1 do

for each y in a given grid do
optimize θ+

∗ (y) as in Eq. (4)
RN+1(y) = |y − fN+1(θ

+
∗ (y))|

for i ∈ {1, . . . N} do
Ri(y) = |yi − fi(θ

+
∗ (y))|

π(y) =
∑N+1

i=1 1{Ri(y)≤RN+1(y)}
if π(y) ≤ ⌈(1− α)(N + 1)⌉ then

include y in Cα(xN+1)

Algorithm 2: ACP-GN (ours).

optimize θ∗ as in Eq. (1)
for each test point xN+1 do

compute aN+1, bN+1 as in Eq. (14)
for i ∈ {1, . . . N} do

compute ai, bi as in Eq. (13)
if bN+1 − bi > 0 then

li = ui = (ai−aN+1)/(bN+1−bi)
else

li = −∞ and ui =∞

sort {li}Ni=1 and {ui}Ni=1 in ascending order
Cα(xN+1) =
[l(⌊(N+1)(α/2)⌋), u(⌈(N+1)(1−α/2)⌉)]

Conformalizing Linearized Laplace We can show that our ACP-GN method can be interpreted
as conformalizing Linearized Laplace (MacKay, 1992; Khan et al., 2019; Immer et al., 2021b) for
regression. This relates to the result of Burnaev & Vovk (2014) who showed the CRR procedure can
be viewed as conformalizing or “de-Bayesing” Bayesian Linear Regression (with Gaussian assump-
tions) (Burnaev & Vovk, 2014). They provide asymptotic results indicating that in well-specified
settings, the conformal prediction intervals and Bayesian credible intervals closely align. This places

6

Published as a conference paper at ICLR 2025

our method within the wider context of Conformal Bayes (Melluish et al., 2001; Wasserman, 2011)
for recalibrating Bayesian intervals in case of model misspecification.

The Laplace approximation constructs a Gaussian posterior approximation centered around the point
estimate θ∗ and covariance given by the inverse of the Hessian (local curvature) of the empirical risk
evaluated at θ∗. When the Hessian is approximated by the generalized Gauss-Newton matrix, we
refer to the resulting Laplace approximation as the Laplace-GGN posterior, q∗(θ) = N(θ|θ∗,Σ∗)
where Σ∗ = H−1

GN. This is often accompanied by linearizing the output of the neural network about
θ∗ (Foong et al., 2019; Immer et al., 2021b):

fi(θ) ≈ f lin
i (θ) = fi(θ∗) +∇θfi(θ∗)

⊤ (θ − θ∗) . (15)
The overall method is referred to as Linearized Laplace and retains the original NN point prediction
as the mean of the posterior predictive. Analogous to the add-one-in estimate in Eq. (12), we can
derive an approximation to the add-one-in posterior q̂+∗ (θ) by perturbing the Laplace-GGN posterior
(see App. E for derivation) whose mean is equal to θ̂+

∗ (y):

q̂+∗ (θ) = N(θ|θ̂+
∗ (y), Σ̂

+
∗) where Σ̂+

∗ =
(
HGN + ϕN+1ϕ

⊤
N+1

)−1
(16)

This is a simple extension of the leave-one-out results in (Nickl et al., 2023) to the add-one-in case.
Using this perturbed posterior in combination with the linearized predictor in Eq. (15), we recover
Eqs. (13) and (14). From the perspective of Linearized Laplace, the Gauss-Newton influence gives
the exact AOI solution with respect to the linearized network and in particular its feature expansion
given the Jacobian of the network. However, it is often the case in practice that θ∗ is not a minimum
of the empirical risk (i.e. neural network not trained to convergence). Thus, θ∗ is not a minima of
the linearized network’s objective. One can correct this by solving for the following objective,

θ̃ = argminθ

(∑N
i=1

1
2 (ỹi − ϕ⊤

i θ)
2 + 1

2δ ∥θ∥
2
)

(17)

where ỹi := ϕ⊤
i θ∗ + ei with residual ei = yi − fi(θ∗). This is a linear-Gaussian system and hence

can be solved for in a single step. This process is often referred to as “refinement” in the Linearized
Laplace literature and has been shown to improve predictions (Immer et al., 2021b). The exact AOI
solution with respect to Eq. (17) is then given by,

θ̃+
∗ (y) = θ̃ +

y − f lin
N+1(θ̃)

1 + ĥN+1

H−1
GNϕN+1 (18)

which reduces to Eq. (12) when θ̃ = θ∗. We can derive analogous expressions to Eqs. (13) and (14)
that differ only in the use of linearized versions of the neural network prediction and hold exactly.

Normalized Split-CP with Gauss-Newton Influence It turns out the tools we used to derive our
approximate full-CP method are also effective to improve the adaptability and efficiency of split-CP.
In vanilla split-CP, all prediction intervals have the same width because the model remains fixed. One
way to alleviate this issue is to normalize the scores as Ri = Ri/σi, where σi estimates the difficulty
in predicting the ith data point correctly (Papadopoulos et al., 2008). As observed in (Papadopoulos,
2024), the normalized scores described in Sec. 2.4 are scaled by the predictive variance, which is
closely related to how difficult yi is to predict. This motivates our Gauss-Newton split-CP variant,
with scores,

Ri = |yi−fi(θ∗)|/
√

1+ĥi, (19)
where ĥi = ϕ⊤

i H
−1
GNϕi is the marginal variance given by Linearized Laplace. This is similar to

Eq. 4.10 in (Vovk et al., 2005) and is analogous to the studentized scores in the full-CP case.

Validity of ACP-GN Similar to Martinez et al. (2023), we cannot assure that our ACP-GN satisfies
the coverage guarantee of full-CP. This is simply because the retraining step is locally approximated.
However, bounds on the approximation error have previously been derived for Newton-step influ-
ence under fairly standard assumptions (Beirami et al., 2017; Koh et al., 2019). Whilst not shown
here, we anticipate that such bounds can be extended to Gauss-Newton influence, as it is just a spe-
cialization of Newton-step influence for a certain choice of Hessian approximation. That being said
in a majority of settings (datasets and target coverage levels) we empirically observe that the validity
of ACP-GN does hold in practice. To address concerns about validity, in Sec. 4 we propose a variant
“ACP-GN (split+refine)” that is guaranteed to provide correct coverage. This uses a train-calibration
split like in split-CP along with the refinement procedure from Linearized Laplace ensuring that the
residual nonconformity score expressions are exact with respect to the linearized neural network.

7

Published as a conference paper at ICLR 2025

4 EXPERIMENTS & RESULTS

We compare our method, approximate full-CP via Gauss-Newton influence (ACP-GN), against Lin-
earized Laplace (LA) (MacKay, 1992; Immer et al., 2021b), a recently popular Bayesian method for
post-hoc uncertainty quantification, split conformal prediction (SCP) (Papadopoulos et al., 2002),
conformalized residual fitting (CRF) (Papadopoulos et al., 2002) and conformalized quantile re-
gression (CQR) (Romano et al., 2019). We also evaluate two further proposals, “ACP-GN (split +
refine)” and “SCP-GN” which we proceed to describe along with the aforementioned methods:

• LA: The Laplace approximation with the Hessian approximated by the generalized Gauss-
Newton matrix. The linearized predictive in Eq. (15) is used for inference. We use the
implementation provided in the Laplace PyTorch library (Daxberger et al., 2021a) as
well as to implement our ACP-GN method.

• SCP: Uses absolute residual nonconformity score in the procedure outlined in Sec. 2.1.

• CRF: Trains an additional network to predict the absolute residuals of the original network
which is then used to normalize the absolute residual nonconformity score.

• CQR: Trains a quantile regression network using the pinball loss. The predicted lower and
upper quantile functions are then used in the split conformal quantile regression algorithm.

• ACP-GN: Uses the studentized nonconformity score of Eq. (11) as we found this score
performed the best.

• SCP-GN: Normalizes the absolute residual nonconformity score by the posterior predictive
standard deviation of the LA method (trained only on the same split as SCP) as in Eq. (19).

• ACP-GN (split + refine): Uses a train-calibration split like in SCP, where we pretrain the
model on the training set before running ACP-GN on the calibration set. More precisely,
it solves the linearized network’s objective in Eq. (17) but defined on the calibration set.
It then uses the linearized network prediction in Eq. (15) in lieu of the original network to
evaluate the CRR coefficients, again on the calibration set.

4.1 UCI REGRESSION

We conduct experiments on popular benchmark datasets for regression taken from the UCI Machine
Learning repository (Nottingham et al., 2024). These vary in size and we adapt the experimental
setup accordingly, placing the datasets into 3 groups for easy referencing: small (boston, concrete,
energy, wine, yacht); medium (kin8nm, power); large (bike, community, protein, facebook 1, face-
book 2). A subset of these are shown in Table 1 and the remainder are discussed in App. I.1. For
the small datasets, the reported metrics result from 10 repeats of a 10-fold cross-validation process.
For the other datasets, we perform 20 different train-test splits. In all cases, 90% of the examples are
used for training and 10% for testing. When a calibration set is needed, the training set is divided into
two chunks of equal size. We show results for a desired miscoverage rate of α ∈ {0.1, 0.05, 0.01}.
All methods use neural networks trained to convergence with the Adam optimizer (Kingma & Ba,
2015). Throughout, we use fully-connected layers with 50 units and GeLU activations. The small
and medium datasets have a single hidden layer whereas the large datasets use 3 hidden layers. For
these architectures, it is feasible to evaluate the Gauss-Newton matrix without any approximations.
However, we expect this to be prohibitive for larger architectures—inversion of the Gauss-Newton
matrix scales cubically in the number of parameters. For this reason in App. J.1, we repeat the
experiments using two scalable approximations: Kronecker-factored approximate curvature (KFAC)
(Martens & Grosse, 2015) and last-layer approximation (Daxberger et al., 2021b) (i.e. neural linear
model approach (Ober & Rasmussen, 2019)). As described in Sec. 2.3, to construct the predictive
intervals from the coefficients in ACP-GN we use the ridge regression confidence machine algorithm
(Nouretdinov et al., 2001) on the small datasets, and the asymmetric version (Burnaev & Vovk, 2014)
for the medium and large datasets. See App. I.1 for further details on the experimental setup.

To assess the efficiency (tightness) and well-calibratedness of our proposed methods for obtaining
prediction intervals, we report their average prediction interval width and coverage against the base-
lines in Table 1. A method is reported as satisfying validity if its empirical coverage lies within the
1% and 99% quantiles of the exact marginal coverage distribution as given by the train/calibration

8

Published as a conference paper at ICLR 2025

Table 1: Our approximate full-CP via Gauss-Newton influence (ACP-GN) almost always gives the
tightest intervals in limited-data regimes whilst satisfying the target coverage (cf. yacht, boston,
energy). On larger datasets, ACP-GN remains competitive on efficiency compared with other
conformal methods but can sometimes miscover. As a remedy, we propose two variants inspired by
ACP-GN that generally fix the miscoverage issue. Average prediction interval width and coverage
for our proposed approaches (shaded gray) against baselines (non-shaded) for three different settings
of the confidence level. The best average widths over well-calibrated approaches (indicated by ✓/✗)
appear in bold. Reported metrics are accompanied by standard error from repeated runs.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

yacht
N=308
I=6

LA 1.690±0.017 2.014±0.020 2.647±0.027 88.73±0.61 (✓) 90.78±0.59 (✗) 93.89±0.60 (✗)
SCP 2.553±0.093 4.001±0.115 10.018±0.361 89.56±0.66 (✓) 94.07±0.39 (✓) 99.32±0.08 (✓)
CRF 2.526±0.092 3.947±0.115 9.674±0.294 89.53±0.64 (✓) 94.10±0.38 (✓) 99.29±0.10 (✓)
CQR 4.090±0.105 5.845±0.187 18.650±0.484 89.94±0.42 (✓) 94.42±0.32 (✓) 99.02±0.17 (✓)
ACP-GN 1.594±0.016 2.385±0.029 6.915±0.067 87.36±0.58 (✓) 92.56±0.68 (✓) 99.03±0.11 (✓)
SCP-GN 2.270±0.086 3.349±0.098 7.216±0.254 89.85±0.51 (✓) 94.91±0.32 (✓) 99.19±0.15 (✓)
ACP-GN (split + refine) 1.993±0.020 2.954±0.037 7.307±0.178 89.35±0.62 (✓) 94.90±0.51 (✓) 99.45±0.08 (✓)

boston
N=506
I=13

LA 9.398±0.046 11.199±0.055 14.718±0.072 91.24±0.31 (✓) 94.34±0.22 (✓) 97.53±0.11 (✗)
SCP 10.635±0.123 14.509±0.171 36.272±1.847 89.56±0.42 (✓) 94.64±0.32 (✓) 99.11±0.13 (✓)
CRF 11.932±0.605 16.073±0.862 40.690±3.333 90.01±0.33 (✓) 94.77±0.22 (✓) 99.30±0.08 (✓)
CQR 11.692±0.129 15.115±0.213 31.628±1.822 90.10±0.33 (✓) 95.12±0.24 (✓) 99.07±0.14 (✓)
ACP-GN 9.182±0.046 12.111±0.038 20.512±0.057 90.64±0.26 (✓) 95.49±0.16 (✓) 99.11±0.08 (✓)
SCP-GN 10.301±0.089 13.418±0.151 24.714±0.865 89.52±0.50 (✓) 94.82±0.32 (✓) 99.05±0.12 (✓)
ACP-GN (split + refine) 13.103±0.072 16.729±0.134 27.561±0.445 90.12±0.26 (✓) 95.41±0.20 (✓) 99.27±0.10 (✓)

energy
N=768
I=8

LA 1.502±0.006 1.790±0.007 2.353±0.009 88.96±0.35 (✓) 92.92±0.33 (✗) 96.95±0.23 (✗)
SCP 1.942±0.032 2.486±0.046 3.772±0.093 89.44±0.28 (✓) 94.80±0.20 (✓) 99.18±0.08 (✓)
CRF 1.923±0.031 2.454±0.046 3.728±0.092 89.39±0.28 (✓) 94.78±0.22 (✓) 99.14±0.08 (✓)
CQR 4.670±0.030 5.139±0.029 6.438±0.120 90.08±0.26 (✓) 95.24±0.21 (✓) 98.96±0.09 (✓)
ACP-GN 1.462±0.006 1.884±0.008 3.076±0.015 88.28±0.33 (✓) 93.69±0.33 (✓) 98.88±0.11 (✓)
SCP-GN 1.911±0.029 2.449±0.044 3.609±0.071 89.69±0.29 (✓) 94.79±0.18 (✓) 99.21±0.09 (✓)
ACP-GN (split + refine) 1.745±0.016 2.174±0.021 3.300±0.045 90.54±0.25 (✓) 94.96±0.22 (✓) 99.18±0.10 (✓)

bike
N=10,886

I=18

LA 100.451±2.394 119.694±2.853 157.305±3.749 89.82±0.39 (✓) 93.29±0.33 (✗) 96.83±0.16 (✗)
SCP 131.138±0.812 180.477±1.244 324.756±4.635 90.33±0.21 (✓) 95.17±0.15 (✓) 99.00±0.07 (✓)
CRF 127.836±0.894 174.362±1.376 311.580±5.077 90.39±0.19 (✓) 95.26±0.14 (✓) 99.01±0.07 (✓)
CQR 141.329±5.943 167.682±5.835 244.863±4.952 89.83±0.23 (✓) 94.80±0.14 (✓) 98.89±0.07 (✓)
ACP-GN 98.813±2.485 130.893±3.231 213.131±5.630 89.36±0.43 (✓) 94.41±0.27 (✗) 98.67±0.09 (✗)
SCP-GN 122.245±1.073 160.505±1.761 254.409±3.767 90.34±0.24 (✓) 95.26±0.15 (✓) 99.02±0.08 (✓)
ACP-GN (split + refine) 128.336±4.336 170.782±5.859 281.632±10.176 89.98±0.22 (✓) 94.94±0.16 (✓) 99.01±0.06 (✓)

protein
N=45,730

I=9

LA 9.385±0.022 11.183±0.027 14.697±0.035 85.43±0.18 (✗) 89.69±0.15 (✗) 94.81±0.10 (✗)
SCP 13.041±0.088 17.161±0.098 26.181±0.119 89.78±0.08 (✓) 94.83±0.06 (✓) 98.94±0.04 (✓)
CRF 12.645±0.127 16.931±0.146 26.973±0.202 89.86±0.09 (✓) 94.84±0.07 (✓) 98.93±0.04 (✓)
CQR 13.541±0.144 14.798±0.129 18.239±0.041 90.07±0.10 (✓) 95.07±0.09 (✓) 98.96±0.04 (✓)
ACP-GN 10.243±0.019 13.294±0.027 20.101±0.053 87.54±0.15 (✗) 93.04±0.11 (✗) 98.24±0.05 (✗)
SCP-GN 12.426±0.085 16.102±0.096 24.032±0.138 89.78±0.10 (✓) 94.86±0.08 (✓) 98.94±0.03 (✓)
ACP-GN (split + refine) 12.660±0.028 16.073±0.031 23.445±0.057 89.83±0.09 (✓) 94.90±0.09 (✓) 98.97±0.05 (✓)

facebook 2
N=81,311

I=53

LA 66.088±2.760 78.749±3.289 103.493±4.322 97.47±0.12 (✗) 98.01±0.09 (✗) 98.65±0.06 (✗)
SCP 16.387±0.208 35.387±0.462 152.706±1.591 89.97±0.07 (✓) 95.00±0.06 (✓) 99.06±0.03 (✓)
CRF 15.088±0.188 29.679±0.396 102.326±2.552 89.94±0.07 (✓) 94.98±0.06 (✓) 99.03±0.02 (✓)
CQR 17.605±0.645 21.571±0.960 30.852±1.303 90.16±0.28 (✓) 95.13±0.12 (✓) 99.01±0.03 (✓)
ACP-GN 18.396±0.546 40.088±1.091 166.792±5.632 90.47±0.11 (✗) 95.45±0.08 (✗) 99.35±0.04 (✗)
SCP-GN 16.287±0.202 33.655±0.563 118.489±4.305 89.99±0.07 (✓) 94.98±0.06 (✓) 99.00±0.03 (✓)
ACP-GN (split + refine) 21.469±0.906 42.184±0.788 152.460±2.499 90.14±0.08 (✓) 95.10±0.06 (✓) 99.13±0.02 (✗)

set size (depending on the method) (Angelopoulos & Bates, 2021; Vovk, 2012). In the case of lim-
ited data regimes (yacht, boston, energy), ACP-GN gives the tighest intervals, with the exception of
boston at 95% target coverage where LA is the most efficient (being one of the few cases when LA
does not miscover). On the larger datasets, ACP-GN remains competitive on efficiency with the ex-
ception of facebook 2 at the higher values of target coverage, but we find it miscovers. Our proposed
variant, “ACP-GN (split+refine)”, generally gives the correct coverage albeit incurring a trade-off in
efficiency due to sample splitting. We also observe that our novel normalization strategy inspired by
ACP-GN, SCP-GN, improves over CRF for most datasets and settings of the target coverage.

4.2 BOUNDING BOX LOCALIZATION

We consider single-object localization and in particular adapt the task from Phan et al. (2018), which
predicts bounding boxes localizing the face of different breeds of cats and dogs in varying condi-
tions. Conformal methods have recently been adapted for this task (De Grancey et al., 2022). We
construct two-sided intervals similar to Timans et al. (2024) but without considering uncertainty in
the classifier, following De Grancey et al. (2022). All images with ground-truth bounding box an-
notations in the Oxford-IIIT Pet dataset (Parkhi et al., 2012) are extracted resulting in 3 686 images
overall. The experiment is repeated with 20 different train-test splits where 20% of the data is used
for testing. When needed, 25% of the training set is reserved as calibration data. The VGG-19 ar-

9

Published as a conference paper at ICLR 2025

Table 2: On a bounding box regression task using a deep convolutional neural network, our split and
refine variant of ACP-GN results in the most efficient confidence regions whilst achieving compara-
ble coverage to the split-CP baselines. We target coverage rates of {85%, 90%, 95%} and reported
metrics are accompanied by standard error from repeated runs.

Avg. Volume (×10−2) Avg. Coverage
85% 90% 95% 85% 90% 95%

LA 0.710±0.009 0.945±0.013 1.405±0.019 92.11±0.18 (✗) 94.49±0.18 (✗) 96.65±0.16 (✗)
SCP 0.809±0.025 1.166±0.035 2.261±0.106 87.80±0.42 (✓) 91.82±0.41 (✓) 95.85±0.32 (✓)
CRF 0.713±0.021 1.098±0.044 2.130±0.087 87.47±0.44 (✓) 91.61±0.34 (✓) 95.85±0.23 (✓)
CQR 0.947±0.028 1.451±0.046 3.680±0.113 87.45±0.51 (✓) 91.29±0.38 (✓) 96.06±0.26 (✓)
ACP-GN 0.384±0.004 0.605±0.007 1.225±0.017 90.97±0.20 (✗) 94.09±0.20 (✗) 97.41±0.16 (✗)
SCP-GN 0.768±0.020 1.071±0.030 1.854±0.066 87.17±0.45 (✓) 91.43±0.40 (✓) 95.58±0.28 (✓)
ACP-GN (split + refine) 0.311±0.006 0.472±0.014 1.031±0.046 87.34±0.41 (✓) 91.31±0.35 (✓) 96.12±0.27 (✓)

chitecture is used as the object detection backbone but with the original output layer removed. The
network is trained jointly with two heads, a regression head predicting 2D bounding box coordinates
(4 outputs) and a binary classification head. We only consider the regression head for constructing
predictive intervals. Without a calibration split, the model gets 99.6% classification accuracy and
20.1% localization error with 0.5 IoU (Intersection over Union) threshold. With a calibration split,
the model achieves 99.5% classification accuracy and 27.5% localization error.

We use the last-layer approximation to the Gauss-Newton matrix throughout for computational rea-
sons. The asymmetric implementation of CRR is used due to its efficiency and we target miscov-
erage rates α ∈ {0.15, 0.1, 0.05}. See App. I.2 for further experimental details. Since bounding
box localization is a type of multi-output regression, we obtain confidence regions given by hy-
perrectangles except for LA that results in a hyperellipsoid. All conformal prediction methods are
run for each output dimension independently and we evaluate the confidence region volumes by
taking the product over interval widths per output dimension. We apply a multiple testing correc-
tion, the Bonferroni correction, to mitigate the miscoverage that arises when conformalizing the
outputs separately. However, we find that all methods still consistently overcover suggesting further
improvements are possible.

In Table 2, we observe that ACP-GN gives the tightest intervals as compared with the baseline
conformal methods despite having a greater empirical coverage than those methods. Surprisingly our
split and refine variant of ACP-GN gives even tighter intervals whilst matching the coverage of the
conformal baselines. We observed a similar effect in our ablation of the previous UCI experiments
with the last-layer approximation in App. J.1.

5 CONCLUSION

In this work, we show how to efficiently construct prediction intervals with full conformal prediction
(CP) for neural networks in regression tasks. While full-CP requires retraining the model from
scratch on all of the training data and for each postulated label for the test point, we show one
can efficiently approximate the full-CP predictive intervals with a specialization of Newton-step
influence (Pregibon, 1981; Beirami et al., 2017) and the ridge regression confidence machine of
Nouretdinov et al. (2001) without retraining the model. In doing so, we also avoid relying on a
grid over all possible labels for the test point, which incurs an undesirable accuracy/precision trade-
off due to the uncountable set of real numbers. We demonstrate how this approach corresponds to
exact full-CP on a linearized version of the neural network and further show how it corresponds
to “conformalizing” the Linearized Laplace method (Khan et al., 2019; Immer et al., 2021b), a
popular Bayesian approach for post-hoc uncertainty estimation in deep learning. Finally, through
the lens of normalized nonconformity scores, we recover the leave-one-out variety of full-CP and
easily extend to studentized scores that we find performs the best empirically and was left as future
work in Martinez et al. (2023). This also leads us to propose a novel adaptive split-CP method
similar to conformalized residual fitting (Papadopoulos et al., 2002) but without the need to train
an additional network. Empirically, we see that our approximate full-CP methods typically provide
tighter prediction intervals in limited data regimes across the well-calibrated approaches. For future
work, we would like to extend our method to other real-world tasks such as pose estimation and
tracking, and develop further the theoretical analysis.

10

Published as a conference paper at ICLR 2025

REFERENCES

Ahmed Alaa and Mihaela Van Der Schaar. Discriminative Jackknife: Quantifying Uncertainty in
Deep Learning via Higher-Order Influence Functions. In International Conference on Machine
Learning, 2020.

David M Allen. The Relationship between Variable Selection and Data Agumentation and a Method
for Prediction. Technometrics, 1974.

Anastasios N Angelopoulos and Stephen Bates. A Gentle Introduction to Conformal Prediction and
Distribution-Free Uncertainty Quantification. ArXiv e-prints, 2021.

Javier Antorán, David Janz, James Urquhart Allingham, Erik Daxberger, Riccardo Barbano, Eric
Nalisnick, and José Miguel Hernández-Lobato. Adapting the Linearised Laplace Model Evidence
for Modern Deep Learning. In International Conference on Machine Learning, 2022.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If Influence Functions
are the Answer, Then What is the Question? In Advances in Neural Information Processing
Systems, 2022.

Rina Foygel Barber, Emmanuel J Candès, Aaditya Ramdas, and Ryan J Tibshirani. Predictive
inference with the jackknife+. The Annals of Statistics, 2021.

Samyadeep Basu, Xuchen You, and Soheil Feizi. On Second-Order Group Influence Functions for
Black-Box Predictions. In International Conference on Machine Learning, 2020.

Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, and Vahid Tarokh. On Optimal Gener-
alizability in Parametric Learning. In Advances in Neural Information Processing Systems, 2017.

Evgeny Burnaev and Vladimir Vovk. Efficiency of conformalized ridge regression. In Conference
on Learning Theory, 2014.

Samprit Chatterjee and Ali S Hadi. Influential Observations, High Leverage Points, and Outliers in
Linear Regression. Statistical Science, 1986.

Wenyu Chen, Kelli-Jean Chun, and Rina Foygel Barber. Discretized conformal prediction for effi-
cient distribution-free inference. Stat, 2018.

R Dennis Cook. Detection of Influential Observation in Linear Regression. Technometrics, 1977.

R Dennis Cook and Sanford Weisberg. Characterizations of an Empirical Influence Function for
Detecting Influential Cases in Regression. Technometrics, 1980.

A Philip Dawid. The Well-Calibrated Bayesian. Journal of the American Statistical Association,
1982.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace Redux-Effortless Bayesian Deep Learning. In Advances in Neural
Information Processing Systems, 2021a.

Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antorán, and José Miguel Hernández-
Lobato. Bayesian Deep Learning via Subnetwork Inference. In International Conference on
Machine Learning, 2021b.

Florence De Grancey, Jean-Luc Adam, Lucian Alecu, Sébastien Gerchinovitz, Franck Mamalet,
and David Vigouroux. Object Detection with Probabilistic Guarantees: A Conformal Prediction
Approach. In International Conference on Computer Safety, Reliability, and Security, 2022.

Bradley Efron and Robert Tibshirani. Bootstrap Methods for Standard Errors, Confidence Intervals,
and Other Measures of Statistical Accuracy. Statistical Science, 1986.

Edwin Fong and Chris C Holmes. Conformal Bayesian Computation. Advances in Neural Informa-
tion Processing Systems, 2021.

11

Published as a conference paper at ICLR 2025

Matteo Fontana, Gianluca Zeni, and Simone Vantini. Conformal Prediction: a Unified Review of
Theory and New Challenges. Bernoulli, 2023.

Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. ‘In-
Between’ Uncertainty in Bayesian Neural Networks. In ICML Workshop on Uncertainty and
Robustness in Deep Learning, 2019.

D A S Fraser. Is Bayes Posterior just Quick and Dirty Confidence? Statistical Science, 2011.

Ryan Giordano, Michael I Jordan, and Tamara Broderick. A Higher-Order Swiss Army Infinitesimal
Jackknife. ArXiv e-Prints, 2019a.

Ryan Giordano, William Stephenson, Runjing Liu, Michael I Jordan, and Tamara Broderick. A
Swiss Army Infinitesimal Jackknife. In International Conference on Artificial Intelligence and
Statistics, 2019b.

R Girshick. Fast R-CNN. ArXiv e-Prints, 2015.

Peter Grünwald and Thijs van Ommen. Inconsistency of Bayesian Inference for Misspecified Linear
Models, and a Proposal for Repairing It. Bayesian Analysis, 2017.

Etash Kumar Guha, Shlok Natarajan, Thomas Möllenhoff, Mohammad Emtiyaz Khan, and Eugene
Ndiaye. Conformal Prediction via Regression-as-Classification. In International Conference on
Learning Representations, 2024.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified Data Removal
from Machine Learning Models. In International Conference on Machine Learning, 2020.

Frank R Hampel. The Influence Curve and its Role in Robust Estimation. Journal of the American
Statistical Association, 1974.

Lars Kai Hansen and Jan Larsen. Linear unlearning for cross-validation. Advances in Computational
Mathematics, 1996.

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Mohammad Emtiyaz Khan.
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning. In International
Conference on Machine Learning, 2021a.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving Predictions of Bayesian Neural
Nets via Local Linearization. In International Conference on Artificial Intelligence and Statistics,
2021b.

Tommi Jaakkola and David Haussler. Exploiting Generative Models in Discriminative Classifiers.
In Advances in Neural Information Processing Systems, 1998.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems,
2018.

Louis A Jaeckel. The Infinitesimal Jackknife. Technical report, Bell Lab., 1972.

Yuko Kato, David MJ Tax, and Marco Loog. A Review of Nonconformity Measures for Conformal
Prediction in Regression. Conformal and Probabilistic Prediction with Applications, 2023.

Mohammad Emtiyaz Khan and Håvard Rue. The Bayesian Learning Rule. Journal of Machine
Learning Research, 2023.

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate
Inference Turns Deep Networks into Gaussian Processes. In Advances in Neural Information
Processing Systems, 2019.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015.

12

Published as a conference paper at ICLR 2025

Pang Wei Koh and Percy Liang. Understanding Black-Box Predictions via Influence Functions. In
International Conference on Machine Learning, 2017.

Pang Wei Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the Accuracy of Influence
Functions for Measuring Group Effects. In Advances in Neural Information Processing Systems,
2019.

Roy T St Laurent and R Dennis Cook. Leverage and Superleverage in Nonlinear Regression. Journal
of the American Statistical Association, 1992.

S le Cessie and J C van Houwelingen. Ridge Estimators in Logistic Regression. Journal of the
Royal Statistical Society Series C: Applied Statistics, 1992.

Jing Lei. Fast Exact Conformalization of Lasso using Piecewise Linear Homotopy. Biometrika,
2019.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
Free Predictive Inference for Regression. Journal of the American Statistical Association, 2018.

David J C MacKay. A Practical Bayesian Framework for Backpropagation Networks. Neural Com-
putation, 1992.

Wesley Maddox, Shuai Tang, Pablo Moreno, Andrew Gordon Wilson, and Andreas Damianou. Fast
Adaptation with Linearized Neural Networks. In International Conference on Artificial Intelli-
gence and Statistics, 2021.

James Martens. Deep learning via Hessian-free optimization. In International Conference on Ma-
chine Learning, 2010.

James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-factored Approxi-
mate Curvature. In International Conference on Machine Learning, 2015.

Javier Abad Martinez, Umang Bhatt, Adrian Weller, and Giovanni Cherubin. Approximating Full
Conformal Prediction at Scale via Influence Functions. In AAAI Conference on Artificial Intelli-
gence, 2023.

Thomas Melluish, Craig Saunders, Ilia Nouretdinov, and Volodya Vovk. Comparing the Bayes and
Typicalness Frameworks. In European Conference on Machine Learning, 2001.

Gaétan Monari and Gérard Dreyfus. Withdrawing an example from the training set: An analytic
estimation of its effect on a non-linear parameterised model. Neurocomputing, 2000.

Fangzhou Mu, Yingyu Liang, and Yin Li. Gradients as Features for Deep Representation Learning.
In International Conference on Learning Representations, 2020.

Eugene Ndiaye. Stable Conformal Prediction Sets. In International Conference on Machine Learn-
ing, 2022.

Eugene Ndiaye and Ichiro Takeuchi. Computing Full Conformal Prediction Set with Approximate
Homotopy. In Advances in Neural Information Processing Systems, 2019.

Peter Nickl, Lu Xu, Dharmesh Tailor, Thomas Möllenhoff, and Mohammad Emtiyaz Khan. The
Memory-Perturbation Equation: Understanding Model’s Sensitivity to Data. In Advances in Neu-
ral Information Processing Systems, 2023.

Kolby Nottingham, Rachel Longjohn, and Markelle Kelly. UCI Machine Learning Repository, 2024.
URL https://archive.ics.uci.edu/datasets. Accessed: September, 2024.

Ilia Nouretdinov, Thomas Melluish, and Volodya Vovk. Ridge Regression Confidence Machine. In
International Conference on Machine Learning, 2001.

Roman Novak, Jascha Sohl-Dickstein, and Samuel S Schoenholz. Fast Finite Width Neural Tangent
Kernel. In International Conference on Machine Learning, 2022.

13

https://archive.ics.uci.edu/datasets

Published as a conference paper at ICLR 2025

Sebastian W Ober and Carl E Rasmussen. Benchmarking the Neural Linear Model for Regression.
In Second Symposium on Advances in Approximate Bayesian Inference, 2019.

Harris Papadopoulos. Guaranteed Coverage Prediction Intervals with Gaussian Process Regression.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Harris Papadopoulos and Haris Haralambous. Reliable Prediction Intervals with Regression Neural
Networks. Neural Networks, 2011.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive Confidence
Machines for Regression. In European Conference on Machine Learning, 2002.

Harris Papadopoulos, Alex Gammerman, and Volodya Vovk. Normalized nonconformity measures
for regression conformal prediction. In International Conference on Artificial Intelligence and
Applications, 2008.

Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Regression Conformal Prediction
with Nearest Neighbours. Journal of Artificial Intelligence Research, 2011.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and Dogs. In IEEE
Conference on Computer Vision and Pattern Recognition, 2012.

Buu Phan, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Taylor Denouden, and Sachin
Vernekar. Calibrating Uncertainties in Object Localization Task. ArXiv e-Prints, 2018.

Daryl Pregibon. Logistic Regression Diagnostics. The Annals of Statistics, 1981.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating Training Data
Influence by Tracing Gradient Descent. In Advances in Neural Information Processing Systems,
2020.

Kamiar Rahnama Rad and Arian Maleki. A scalable estimate of the out-of-sample prediction error
via approximate leave-one-out cross-validation. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 2020.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A Scalable Laplace Approximation for Neural
Networks. In International Conference on Learning Representations, 2018.

Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized Quantile Regression. In
Advances in Neural Information Processing Systems, 2019.

Peter Schulam and Suchi Saria. Can You Trust This Prediction? Auditing Pointwise Reliability
After Learning. In International Conference on Artificial Intelligence and Statistics, 2019.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember What
You Want to Forget: Algorithms for Machine Unlearning. In Advances in Neural Information
Processing Systems, 2021.

Glenn Shafer and Vladimir Vovk. A Tutorial on Conformal Prediction. Journal of Machine Learning
Research, 2008.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. In International Conference on Learning Representations, 2015.

Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, and Andrea Passerini. Interactive Label
Cleaning with Example-based Explanations. In Advances in Neural Information Processing Sys-
tems, 2021.

Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann, and Eric Nalisnick. Adaptive
Bounding Box Uncertainties via Two-Step Conformal Prediction. In European Conference on
Computer Vision, 2024.

Vladimir Vovk. Conditional Validity of Inductive Conformal Predictors. In Asian Conference on
Machine Learning, 2012.

14

Published as a conference paper at ICLR 2025

Vladimir Vovk. Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence,
2015.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic Learning in a Random
World. Springer, 2005.

Larry Wasserman. Frasian Inference. Statistical Science, 2011.

Bo-Cheng Wei, Yue-Qing Hu, and Wing-Kam Fung. Generalized Leverage and Its Applications.
Scandinavian Journal of Statistics, 1998.

15

Published as a conference paper at ICLR 2025

A DERIVATION OF CRR COEFFICIENTS

The ridge solution on DN is given by θ∗ = H−1
∗ X⊤y where X is the (N × I) feature matrix with

x⊤
i as rows and y is the N -dim vector of targets. We can express the ridge solution on DN+1(y),

referred to as the add-one-in (AOI) solution, as a deviation from θ∗:

θ+
∗ (y) = (H∗ + xN+1x

⊤
N+1)

−1
(
X⊤y + xN+1y

)
(20)

▷ use Sherman-Morrison formula

=

(
H−1

∗ −
H−1

∗ xN+1x
⊤
N+1H

−1
∗

1 + x⊤
N+1H

−1
∗ xN+1

)(
X⊤y + xN+1y

)
(21)

= H−1
∗ X⊤y +H−1

∗ xN+1

(
y − x⊤

N+1H
−1
∗ X⊤y

1 + x⊤
N+1H

−1
∗ xN+1

− yx⊤
N+1H

−1
∗ xN+1

1 + x⊤
N+1H

−1
∗ xN+1

)
(22)

▷ substitute θ∗ = H−1
∗ X⊤y and hN+1 = x⊤

N+1H
−1
∗ xN+1

= θ∗ +H−1
∗ xN+1

(
y − x⊤

N+1θ∗

1 + hN+1
− yhN+1

1 + hN+1

)
(23)

= θ∗ +H−1
∗ xN+1

(
y − x⊤

N+1θ∗

1 + hN+1

)
(24)

Using this, it is easy to show the residuals can be expressed in terms of the postulated label y:

yi − x⊤
i θ

+
∗ (y) = yi − x⊤

i θ∗ − x⊤
i H

−1
∗ xN+1

(
y − x⊤

N+1θ∗

1 + hN+1

)
(25)

▷ substitute hi,N+1 = x⊤
i H

−1
∗ xN+1

= yi − xT
i θ∗ +

hi,N+1

1 + hN+1
x⊤
N+1θ∗ −

hi,N+1

1 + hN+1
y (26)

y − x⊤
N+1θ

+
∗ (y) = y − x⊤

N+1θ∗ − x⊤
N+1H

−1
∗ xN+1

(
y − x⊤

N+1θ∗

1 + hN+1

)
(27)

▷ substitute hN+1 = x⊤
N+1H

−1
∗ xN+1

= − 1

1 + hN+1
x⊤
N+1θ∗ +

1

1 + hN+1
y (28)

B DERIVATION OF GAUSS-NEWTON INFLUENCE

The first two steps are similar to the usual derivation of Newton-step influence (Beirami et al., 2017)
except that a single Newton step is performed on the augmented problem defined in Eq. (4) starting
from θ∗. For brevity, we define L(θ) =

∑N
i=1 ℓ(yi, fi(θ)) +

1
2δ ∥θ∥

2 as the empirical risk on DN .

θ+
∗ (y) ≈ θ∗ −

(
∇2

θL(θ∗) +∇2
θℓ(y, fN+1(θ∗))

)−1
(∇θL(θ∗) +∇θℓ(y, fN+1(θ∗))) (29)

▷ substitute first-order stationarity condition∇θL(θ∗) = 0

= θ∗ −
(
∇2

θL(θ∗) +∇2
θℓ(y, fN+1(θ∗))

)−1∇θℓ(y, fN+1(θ∗)) (30)
▷ use Gauss-Newton approximation to Hessian

≈ θ∗ −
(
HGN + ϕN+1ϕ

⊤
N+1

)−1∇θℓ(y, fN+1(θ∗)) (31)

▷ expand the loss gradient on the (N + 1)th example by chain rule

= θ∗ +
(
HGN + ϕN+1ϕ

⊤
N+1

)−1
ϕN+1êN+1(y) (32)

▷ use Sherman-Morrison formula

= θ∗ +
êN+1(y)

1 + ĥN+1

H−1
GNϕN+1 (33)

16

Published as a conference paper at ICLR 2025

C DERIVATION OF ACP-GN COEFFICIENTS

We present the derivation for expressing the residual in the neural network regression setting as a
linear function of the postulated label y,

yi − fi(θ
+
∗ (y)) (34)

▷ linearize neural network about θ∗
≈ yi −

[
fi(θ∗) +∇θfi(θ∗)

(
θ+
∗ (y)− θ∗

)]
(35)

▷ approximate θ+
∗ (y) ≈ θ̂+

∗ (y) and substitute Gauss-Newton influence

= yi − fi(θ∗)− ϕ⊤
i

(
êN+1(y)

1 + ĥN+1

H−1
GNϕN+1

)
(36)

▷ definition of residual êN+1(y) to reveal postulated label y and substitute ĥi,N+1 = ϕ⊤
i H

−1
GNϕN+1

= yi − fi(θ∗) +
ĥi,N+1

1 + ĥN+1

fN+1(θ∗)︸ ︷︷ ︸
ai

− ĥi,N+1

1 + ĥN+1︸ ︷︷ ︸
bi

y (37)

The residual of the postulated point proceds in an almost identical manner.

D EXTENSION OF ACP-GN FOR MULTI-OUTPUT REGRESSION

In the case of multi-output regression with vector-valued targets yi ∈ RO and outputs of a DNN
fi(θ) ∈ RO, the coefficients needed in the CRR procedure {ai,Bi} now correspond to a O-dim
vector and a O×O matrix respectively. Since CRR was only proposed for single-output regression,
we also need to adapt the procedure. Considering the asymmetric version of CRR (Burnaev &
Vovk, 2014), we simply need to solve for the O-dim changepoints which are given by (BN+1 −
Bi)

−1(ai− aN+1) as long as BN+1−Bi is positive-definite (generalizing the positivity constraint
in the single-output case). Then we propose to sort the set of changepoints followed by taking the
quantile component-wise analogous to the existing algorithm. Now we proceed to derive {ai,Bi}.
Firstly the multi-output analogue of the AOI estimator in Eq. (12) is given by,

θ̂+
∗ (y) = θ∗ +H−1

GNΦ
⊤
N+1

(
I+ V̂N+1

)−1
êN+1(y) (38)

where Φi := ∇θfi(θ∗) ∈ RO×D, HGN =
∑N

i=1 Φ
⊤
i Φi + δI, êN+1(y) = y − fN+1(θ∗) and

V̂N+1 = ΦN+1H
−1
GNΦ

⊤
N+1. There is a change in notation in the last expression of the multi-output

leverage score to avoid confusion with the Hessian. Using this we can derive analogous expressions
to Eqs. (13) and (14):

yi − fi(θ
+
∗ (y)) ≈ yi −

[
fi(θ∗) +∇θfi(θ∗)

(
θ̂+
∗ (y)− θ∗

)]
(39)

= yi − fi(θ∗)−ΦiH
−1
GNΦ

⊤
N+1

(
I+ V̂N+1

)−1
êN+1(y) (40)

= yi − fi(θ∗) + V̂i,N+1

(
I+ V̂N+1

)−1
fN+1(θ∗)︸ ︷︷ ︸

ai

(41)

−V̂i,N+1

(
I+ V̂N+1

)−1︸ ︷︷ ︸
Bi

y

and

y − fN+1(θ
+
∗ (y)) ≈ −

(
I+ V̂N+1

)−1
fN+1(θ∗)︸ ︷︷ ︸

aN+1

+
(
I+ V̂N+1

)−1︸ ︷︷ ︸
BN+1

y (42)

where V̂i,N+1 = ΦiH
−1
GNΦ

⊤
N+1. The normalized nonconformity scores can also be extended to the

multi-output setting. In the case of deleted-CRR, we have:

ai ←
(
I− V̄i

)−1
ai, Bi ←

(
I− V̄i

)−1
Bi ∀i = 1, . . . , N + 1 (43)

17

Published as a conference paper at ICLR 2025

where,

V̄i = V̂i − V̂i,N+1

(
I+ V̂N+1

)−1
V̂⊤

i,N+1 ∀i = 1, . . . , N (44)

V̄N+1 = V̂N+1

(
I+ V̂N+1

)−1
(45)

and we introduced V̂i = ΦiH
−1
GNΦ

⊤
i .

E DERIVATION OF APPROXIMATE ADD-ONE-IN POSTERIOR WITH
LAPLACE-GGN

Khan et al. (2019) show that the Laplace-GGN posterior can be equivalently stated as exact inference
in the following linear regression model (see their Theorem 1):

q∗(θ) ∝
N∏
i=1

e−
1
2 (ỹi−ϕ⊤

i θ)
2

p(θ) (46)

where p(θ) ∝ exp(12δ ∥θ∥
2
), ϕi := ∇θfi(θ∗)

⊤ and ỹi := ϕ⊤
i θ∗ + ei with ei = yi − fi(θ∗).

This can be viewed as approximating the original non-conjugate terms by conjugate factors (see
Sec. 5.4 in (Khan & Rue, 2023)): e−ℓ(yi,fi(θ)) ≈ e−

1
2 (ỹi−ϕ⊤

i θ)
2

, which take a similar interpretation
to site functions in expectation propagation. This is used along with the standard formula for online
Bayesian updating to derive the approximate AOI posterior q̂+∗ (θ) ≈ p(θ|DN+1),

p(θ|DN+1) ∝
N+1∏
i=1

e−ℓ(yi,fi(θ))p(θ) (47)

▷ split off the (N + 1)th likelihood from the others

= e−ℓ(y,fN+1(θ))
N∏
i=1

e−ℓ(yi,fi(θ))p(θ) (48)

▷ apply the Laplace-GGN posterior approximation

≈ e−ℓ(y,fN+1(θ))q∗(θ) (49)

▷ approximate the (N + 1)th likelihood by its site function

≈ e−
1
2 (ỹ−ϕ⊤

N+1θ)
2

q∗(θ) (50)

▷ this corresponds to an unnormalized Gaussian distribution

∝ N(θ|θ̂+
∗ (y), Σ̂

+
∗) (51)

F MULTI-OUTPUT REGRESSION PREDICTION INTERVALS

For a Bayesian posterior predictive distribution (under Gaussian assumptions) in the multi-output
case, p(y∗|x∗,D) = N(y∗|ŷ∗,Σy∗), the confidence region is given by an ellipsoid,

Cα(x∗) = {y ∈ RO : (y − ŷ∗)
⊤Σ−1

y∗
(y − ŷ∗) ≤ χ2

O,α} (52)

where χ2
O,α is the quantile function for the chi-squared distribution with O degrees of freedom.

Using this definition, it is straightforward to evaluate empirical coverage. Efficiency is then given
by the volume of the corresponding ellipsoid,

Vol
[
Cα(x∗)

]
= (χ2

O,α)
O
2 det(Σy∗)

1
2 Vol[BO] (53)

where BO is the unit ball with O dimensions.

18

Published as a conference paper at ICLR 2025

Table 3: We have number of test points (M), number of grid points (K), number of train points (N),
parameter count (D), total epochs (E), and cost of forward pass/gradient computation/Jacobian
computation ([FP]). We highlight the additional complexity of FCP over ACP-GN (purple), ACP
over ACP-GN (green), ACP-GN over ACP (blue) and ACP/ACP-GN over FCP (red).

Train Predict

FCP — MKN2E[FP]
ACP NE[FP] +ND2 +D3 MK([FP] +ND2)
ACP-GN NE[FP] +ND2 +D3 M([FP] +ND2 +N logN)

G TIME COMPLEXITY: FCP VS. ACP-GN

We write the time complexity for our ACP-GN and compare it against full conformal prediction
(FCP) and approximate full conformal prediction (ACP) (Martinez et al., 2023) in Table 3. This
is shown for the deleted nonconformity score similar to Sec. A.2 in Martinez et al. (2023) and for
scalar targets only. For the standard score, ACP and ACP-GN are unchanged but the factor of N is
dropped in FCP. “Train” refers to the upfront time complexity that can be re-used when constructing
prediction intervals (“predict”) for new batches of test points.

We state the best time complexity of the ridge regression confidence machine routine given the co-
efficients {(ai, bi)}N+1

i=1 as O(N logN) (see Sec. 2.3 in (Vovk et al., 2005)). This is the same as
the asymmetric implementation of Burnaev & Vovk (2014) shown in Alg. 2 (sorting the N change-
points). The cost of network prediction (single forward pass) is architecture-dependent but since this
is constant across the methods we do not expand on this here. We also regard the cost of gradient
and Jacobian computation as comparable to a forward pass (see the discussion in App. D in Novak
et al. (2022)).

FCP has a complexity multiplicative in the number of test points, grid points, train points (twice)
and epochs. Whereas for ACP-GN, it is just multiplicative in the number of test points, given an
upfront cost which is cubic in the number of parameters. We can further reduce the time complexity
for ACP-GN when scalable approximations to the Gauss-Newton Hessian are used (as investigated
in App. J.1). These extensions could also be adapted for ACP which was in fact left as future work
in Martinez et al. (2023). This is shown in Table 4 for the cases of Kronecker-factored approximate
curvature (KFAC) and last-layer approximation (LL). Crucially, both these approximations relax the
cubic dependence on the parameter count P which often exceeds millions of parameters for modern
architectures. Instead, the cubic dependence shifts to the input and output dimensionality of the
network layers in the case of KFAC or just the last layer, which are typically far smaller than P .

Table 4: We have number of network layers (L), layer input/output dimensionality (Il,in/Il,out), cost
of Gauss-Newton Hessian evaluation/inversion (HN) along with its KFAC (Hkfac

N) and last-layer
(HLL

N) approximation, and cost of operations related to Gauss-Newton influence in the KFAC case
[INF]kfac. Other terms are defined in Table 3.

Train Predict

ACP-GN NE[FP] +HN
a M([FP] +ND2 +N logN)

ACP-GN(kfac) NE[FP] +Hkfac
N

b
M([FP] + [INF]kfacd

+N logN)
ACP-GN(LL) NE[FP] +HLL

N
c

M([FP] +NI2L,in +N logN)
aHN = N [FP] +ND2 +D3

bHkfac
N = N [FP] +N

∑L
l=1(I

2
l,in + I2l,out) +

∑L
l=1(I

3
l,in + I3l,out)

cHLL
N = N [FP] +NI2L,in + I3L,in

d[INF]kfac = N
(
D +

∑L
l=1(Il,outI

2
l,in + Il,inI

2
l,out)

)

19

Published as a conference paper at ICLR 2025

H RELATED WORK

Computationally efficient versions of conformal prediction There are approaches based on data
splitting such as split-CP (Papadopoulos et al., 2002; Lei et al., 2018) and cross-conformal predic-
tion (Vovk, 2015; Barber et al., 2021). Such approaches greatly reduce the number of models that
need to be trained (in the case of split-CP just one), but this comes at the expense of statistical effi-
ciency. There are also normalized variants of split-CP (Papadopoulos et al., 2008) and other exten-
sions in the regression setting such as conformalized quantile regression (Romano et al., 2019) and
regression-to-classification CP (Guha et al., 2024). For certain model classes, computationally effi-
cient implementations of full-CP exist such as ridge regression (Nouretdinov et al., 2001; Burnaev
& Vovk, 2014), Lasso regression (Lei, 2019) and k-Nearest Neighbours Regression (Papadopou-
los et al., 2011). For more general settings, there are approaches based on homotopy continuation
method (Ndiaye & Takeuchi, 2019) and algorithmic stability Ndiaye (2022). The method of Mar-
tinez et al. (2023) is closely related to ours where they use influence function (Jaeckel, 1972; Cook
& Weisberg, 1980) to approximate the retraining step in the full-CP algorithm. However, they only
consider classification problems and their solution still requires an exhaustive search over possible
labels, which is unfeasible for the regression setting we consider in this paper. A related approach is
Alaa & Van Der Schaar (2020) that used higher-order influence functions to approximate leave-one-
out retraining in jackknife+ (Barber et al., 2021) and Schulam & Saria (2019) that approximates the
bootstrap (Efron & Tibshirani, 1986) using similar sensitivity-based techniques.

Influence functions These are a family of techniques that estimate the effect on the model of
deleting a single example (or group of examples) from the training set, without the computationally
prohibitive cost of retraining the model. There are two main approaches, the first is the infinitesimal
jackknife (IJ) or simply influence function that the wider family of techniques takes its namesake.
This was first proposed in robust statistics (Jaeckel, 1972; Hampel, 1974) and then was introduced
as an influence measure for regression diagnostics and outlier detection in Cook & Weisberg (1980).
It was popularized in deep learning by Koh & Liang (2017) focusing on diagnosing model errors
and data attribution. The other approach, that we use in this work, is the Newton-step (NS) influence
which was first proposed in Pregibon (1981) for logistic regression and generalized to more general
losses and regularizers in Beirami et al. (2017). Closely related to our use case, influence functions
have been used to approximate cross-validation: IJ in Giordano et al. (2019b) and NS influence in
le Cessie & van Houwelingen (1992); Beirami et al. (2017); Rad & Maleki (2020). They have also
been proposed for machine unlearning: IJ in Guo et al. (2020) and NS influence in Sekhari et al.
(2021). Influence functions derived using higher-order Taylor approximations have been proposed
(Giordano et al., 2019a; Basu et al., 2020). Many recent works have focused on scaling IJ such as
Fisher information matrix (Teso et al., 2021) or generalized Gauss-Newton (Bae et al., 2022) ap-
proximations to the Hessian, or measures defined using only gradients (Pruthi et al., 2020). Similar
techniques to our Gauss-Newton influence (in the leave-one-out setting) have appeared in past works
(Laurent & Cook, 1992; Hansen & Larsen, 1996; Monari & Dreyfus, 2000).

Network linearization The use of gradients or Jacobians as features first appeared in Jaakkola &
Haussler (1998) which they called “Fisher vectors”. Such features have been demonstrated for fast
adaptation (Maddox et al., 2021), transfer learning (Mu et al., 2020) and improving predictions in
Bayesian neural networks (Immer et al., 2021b). This local linearization has received much attention
in recent years due to the neural tangent kernel (Jacot et al., 2018) of which its finite-width variety
can be viewed as the kernel analogue of Fisher-vectors.

I EXPERIMENTAL DETAILS

I.1 UCI REGRESSION

For every dataset, both the input features and targets are standardized to have zero mean and unit
variance. We use a batch size of 256 in SGD training with an initial learning rate of 10−2 that is
decayed to 10−5 using a cosine schedule. All methods require tuning the L2 regularizer/prior preci-
sion. Additionally, for Linearized Laplace we have the observation noise. For the small and medium
datasets, these are tuned using online marginal likelihood optimization (Immer et al., 2021a) that
alternates between standard neural network training and gradient-based updates to the hyperparam-

20

Published as a conference paper at ICLR 2025

Table 5: We repeat the bounding box experiment in Table 2 but with 50% calibration split.

Avg. Volume (×10−2) Avg. Coverage
85% 90% 95% 85% 90% 95%

LA 0.710±0.009 0.945±0.013 1.405±0.019 92.11±0.18 (✗) 94.49±0.18 (✗) 96.65±0.16 (✗)
SCP 1.177±0.023 1.723±0.037 3.137±0.081 87.36±0.27 (✗) 91.87±0.27 (✗) 95.91±0.19 (✓)
CRF 1.248±0.030 1.900±0.044 3.781±0.092 87.48±0.34 (✗) 91.96±0.25 (✗) 96.02±0.20 (✓)
CQR 1.627±0.027 2.739±0.052 7.971±0.159 87.46±0.31 (✗) 91.42±0.28 (✓) 95.97±0.14 (✓)
ACP-GN 0.384±0.004 0.605±0.007 1.225±0.017 90.97±0.20 (✗) 94.09±0.20 (✗) 97.41±0.16 (✗)
SCP-GN 1.149±0.025 1.615±0.034 2.643±0.054 86.84±0.29 (✓) 91.35±0.31 (✓) 95.56±0.21 (✓)
ACP-GN (split + refine) 0.365±0.006 0.556±0.010 1.104±0.028 87.78±0.37 (✗) 91.75±0.31 (✓) 95.62±0.17 (✓)

Figure 2: Demonstration of our method (starting 3rd from right) for object localization alongside
common conformal prediction baselines. The two-sided prediction regions are shown in green and
neural network prediction is shown in red.

eters using the differentiable marginal likelihood estimate. We use a layerwise structure in the prior
precision. The marginal likelihood estimate is also used for early stopping. The prior precision and
observation noise are initialized to 1. Overall, using Adam optimizer we run for 5000 epochs with a
hyperparameter learning rate of 10−2 decayed to 10−3 using a cosine schedule, 100 burn-in epochs,
and take 50 hyperparameter steps on single marginal likelihood evaluation every 50 epochs.

For the large datasets, the (scalar) prior precision is tuned via grid-search for each order of magnitude
from 10−2 to 104. 10% of the training set is used for validation and once the best prior precision is
found, the network is retrained on full training set. The observation noise is fit to the training data
via maximum likelihood after training.

We follow the above procedure for all methods except “ACP-GN (split + refine)” where we first
train with L2 regularizer fixed to δ/N = 10−4. For the small datasets, the hyperparameters are
tuned via post-hoc marginal likelihood training with 5000 steps and the same learning rate schedule
described earlier. In Fig. 3 we demonstrate the trade-off between coverage and efficiency in the split
variant of ACP-GN. We set the sensitivity hyperparameter (β) of CRF (see Eq. 16 in (Papadopoulos
& Haralambous, 2011)) to 1 as used in Romano et al. (2019). The additional network is identical
to the original one and re-uses the same hyperparameters and training configuration. It is worth
mentioning that the original proposal of CRF in the context of neural networks (Papadopoulos et al.,
2002) used a ridge regression model to predict residuals.

The quantile regression network in CQR uses the same architecture as that used in the other methods
except there are two output units. As done in CRF, hyperparameters from SCP are re-used along
with the training configuration. Rather than retraining for each desired significance level, the output
layer is appended with additional units and trained jointly. We do not perform tuning of the quantiles
so it is expected the intervals can be made more efficient (Romano et al., 2019).

Results on additional UCI datasets are reported in Table 8. Furthermore, in Table 9 and 10 we repeat
all experiments with 25% calibration split.

I.2 BOUNDING BOX LOCALIZATION

The training setup is adapted from Girshick (2015) using SGD optimizer and simple data augmenta-
tion involving random horizontal flips of probability 0.5. The robust L1 loss is used for the bounding
box regression head and logistic loss for the classification head. With L1 loss, Eqs. (12) to (14) no
longer hold but we demonstrate the efficacy of our procedure when the objectives for training and
predictive interval construction differ.

21

Published as a conference paper at ICLR 2025

Images are resized to 224× 224 followed by scaling the pixel values to [0, 1] and then normalizing
to statistics computed from the ImageNet dataset as required by the pretrained VGG-19 backbone
(Simonyan & Zisserman, 2015). Bounding box coordinates denote the top-left and bottom-right
corners and are scaled to [0, 1]. The reported volumes use the standardized targets. A demonstration
is shown in Fig. 2.

For SGD training we use a batch size of 128 for 200 epochs and an initial learning rate of 10−2. A
learning rate schedule is used that takes incremental steps towards the base learning rate for the first
5 epochs (warm-up) and then decays to 0 using a cosine schedule. The SGD optimizer uses nesterov
momentum 0.9 and weight decay 5× 10−4. At inference with squared-error loss, we perform post-
hoc finetuning of hyperparameters (regularization coefficient, observation noise) using the marginal
likelihood. This is optimized using Adam for 250 epochs with a learning rate of 10−1. For LA, we
use the expressions outlined in App. F to evaluate the volume and coverage.

Due to the last-layer approximation, the off-diagonal entries of the O × O multi-output leverage
scores are zero. We can understand this by realizing the Jacobian of an output with respect to a
parameter tied to a different output is zero. Due to this inherent output independence, we can simply
use the expressions given in the single-output case in parallel over the output dimensions rather than
use the expressions derived for the multi-output setting in App. D.

When training the additional network in CRF and the quantile regression network in CQR, the
backbone parameters are initialized to those of the original network and not updated. They are
trained in a similar fashion except for 100 epochs, without warm-up in the learning rate schedule
and without data augmentation. The sensitivity hyperparameter (β) of CRF is set to 0.01 after trying
a few different values on a single seed.

In Table 5, we repeat the experiment but with 50% calibration split. In this case the model achieves
99.4% classification accuracy and 37.0% localization error.

J ADDITIONAL EXPERIMENTS

J.1 ABLATION WITH SCALABLE APPROXIMATIONS TO THE GAUSS-NEWTON MATRIX

For most deep architectures, storing and inverting the full Gauss-Newton matrix is infeasible. We
investigate two choices for scalable approximations to the Gauss-Newton matrix in the context of
our experiments involving the large UCI datasets. These are inspired by two popular choices for
scalable Laplace approximations.

The first is the use of Kronecker-factored approximate curvature (KFAC) (Martens & Grosse, 2015)
as an approximation to the GN. By approximating each layer’s Gauss Newton independently as a
Kronecker product, this leads to a block-diagonal factorization for the overall GN matrix enabling
efficient storage and computation of inverses. We use the specific form proposed in Immer et al.
(2021b) that performs an eigendecomposition of the Kronecker factors and avoids the “dampening”
approximation of Ritter et al. (2018). With regards to refinement, we observed that the one-step solve
with KFAC approximation performs much worse than without refinement. Hence, we instead take
a gradient-based approach as outlined in Antorán et al. (2022) optimizing the linearized network’s
objective using a similar configuration to the original NN training. The linearized network’s loss
gradients are evaluated without explicitly instantiating Jacobians via vector-Jacobian and Jacobian-
vector products.

The results are shown in Table 11. For LA, we observe that KFAC leads to slightly tighter intervals
but the miscoverage increases. In the case of SCP-GN, we find KFAC to be very competitive to
the full Gauss-Newton with little change to the interval width or coverage. For ACP-GN we show
results for the standard (i.e. AOI) nonconformity score as opposed to the studentized nonconformity
score reported in Table 1 and 8. This is because we found that the deleted and studentized noncon-
formity scores combined with the KFAC approximation performed poorly. However for the reported
standard nonconformity score, we observe KFAC leads to much tighter intervals with just a slight
increase in miscoverage. For the “ACP-GN (split + refine)”, on all datasets except bike, we observe
tighter intervals with KFAC however the miscoverage is often slightly greater.

22

Published as a conference paper at ICLR 2025

Table 6: We compare against Approximate full Conformal Prediction (ACP) that uses a target dis-
cretization strategy.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

energy
N=768
I=8

ACP 1.706±0.045 2.219±0.055 3.694±0.070 87.41±0.28 (✓) 93.44±0.31 (✓) 98.58±0.16 (✓)
ACP-GN 1.467±0.010 1.882±0.013 3.097±0.015 88.32±0.40 (✓) 93.87±0.29 (✓) 99.01±0.09 (✓)
ACP-GN (split + refine) 1.745±0.016 2.174±0.021 3.300±0.045 90.54±0.25 (✓) 94.96±0.22 (✓) 99.18±0.10 (✓)

concrete
N=1,030

I=8

ACP 17.854±0.104 21.966±0.119 31.068±0.139 90.36±0.15 (✓) 94.97±0.13 (✓) 98.43±0.07 (✓)
ACP-GN 15.690±0.112 19.856±0.141 29.179±0.190 89.95±0.18 (✓) 94.96±0.13 (✓) 98.91±0.06 (✓)
ACP-GN (split + refine) 18.907±0.103 24.012±0.129 35.949±0.387 90.26±0.20 (✓) 95.23±0.27 (✓) 99.17±0.06 (✓)

wine
N=1,599
I=11

ACP 2.158±0.003 2.676±0.005 3.630±0.008 90.46±0.13 (✓) 94.88±0.08 (✓) 98.22±0.07 (✓)
ACP-GN 2.091±0.005 2.651±0.006 3.797±0.013 90.91±0.11 (✓) 95.50±0.10 (✓) 99.14±0.05 (✓)
ACP-GN (split + refine) 2.474±0.007 3.054±0.008 4.324±0.020 89.56±0.27 (✓) 94.81±0.13 (✓) 98.99±0.09 (✓)

kin8nm
N=8,192

I=8

ACP 0.207±0.001 0.255±0.001 0.355±0.001 88.83±0.28 (✗) 94.16±0.19 (✓) 98.77±0.10 (✓)
ACP-GN 0.213±0.001 0.262±0.001 0.365±0.002 89.68±0.28 (✓) 94.58±0.20 (✓) 98.85±0.08 (✓)
ACP-GN (split + refine) 0.232±0.001 0.284±0.001 0.406±0.003 90.45±0.17 (✓) 95.02±0.22 (✓) 99.10±0.07 (✓)

power
N=9,568

I=4

ACP 12.131±0.022 14.840±0.017 20.804±0.050 89.28±0.25 (✓) 94.68±0.18 (✓) 98.82±0.10 (✓)
ACP-GN 12.526±0.024 15.248±0.020 21.592±0.062 90.16±0.26 (✓) 95.13±0.19 (✓) 98.89±0.08 (✓)
ACP-GN (split + refine) 12.744±0.045 15.442±0.039 22.043±0.151 90.17±0.29 (✓) 95.26±0.17 (✓) 98.98±0.09 (✓)

community
N=1,994
I=100

ACP 0.401±0.001 0.502±0.003 0.700±0.005 89.71±0.48 (✓) 94.00±0.36 (✓) 97.71±0.30 (✗)
ACP-GN 0.459±0.003 0.594±0.004 0.936±0.007 90.68±0.55 (✓) 95.21±0.38 (✓) 99.18±0.14 (✓)
ACP-GN (split + refine) 0.521±0.006 0.654±0.008 1.011±0.017 90.95±0.64 (✓) 95.26±0.43 (✓) 99.16±0.17 (✓)

bike
N=10,886

I=18

ACP 93.647±1.300 121.850±1.603 186.090±2.393 89.03±0.31 (✓) 94.36±0.22 (✓) 98.43±0.14 (✗)
ACP-GN 97.966±1.193 130.732±1.565 216.677±2.917 89.12±0.21 (✗) 94.32±0.18 (✗) 98.72±0.09 (✗)
ACP-GN (split + refine) 130.933±5.221 174.190±7.065 288.603±12.066 90.09±0.25 (✓) 94.93±0.19 (✓) 99.06±0.07 (✓)

The second choice is a last-layer approximation or neural linear model approach (Ober & Ras-
mussen, 2019) that can be considered a special case of subnetwork inference for Linearized Laplace
(Daxberger et al., 2021b). This makes the AOI estimation exact with respect to a linear model whose
basis features are given by the activations of the penultimate layer. This can be recovered as a special
case of Gauss-Newton influence. This leads to storing and inverting a much smaller matrix whose
size corresponds to the number of parameters in the final layer. In the context of Linearized Laplace,
the last-layer approximation can be combined with KFAC for increased scalability but we do not
investigate this configuration here.

The results are shown in Table 12. The last-layer approximation has the effect of making the ex-
isting undercoverage in LA much worse. In the case of SCP-GN, the approximation leads to the
intervals being no more efficient than SCP, that is without normalization, whilst maintaining correct
coverage. For ACP-GN, the intervals undercover by a large margin on the bike, community and
protein datasets. The split and refine variant is still able to successfully correct this attaining the
desired coverage whilst being competitive to the full Gauss-Newton on tightness. We also observed
the different varieties of nonconformity score all performed similarly – results reported are those of
the studentized variety as in Table 1 and 8.

J.2 COMPARISON AGAINST APPROXIMATE FULL CONFORMAL PREDICTION

We compare ACP-GN and ACP-GN (split+refine) to Approximate full Conformal Prediction (ACP)
(Martinez et al., 2023) on several UCI datasets taken from Table 1 and 8. ACP uses the AOI non-
conformity score (referred to as the ordinary scheme in (Martinez et al., 2023)). Whilst the exact
Hessian is computed in (Martinez et al., 2023) with a damping term to ensure positive eigenvalues,
we approximate the Hessian by a (damped) Gauss-Newton matrix in order to keep approximations
consistent in the comparison. The damping term is tuned in the same way as ACP-GN, as described
in App. I.1. The Gauss-Newton matrix has been used in previous works when evaluating influence
function (Bae et al., 2022; Nickl et al., 2023). Furthermore, we use “direct approach” (see Eq. 4 in
(Martinez et al., 2023)). Martinez et al. (2023) only considered classification tasks so ACP needs to
be adapted for regression. We define a grid of candidate targets using a simple discretization strategy
that constructs a fine, uniform grid of 200 points delimited by the training targets.

Table 6 shows that in some datasets and target coverage levels, ACP-GN is more efficient but in
others ACP is more efficient. However, we used 200 grid points which exceeds the upper end of
what was investigated in prior work (Chen et al., 2018). We also emphasise that ACP-GN has lower
space complexity since it only computes changepoints for each combination of test and train point,
whereas ACP computes residuals for each combination of test point, train point and candidate target
value. For the datasets considered we did not observe a considerable difference in the running time
between the two methods but we do expect for larger datasets ACP to be slower due to the need for
batched computation.

23

Published as a conference paper at ICLR 2025

J.3 COMPARISON AGAINST FULL CONFORMAL PREDICTION

We compare full conformal prediction (FCP) against ACP-GN and ACP (Martinez et al., 2023) as
well as LA and SCP. This is evaluated on a synthetic dataset with outliers (500 train points and 100
test points) taken from Papadopoulos (2024) (see Sec. 5.2). This generates data from a Gaussian
Process prior with RBF kernel. There is a coin flip of probability 0.1 for which the observation
noise standard deviation is increased by a factor of 10. The experiment is repeated 20 times with
different seeds also controlling the data generation. A MLP with a single hidden layer, 100 units and
Tanh activation function is used throughout. This is trained using Adam for 500 epochs (full-batch
training) with an initial learning rate of 10−2 that decays following a cosine schedule to 10−5. We
use a uniform grid of 50 points for the target discretization in FCP which is on the lower end as
suggested by previous works (Chen et al., 2018) and enough to give valid coverage. ACP follows
the configuration outlined in App. J.2 with 200 grid points. The AOI nonconformity score is used
throughout for FCP, ACP and ACP-GN. SCP uses a 50% calibration split. Hyperparameters are
tuned using the online marginal likelihood procedure as described in App. I.1 which we exclude
from the running time.

As Table 7 shows, all conformal methods give the correct coverage but FCP is indeed the most
efficient. However, the running time is a factor of 104 slower than all other methods including ACP
and ACP-GN. This experiment was run on a NVIDIA A100 GPU.

Table 7: We compare against Full Conformal Prediction (FCP) on a synthetically-generated dataset.

Avg. Width Avg. Coverage Time (×102)90% 95% 99% 90% 95% 99%

LA 1.061±0.025 1.264±0.030 1.661±0.039 94.45±0.56 (✗) 95.15±0.52 (✓) 96.60±0.45 (✗) 0.034±0.001

SCP 0.623±0.024 1.466±0.090 3.632±0.131 91.10±0.82 (✓) 96.10±0.45 (✓) 99.50±0.15 (✓) 0.023±0.001

FCP 0.451±0.011 1.287±0.053 3.090±0.092 87.00±1.06 (✓) 95.25±0.52 (✓) 98.90±0.32 (✓) 169.527±3.560

ACP 0.532±0.013 1.370±0.054 3.177±0.094 90.35±0.79 (✓) 95.50±0.49 (✓) 99.00±0.32 (✓) 0.035±0.001

ACP-GN 0.581±0.021 1.450±0.053 3.529±0.105 91.00±0.81 (✓) 95.60±0.48 (✓) 99.25±0.27 (✓) 0.034±0.000

24

Published as a conference paper at ICLR 2025

80% 85% 90% 95% 100%
Avg. Coverage

ACP-GN
(jackknife)

ACP-GN
(studentized)

ACP-GN

LA

90%

80% 85% 90% 95% 100%
Avg. Coverage

95%

80% 85% 90% 95% 100%
Avg. Coverage

99%

10 15 20 25
Avg. Width

ACP-GN
(jackknife)

ACP-GN
(studentized)

ACP-GN

LA

10 15 20 25
Avg. Width

10 15 20 25
Avg. Width

protein

ACP-GN w/ Calibration Split

none 50% 25%

Figure 3: Our extension to ACP-GN that employs a separate calibration set to evaluate nonconfor-
mity scores combined with refinement of the linearized model shows considerable improvement to
the coverage. Unsurprisingly it leads to larger average interval widths due to a smaller training set.
This is shown for protein dataset at {90%, 95%, 99%} confidence levels.

25

Published as a conference paper at ICLR 2025

Table 8: Additional results on UCI regression datasets.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

concrete
N=1,030

I=8

LA 15.523±0.087 18.497±0.103 24.310±0.136 89.30±0.17 (✓) 93.53±0.10 (✓) 97.37±0.11 (✗)
SCP 19.216±0.124 24.526±0.194 42.110±0.802 89.92±0.29 (✓) 94.97±0.14 (✓) 99.11±0.05 (✓)
CRF 18.623±0.117 23.737±0.167 40.390±0.506 89.75±0.36 (✓) 94.97±0.13 (✓) 99.05±0.06 (✓)
CQR 22.486±0.081 27.145±0.091 39.827±0.212 90.51±0.27 (✓) 95.24±0.16 (✓) 99.01±0.08 (✓)
ACP-GN 15.727±0.114 19.810±0.147 29.192±0.179 89.60±0.20 (✓) 94.77±0.14 (✓) 98.85±0.08 (✓)
SCP-GN 18.851±0.118 23.780±0.121 36.686±0.313 89.68±0.28 (✓) 94.87±0.14 (✓) 99.15±0.07 (✓)
ACP-GN (split + refine) 18.907±0.103 24.012±0.129 35.949±0.387 90.26±0.20 (✓) 95.23±0.27 (✓) 99.17±0.06 (✓)

wine
N=1,599
I=11

LA 2.099±0.001 2.501±0.002 3.287±0.002 91.12±0.13 (✓) 94.58±0.10 (✓) 98.34±0.05 (✓)
SCP 2.183±0.009 2.768±0.012 3.941±0.020 90.41±0.19 (✓) 95.07±0.12 (✓) 99.12±0.04 (✓)
CRF 2.304±0.009 2.921±0.015 4.381±0.031 90.14±0.18 (✓) 95.16±0.15 (✓) 99.02±0.05 (✓)
CQR 1.977±0.005 2.490±0.016 3.867±0.027 90.24±0.12 (✓) 95.05±0.06 (✓) 99.07±0.06 (✓)
ACP-GN 2.103±0.003 2.665±0.006 3.827±0.007 91.16±0.12 (✓) 95.80±0.05 (✓) 99.17±0.04 (✓)
SCP-GN 2.134±0.007 2.676±0.015 3.753±0.026 90.06±0.24 (✓) 95.09±0.16 (✓) 99.01±0.05 (✓)
ACP-GN (split + refine) 2.474±0.007 3.054±0.008 4.324±0.020 89.56±0.27 (✓) 94.81±0.13 (✓) 98.99±0.09 (✓)

kin8nm
N=8,192

I=8

LA 0.213±0.001 0.254±0.001 0.334±0.001 89.66±0.29 (✓) 93.88±0.23 (✗) 98.09±0.10 (✗)
SCP 0.231±0.001 0.285±0.001 0.409±0.003 90.54±0.29 (✓) 95.31±0.20 (✓) 99.18±0.08 (✓)
CRF 0.229±0.001 0.282±0.001 0.401±0.002 90.59±0.31 (✓) 95.41±0.23 (✓) 99.18±0.06 (✓)
CQR 0.254±0.001 0.304±0.001 0.426±0.003 90.24±0.27 (✓) 95.21±0.25 (✓) 99.02±0.09 (✓)
ACP-GN 0.213±0.001 0.262±0.001 0.365±0.002 89.68±0.28 (✓) 94.58±0.20 (✓) 98.85±0.08 (✓)
SCP-GN 0.230±0.001 0.282±0.001 0.400±0.002 90.57±0.29 (✓) 95.20±0.22 (✓) 99.18±0.07 (✓)
ACP-GN (split + refine) 0.232±0.001 0.284±0.001 0.406±0.003 90.45±0.17 (✓) 95.02±0.22 (✓) 99.10±0.07 (✓)

power
N=9,568

I=4

LA 13.345±0.028 15.901±0.034 20.898±0.045 92.08±0.23 (✗) 95.86±0.17 (✗) 98.86±0.09 (✓)
SCP 12.732±0.040 15.359±0.041 21.688±0.143 90.27±0.24 (✓) 94.94±0.17 (✓) 98.98±0.10 (✓)
CRF 12.573±0.039 15.130±0.039 21.548±0.145 90.26±0.27 (✓) 94.93±0.18 (✓) 98.98±0.09 (✓)
CQR 12.860±0.026 15.180±0.042 21.946±0.154 90.37±0.24 (✓) 94.93±0.14 (✓) 98.89±0.06 (✓)
ACP-GN 12.526±0.024 15.248±0.020 21.592±0.062 90.16±0.26 (✓) 95.13±0.19 (✓) 98.89±0.08 (✓)
SCP-GN 12.736±0.041 15.362±0.044 21.680±0.146 90.25±0.25 (✓) 94.95±0.18 (✓) 98.98±0.10 (✓)
ACP-GN (split + refine) 12.744±0.045 15.442±0.039 22.043±0.151 90.17±0.29 (✓) 95.26±0.17 (✓) 98.98±0.09 (✓)

community
N=1,994
I=100

LA 0.548±0.074 0.653±0.088 0.858±0.116 90.90±0.59 (✓) 93.83±0.50 (✓) 97.05±0.33 (✗)
SCP 0.534±0.010 0.731±0.020 1.159±0.028 90.30±0.42 (✓) 95.53±0.24 (✓) 99.12±0.16 (✓)
CRF 0.526±0.010 0.721±0.020 1.154±0.029 90.20±0.43 (✓) 95.33±0.25 (✓) 99.12±0.13 (✓)
CQR 0.554±0.020 0.701±0.034 1.077±0.038 90.90±0.57 (✓) 95.70±0.30 (✓) 99.35±0.15 (✓)
ACP-GN 0.570±0.108 0.755±0.158 1.224±0.285 90.90±0.62 (✓) 95.30±0.47 (✓) 99.25±0.14 (✓)
SCP-GN 0.474±0.013 0.656±0.024 1.104±0.034 90.58±0.37 (✓) 94.95±0.27 (✓) 99.00±0.15 (✓)
ACP-GN (split + refine) 0.519±0.006 0.652±0.008 1.010±0.016 90.97±0.61 (✓) 95.28±0.41 (✓) 99.12±0.16 (✓)

facebook 1
N=40,948

I=53

LA 67.580±2.637 80.527±3.142 105.831±4.130 97.63±0.09 (✗) 98.15±0.08 (✗) 98.76±0.06 (✗)
SCP 20.771±2.452 44.192±2.799 178.890±4.596 90.00±0.10 (✓) 95.03±0.08 (✓) 99.05±0.04 (✓)
CRF 18.689±1.944 35.765±1.870 121.181±4.148 89.98±0.12 (✓) 95.10±0.09 (✓) 99.08±0.04 (✓)
CQR 19.625±0.878 25.970±1.322 59.922±12.774 90.16±0.24 (✓) 94.91±0.11 (✓) 98.97±0.04 (✓)
ACP-GN 17.986±0.480 41.063±0.770 199.331±10.821 90.36±0.16 (✓) 95.56±0.17 (✗) 99.37±0.08 (✗)
SCP-GN 20.460±2.463 39.712±3.148 125.078±8.075 90.00±0.10 (✓) 94.94±0.09 (✓) 99.04±0.03 (✓)
ACP-GN (split + refine) 29.006±4.472 54.099±4.576 172.252±6.758 90.06±0.10 (✓) 95.20±0.08 (✓) 99.14±0.04 (✓)

26

Published as a conference paper at ICLR 2025

Table 9: We repeat the UCI regression experiment in Table 1 but with 25% calibration split. In the
case of yacht, the desired coverage of 99% was too small a significance level to accurately evaluate
the quantile of the calibration scores.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

yacht
N=308
I=6

LA 1.690±0.017 2.014±0.020 2.647±0.027 88.73±0.61 (✓) 90.78±0.59 (✗) 93.89±0.60 (✗)
SCP 2.306±0.117 3.866±0.133 — 90.11±0.70 (✓) 95.88±0.43 (✓) —
CRF 2.281±0.112 3.818±0.130 — 90.11±0.67 (✓) 95.82±0.46 (✓) —
CQR 3.236±0.151 4.895±0.211 — 90.33±0.65 (✓) 95.85±0.39 (✓) —
ACP-GN 1.594±0.016 2.385±0.029 6.915±0.067 87.36±0.58 (✓) 92.56±0.68 (✓) 99.03±0.11 (✓)
SCP-GN 2.070±0.084 3.111±0.110 — 90.53±0.54 (✓) 95.95±0.51 (✓) —
ACP-GN (split + refine) 3.931±0.083 5.926±0.144 — 91.66±0.46 (✓) 96.66±0.41 (✓) —

boston
N=506
I=13

LA 9.398±0.046 11.199±0.055 14.718±0.072 91.24±0.31 (✓) 94.34±0.22 (✓) 97.53±0.11 (✗)
SCP 10.086±0.184 14.746±0.345 38.574±1.914 90.12±0.51 (✓) 96.03±0.34 (✓) 99.19±0.12 (✓)
CRF 9.874±0.194 14.204±0.270 37.421±2.132 90.03±0.45 (✓) 95.52±0.24 (✓) 99.28±0.11 (✓)
CQR 10.918±0.121 14.618±0.208 31.130±0.823 90.09±0.31 (✓) 95.65±0.21 (✓) 99.17±0.10 (✓)
ACP-GN 9.182±0.046 12.111±0.038 20.512±0.057 90.64±0.26 (✓) 95.49±0.16 (✓) 99.11±0.08 (✓)
SCP-GN 9.787±0.152 13.372±0.247 27.274±1.221 90.21±0.44 (✓) 95.49±0.29 (✓) 99.13±0.14 (✓)
ACP-GN (split + refine) 17.372±0.252 22.852±0.371 42.081±1.170 90.68±0.44 (✓) 95.79±0.28 (✓) 98.95±0.15 (✓)

energy
N=768
I=8

LA 1.502±0.006 1.790±0.007 2.353±0.009 88.96±0.35 (✓) 92.92±0.33 (✗) 96.95±0.23 (✗)
SCP 1.824±0.037 2.365±0.046 4.313±0.129 90.05±0.45 (✓) 95.04±0.25 (✓) 99.39±0.09 (✓)
CRF 1.807±0.037 2.341±0.046 4.316±0.133 89.97±0.47 (✓) 95.02±0.23 (✓) 99.36±0.10 (✓)
CQR 4.779±0.032 5.181±0.035 7.692±0.171 90.55±0.26 (✓) 95.51±0.22 (✓) 99.35±0.06 (✓)
ACP-GN 1.462±0.006 1.884±0.008 3.076±0.015 88.28±0.33 (✓) 93.69±0.33 (✓) 98.88±0.11 (✓)
SCP-GN 1.812±0.034 2.348±0.047 4.226±0.120 90.16±0.43 (✓) 95.19±0.24 (✓) 99.31±0.11 (✓)
ACP-GN (split + refine) 2.498±0.056 3.251±0.072 5.601±0.168 90.19±0.53 (✓) 95.28±0.37 (✓) 99.43±0.07 (✓)

bike
N=10,886

I=18

LA 100.451±2.394 119.694±2.853 157.305±3.749 89.82±0.39 (✓) 93.29±0.33 (✗) 96.83±0.16 (✗)
SCP 113.594±1.370 159.114±2.297 287.486±5.425 90.48±0.22 (✓) 95.11±0.20 (✓) 98.87±0.08 (✓)
CRF 112.104±1.653 156.161±2.486 283.911±6.247 90.38±0.22 (✓) 95.17±0.19 (✓) 98.93±0.09 (✓)
CQR 107.141±3.598 130.756±3.259 212.513±5.131 90.34±0.26 (✓) 95.18±0.18 (✓) 98.97±0.09 (✓)
ACP-GN 98.813±2.485 130.893±3.231 213.131±5.630 89.36±0.43 (✓) 94.41±0.27 (✗) 98.67±0.09 (✗)
SCP-GN 105.020±1.209 139.391±1.711 228.656±4.493 90.17±0.21 (✓) 95.10±0.16 (✓) 98.99±0.07 (✓)
ACP-GN (split + refine) 137.114±0.759 178.639±1.307 285.997±3.834 90.20±0.18 (✓) 95.05±0.16 (✓) 99.16±0.10 (✓)

protein
N=45,730

I=9

LA 9.385±0.022 11.183±0.027 14.697±0.035 85.43±0.18 (✗) 89.69±0.15 (✗) 94.81±0.10 (✗)
SCP 12.188±0.036 16.069±0.050 24.828±0.126 89.85±0.11 (✓) 94.91±0.07 (✓) 98.92±0.05 (✓)
CRF 11.532±0.047 15.398±0.071 25.006±0.147 89.89±0.09 (✓) 94.93±0.08 (✓) 98.92±0.03 (✓)
CQR 13.174±0.162 14.422±0.148 17.924±0.078 90.10±0.09 (✓) 95.04±0.05 (✓) 98.92±0.04 (✓)
ACP-GN 10.243±0.019 13.294±0.027 20.101±0.053 87.54±0.15 (✗) 93.04±0.11 (✗) 98.24±0.05 (✗)
SCP-GN 11.743±0.035 15.312±0.035 23.243±0.097 89.87±0.09 (✓) 94.91±0.07 (✓) 98.95±0.04 (✓)
ACP-GN (split + refine) 13.229±0.042 16.741±0.055 23.927±0.068 89.96±0.11 (✓) 94.93±0.10 (✓) 98.94±0.05 (✓)

facebook_2
N=81,311

I=53

LA 66.088±2.760 78.749±3.289 103.493±4.322 97.47±0.12 (✗) 98.01±0.09 (✗) 98.65±0.06 (✗)
SCP 15.739±0.240 34.114±0.646 145.543±1.431 89.85±0.09 (✓) 94.96±0.06 (✓) 99.01±0.03 (✓)
CRF 15.257±0.663 29.889±1.398 100.709±6.136 89.82±0.08 (✓) 94.97±0.05 (✓) 99.01±0.03 (✓)
CQR 17.929±0.703 22.314±1.070 32.257±1.604 89.85±0.06 (✓) 95.00±0.04 (✓) 99.02±0.03 (✓)
ACP-GN 18.396±0.546 40.088±1.091 166.792±5.632 90.47±0.11 (✗) 95.45±0.08 (✗) 99.35±0.04 (✗)
SCP-GN 15.633±0.220 33.192±0.708 122.079±4.142 89.81±0.07 (✓) 94.96±0.06 (✓) 99.00±0.02 (✓)
ACP-GN (split + refine) 20.487±0.502 41.051±0.844 152.090±6.966 90.18±0.08 (✓) 95.08±0.07 (✓) 99.11±0.03 (✓)

27

Published as a conference paper at ICLR 2025

Table 10: We repeat the UCI regression experiment in Table 8 but with 25% calibration split.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

concrete
N=1,030

I=8

LA 15.523±0.087 18.497±0.103 24.310±0.136 89.30±0.17 (✓) 93.53±0.10 (✓) 97.37±0.11 (✗)
SCP 17.563±0.209 22.787±0.277 39.972±1.300 89.35±0.43 (✓) 94.93±0.27 (✓) 99.02±0.12 (✓)
CRF 16.946±0.176 21.898±0.271 38.480±1.287 89.44±0.33 (✓) 94.88±0.30 (✓) 99.03±0.12 (✓)
CQR 20.063±0.092 24.620±0.144 37.035±0.329 89.88±0.27 (✓) 94.90±0.19 (✓) 99.11±0.07 (✓)
ACP-GN 15.727±0.114 19.810±0.147 29.192±0.179 89.60±0.20 (✓) 94.77±0.14 (✓) 98.85±0.08 (✓)
SCP-GN 17.373±0.177 22.170±0.233 34.104±0.566 89.47±0.45 (✓) 94.94±0.25 (✓) 99.11±0.12 (✓)
ACP-GN (split + refine) 25.331±0.182 32.279±0.244 47.494±0.795 90.30±0.40 (✓) 95.45±0.21 (✓) 99.13±0.11 (✓)

wine
N=1,599
I=11

LA 2.099±0.001 2.501±0.002 3.287±0.002 91.12±0.13 (✓) 94.58±0.10 (✓) 98.34±0.05 (✓)
SCP 2.112±0.010 2.686±0.018 4.032±0.028 90.11±0.15 (✓) 95.00±0.11 (✓) 99.27±0.05 (✓)
CRF 2.186±0.013 2.753±0.013 4.397±0.075 89.92±0.15 (✓) 94.92±0.13 (✓) 99.20±0.06 (✓)
CQR 1.966±0.004 2.421±0.016 3.920±0.031 89.97±0.22 (✓) 94.95±0.09 (✓) 99.12±0.08 (✓)
ACP-GN 2.103±0.003 2.665±0.006 3.827±0.007 91.16±0.12 (✓) 95.80±0.05 (✓) 99.17±0.04 (✓)
SCP-GN 2.068±0.009 2.621±0.018 3.760±0.035 90.07±0.18 (✓) 95.00±0.11 (✓) 99.09±0.06 (✓)
ACP-GN (split + refine) 2.908±0.016 3.527±0.023 5.089±0.037 90.14±0.20 (✓) 94.93±0.21 (✓) 99.09±0.09 (✓)

kin8nm
N=8,192

I=8

LA 0.213±0.001 0.254±0.001 0.334±0.001 89.66±0.29 (✓) 93.88±0.23 (✗) 98.09±0.10 (✗)
SCP 0.223±0.001 0.275±0.001 0.394±0.003 90.10±0.27 (✓) 95.35±0.20 (✓) 99.15±0.09 (✓)
CRF 0.221±0.001 0.271±0.001 0.381±0.003 90.15±0.27 (✓) 95.36±0.19 (✓) 99.12±0.09 (✓)
CQR 0.241±0.001 0.286±0.001 0.392±0.003 90.41±0.24 (✓) 95.18±0.20 (✓) 98.98±0.09 (✓)
ACP-GN 0.213±0.001 0.262±0.001 0.365±0.002 89.68±0.28 (✓) 94.58±0.20 (✓) 98.85±0.08 (✓)
SCP-GN 0.222±0.001 0.273±0.001 0.386±0.003 90.05±0.27 (✓) 95.36±0.20 (✓) 99.12±0.08 (✓)
ACP-GN (split + refine) 0.243±0.001 0.298±0.001 0.423±0.004 90.60±0.27 (✓) 95.27±0.16 (✓) 99.17±0.09 (✓)

power
N=9,568

I=4

LA 13.345±0.028 15.901±0.034 20.898±0.045 92.08±0.23 (✗) 95.86±0.17 (✗) 98.86±0.09 (✓)
SCP 12.620±0.051 15.212±0.069 21.720±0.245 90.29±0.22 (✓) 95.01±0.19 (✓) 98.99±0.10 (✓)
CRF 12.457±0.049 15.019±0.069 21.553±0.189 90.32±0.24 (✓) 95.06±0.17 (✓) 98.96±0.10 (✓)
CQR 12.818±0.041 15.081±0.058 21.903±0.170 90.52±0.22 (✓) 94.90±0.18 (✓) 99.02±0.08 (✓)
ACP-GN 12.526±0.024 15.248±0.020 21.592±0.062 90.16±0.26 (✓) 95.13±0.19 (✓) 98.89±0.08 (✓)
SCP-GN 12.627±0.050 15.215±0.070 21.724±0.242 90.32±0.22 (✓) 95.01±0.18 (✓) 99.00±0.09 (✓)
ACP-GN (split + refine) 12.834±0.054 15.561±0.067 22.548±0.255 90.18±0.26 (✓) 95.18±0.19 (✓) 99.05±0.10 (✓)

community
N=1,994
I=100

LA 0.548±0.074 0.653±0.088 0.858±0.116 90.90±0.59 (✓) 93.83±0.50 (✓) 97.05±0.33 (✗)
SCP 0.471±0.009 0.642±0.013 1.033±0.027 90.12±0.55 (✓) 95.20±0.46 (✓) 98.97±0.20 (✓)
CRF 0.464±0.010 0.617±0.015 0.992±0.029 90.35±0.53 (✓) 95.03±0.45 (✓) 98.90±0.18 (✓)
CQR 0.659±0.034 0.926±0.058 1.349±0.067 91.28±0.49 (✓) 96.00±0.37 (✓) 99.65±0.18 (✓)
ACP-GN 0.460±0.002 0.593±0.005 0.932±0.006 90.45±0.46 (✓) 95.05±0.42 (✓) 99.21±0.14 (✓)
SCP-GN 0.448±0.008 0.621±0.013 1.069±0.048 90.10±0.57 (✓) 95.35±0.42 (✓) 99.03±0.19 (✓)
ACP-GN (split + refine) 0.561±0.009 0.700±0.010 1.092±0.029 89.97±0.69 (✓) 94.92±0.45 (✓) 98.85±0.20 (✓)

facebook_1
N=40,948

I=53

LA 67.580±2.637 80.527±3.142 105.831±4.130 97.63±0.09 (✗) 98.15±0.08 (✗) 98.76±0.06 (✗)
SCP 18.756±0.625 42.110±1.381 176.332±5.531 89.98±0.12 (✓) 95.08±0.09 (✓) 99.03±0.04 (✓)
CRF 16.845±0.513 34.078±0.936 114.769±4.111 90.04±0.13 (✓) 95.12±0.09 (✓) 98.98±0.05 (✓)
CQR 21.120±1.049 27.024±1.543 43.095±2.232 90.05±0.14 (✓) 95.04±0.08 (✓) 98.95±0.03 (✓)
ACP-GN 17.986±0.480 41.063±0.770 199.331±10.821 90.36±0.16 (✓) 95.56±0.17 (✗) 99.37±0.08 (✗)
SCP-GN 18.696±0.612 39.460±1.552 130.967±6.779 90.04±0.13 (✓) 95.04±0.10 (✓) 99.03±0.04 (✓)
ACP-GN (split + refine) 24.639±1.195 51.864±2.687 181.585±11.155 90.27±0.13 (✓) 95.29±0.09 (✓) 99.14±0.04 (✓)

28

Published as a conference paper at ICLR 2025

Table 11: KFAC approximation to the Gauss-Newton evaluated on large UCI datasets

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

bike
N=10,886

I=18

LA 100.451±2.394 119.694±2.853 157.305±3.749 89.82±0.39 (✓) 93.29±0.33 (✗) 96.83±0.16 (✗)
LA(kfac) 91.501±3.058 109.030±3.644 143.290±4.789 87.24±1.01 (✗) 91.07±0.84 (✗) 95.20±0.55 (✗)

SCP 131.138±0.812 180.477±1.244 324.756±4.635 90.33±0.21 (✓) 95.17±0.15 (✓) 99.00±0.07 (✓)
SCP-GN 122.245±1.073 160.505±1.761 254.409±3.767 90.34±0.24 (✓) 95.26±0.15 (✓) 99.02±0.08 (✓)
SCP-GN(kfac) 121.401±0.708 160.214±1.328 259.909±3.247 90.46±0.21 (✓) 95.22±0.18 (✓) 98.99±0.07 (✓)

ACP-GN 102.401±6.037 133.781±7.394 212.144±11.677 89.27±0.35 (✗) 94.45±0.24 (✗) 98.69±0.10 (✗)
ACP-GN(kfac) 94.964±2.095 124.501±3.011 198.018±5.012 88.67±0.68 (✗) 94.06±0.52 (✗) 98.49±0.18 (✗)

ACP-GN (split + refine) 125.090±4.180 162.697±5.654 254.893±9.363 90.20±0.22 (✓) 94.95±0.13 (✓) 99.01±0.08 (✓)
ACP-GN(kfac) (split + refine) 162.693±2.312 211.953±2.906 334.975±5.205 91.31±0.19 (✗) 95.81±0.11 (✗) 99.24±0.05 (✓)

community
N=1,994
I=100

LA 0.548±0.074 0.653±0.088 0.858±0.116 90.90±0.59 (✓) 93.83±0.50 (✓) 97.05±0.33 (✗)
LA(kfac) 0.472±0.003 0.562±0.004 0.739±0.005 90.45±0.42 (✓) 93.55±0.41 (✗) 96.95±0.30 (✗)

SCP 0.534±0.010 0.735±0.020 1.164±0.029 90.17±0.41 (✓) 95.33±0.22 (✓) 99.17±0.17 (✓)
SCP-GN 0.473±0.013 0.660±0.024 1.116±0.034 90.55±0.39 (✓) 95.10±0.25 (✓) 99.12±0.14 (✓)
SCP-GN(kfac) 0.476±0.012 0.657±0.023 1.095±0.030 90.62±0.41 (✓) 95.30±0.23 (✓) 98.90±0.18 (✓)

ACP-GN 0.611±0.151 0.784±0.191 1.222±0.289 90.92±0.62 (✓) 95.28±0.45 (✓) 99.25±0.13 (✓)
ACP-GN(kfac) 0.476±0.018 0.612±0.023 0.964±0.035 90.78±0.48 (✓) 95.20±0.37 (✓) 99.25±0.12 (✓)

ACP-GN (split + refine) 0.523±0.005 0.661±0.007 1.040±0.016 91.38±0.55 (✓) 95.45±0.44 (✓) 99.20±0.14 (✓)
ACP-GN(kfac) (split + refine) 0.530±0.005 0.674±0.008 1.067±0.019 91.20±0.64 (✓) 95.62±0.44 (✓) 99.35±0.12 (✓)

protein
N=45,730

I=9

LA 9.385±0.022 11.183±0.027 14.697±0.035 85.43±0.18 (✗) 89.69±0.15 (✗) 94.81±0.10 (✗)
LA(kfac) 9.132±0.027 10.881±0.032 14.301±0.042 84.33±0.18 (✗) 88.63±0.16 (✗) 94.04±0.12 (✗)

SCP 13.041±0.088 17.161±0.098 26.181±0.119 89.78±0.08 (✓) 94.83±0.06 (✓) 98.94±0.04 (✓)
SCP-GN 12.426±0.085 16.102±0.096 24.032±0.138 89.78±0.10 (✓) 94.86±0.08 (✓) 98.94±0.03 (✓)
SCP-GN(kfac) 12.679±0.084 16.570±0.096 24.981±0.133 89.76±0.10 (✓) 94.85±0.08 (✓) 98.94±0.03 (✓)

ACP-GN 10.127±0.020 13.156±0.027 19.943±0.061 87.62±0.15 (✗) 93.14±0.10 (✗) 98.35±0.04 (✗)
ACP-GN(kfac) 9.695±0.034 12.595±0.041 19.093±0.064 86.02±0.18 (✗) 91.92±0.15 (✗) 97.77±0.06 (✗)

ACP-GN (split + refine) 12.614±0.034 15.961±0.044 23.188±0.069 89.88±0.10 (✓) 94.90±0.09 (✓) 98.97±0.05 (✓)
ACP-GN(kfac) (split + refine) 12.129±0.105 15.363±0.128 22.260±0.152 88.39±0.14 (✗) 93.82±0.13 (✗) 98.49±0.07 (✗)

facebook_1
N=40,948

I=53

LA 67.580±2.637 80.527±3.142 105.831±4.130 97.63±0.09 (✗) 98.15±0.08 (✗) 98.76±0.06 (✗)
LA(kfac) 67.534±3.806 80.471±4.535 105.757±5.960 97.39±0.15 (✗) 97.88±0.12 (✗) 98.57±0.09 (✗)

SCP 20.771±2.452 44.192±2.799 178.890±4.596 90.00±0.10 (✓) 95.03±0.08 (✓) 99.05±0.04 (✓)
SCP-GN 20.460±2.463 39.712±3.148 125.078±8.075 90.01±0.10 (✓) 94.94±0.09 (✓) 99.04±0.03 (✓)
SCP-GN(kfac) 20.303±2.476 40.531±2.973 128.583±5.746 90.01±0.11 (✓) 95.04±0.09 (✓) 99.03±0.03 (✓)

ACP-GN 30.466±7.858 62.895±13.942 223.609±45.677 90.56±0.19 (✗) 95.61±0.16 (✗) 99.26±0.05 (✗)
ACP-GN(kfac) 19.275±0.542 40.991±0.964 149.319±5.539 90.24±0.12 (✓) 95.38±0.09 (✗) 99.24±0.06 (✗)

ACP-GN (split + refine) 33.780±5.321 57.292±5.730 141.074±6.581 90.13±0.11 (✓) 95.23±0.06 (✓) 99.08±0.04 (✓)
ACP-GN(kfac) (split + refine) 23.732±1.180 45.239±2.220 121.631±3.699 89.81±0.10 (✓) 94.86±0.08 (✓) 98.90±0.04 (✓)

facebook_2
N=81,311

I=53

LA 66.088±2.760 78.749±3.289 103.493±4.322 97.47±0.12 (✗) 98.01±0.09 (✗) 98.65±0.06 (✗)
LA(kfac) 63.591±3.085 75.774±3.675 99.584±4.830 97.26±0.15 (✗) 97.84±0.12 (✗) 98.54±0.08 (✗)

SCP 16.387±0.208 35.387±0.462 152.706±1.591 89.97±0.07 (✓) 95.00±0.06 (✓) 99.06±0.03 (✓)
SCP-GN 16.287±0.202 33.655±0.563 118.489±4.305 89.99±0.07 (✓) 94.98±0.06 (✓) 99.00±0.03 (✓)
SCP-GN(kfac) 16.213±0.195 33.686±0.530 116.672±2.618 89.96±0.08 (✓) 94.98±0.06 (✓) 99.02±0.02 (✓)

ACP-GN 26.536±3.513 56.470±7.754 197.251±27.935 90.54±0.11 (✗) 95.46±0.08 (✗) 99.23±0.04 (✗)
ACP-GN(kfac) 20.497±1.859 43.246±3.955 147.832±13.223 90.34±0.08 (✗) 95.22±0.05 (✗) 99.18±0.03 (✗)

ACP-GN (split + refine) 23.095±1.120 42.653±1.161 123.337±2.954 90.17±0.08 (✓) 95.15±0.05 (✓) 99.08±0.03 (✓)
ACP-GN(kfac) (split + refine) 20.487±0.257 39.636±0.582 117.994±2.407 90.11±0.09 (✓) 95.15±0.06 (✓) 99.11±0.03 (✓)

29

Published as a conference paper at ICLR 2025

Table 12: Last-layer (LL) approximation to the Gauss-Newton evaluated on large UCI datasets

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

bike
N=10,886

I=18

LA 100.451±2.394 119.694±2.853 157.305±3.749 89.82±0.39 (✓) 93.29±0.33 (✗) 96.83±0.16 (✗)
LA(LL) 79.923±3.087 95.234±3.679 125.159±4.835 82.80±1.32 (✗) 86.98±1.21 (✗) 92.19±0.95 (✗)

SCP 131.138±0.812 180.477±1.244 324.756±4.635 90.33±0.21 (✓) 95.17±0.15 (✓) 99.00±0.07 (✓)
SCP-GN 122.245±1.073 160.505±1.761 254.409±3.767 90.34±0.24 (✓) 95.26±0.15 (✓) 99.02±0.08 (✓)
SCP-GN(LL) 130.965±0.796 180.227±1.213 324.427±4.404 90.26±0.22 (✓) 95.17±0.15 (✓) 99.00±0.07 (✓)

ACP-GN 98.813±2.485 130.893±3.231 213.131±5.630 89.36±0.43 (✓) 94.41±0.27 (✗) 98.67±0.09 (✗)
ACP-GN(LL) 76.808±2.933 100.920±4.078 160.448±6.648 81.69±1.31 (✗) 88.20±1.23 (✗) 95.17±0.78 (✗)

ACP-GN (split + refine) 128.336±4.336 170.782±5.859 281.632±10.176 89.98±0.22 (✓) 94.94±0.16 (✓) 99.01±0.06 (✓)
ACP-GN(LL) (split + refine) 128.853±1.101 178.079±1.464 325.171±3.916 90.12±0.23 (✓) 95.12±0.20 (✓) 99.02±0.07 (✓)

community
N=1,994
I=100

LA 0.548±0.074 0.653±0.088 0.858±0.116 90.90±0.59 (✓) 93.83±0.50 (✓) 97.05±0.33 (✗)
LA(LL) 0.455±0.013 0.542±0.015 0.712±0.020 89.28±1.00 (✓) 92.33±0.94 (✗) 96.05±0.79 (✗)

SCP 0.534±0.010 0.735±0.020 1.164±0.029 90.17±0.41 (✓) 95.33±0.22 (✓) 99.17±0.17 (✓)
SCP-GN 0.473±0.013 0.660±0.024 1.116±0.034 90.55±0.39 (✓) 95.10±0.25 (✓) 99.12±0.14 (✓)
SCP-GN(LL) 0.533±0.010 0.730±0.020 1.157±0.028 90.33±0.42 (✓) 95.50±0.24 (✓) 99.15±0.16 (✓)

ACP-GN 0.570±0.108 0.755±0.158 1.224±0.285 90.90±0.62 (✓) 95.30±0.47 (✓) 99.25±0.14 (✓)
ACP-GN(LL) 0.438±0.012 0.564±0.016 0.887±0.026 88.83±1.06 (✓) 93.78±0.99 (✗) 98.42±0.65 (✗)

ACP-GN (split + refine) 0.519±0.006 0.652±0.008 1.010±0.016 90.97±0.61 (✓) 95.28±0.41 (✓) 99.12±0.16 (✓)
ACP-GN(LL) (split + refine) 0.495±0.005 0.648±0.006 1.040±0.014 90.75±0.40 (✓) 95.70±0.29 (✓) 99.35±0.12 (✓)

protein
N=45,730

I=9

LA 9.385±0.022 11.183±0.027 14.697±0.035 85.43±0.18 (✗) 89.69±0.15 (✗) 94.81±0.10 (✗)
LA(LL) 8.667±0.026 10.328±0.031 13.573±0.041 82.51±0.17 (✗) 87.08±0.17 (✗) 92.81±0.12 (✗)

SCP 13.041±0.088 17.161±0.098 26.181±0.119 89.78±0.08 (✓) 94.83±0.06 (✓) 98.94±0.04 (✓)
SCP-GN 12.426±0.085 16.102±0.096 24.032±0.138 89.78±0.10 (✓) 94.86±0.08 (✓) 98.94±0.03 (✓)
SCP-GN(LL) 13.035±0.088 17.150±0.098 26.167±0.119 89.77±0.08 (✓) 94.82±0.06 (✓) 98.94±0.04 (✓)

ACP-GN 10.243±0.019 13.294±0.027 20.101±0.053 87.54±0.15 (✗) 93.04±0.11 (✗) 98.24±0.05 (✗)
ACP-GN(LL) 8.731±0.032 11.341±0.038 17.192±0.060 82.62±0.18 (✗) 89.16±0.15 (✗) 96.29±0.08 (✗)

ACP-GN (split + refine) 12.660±0.028 16.073±0.031 23.445±0.057 89.83±0.09 (✓) 94.90±0.09 (✓) 98.97±0.05 (✓)
ACP-GN(LL) (split + refine) 12.616±0.029 16.078±0.036 23.672±0.075 89.81±0.11 (✓) 94.77±0.09 (✓) 98.98±0.03 (✓)

facebook_1
N=40,948

I=53

LA 67.580±2.637 80.527±3.142 105.831±4.130 97.63±0.09 (✗) 98.15±0.08 (✗) 98.76±0.06 (✗)
LA(LL) 66.025±4.620 78.673±5.506 103.394±7.235 96.90±0.19 (✗) 97.45±0.17 (✗) 98.10±0.14 (✗)

SCP 20.771±2.452 44.192±2.799 178.890±4.596 90.00±0.10 (✓) 95.03±0.08 (✓) 99.05±0.04 (✓)
SCP-GN 20.460±2.463 39.712±3.148 125.078±8.075 90.01±0.10 (✓) 94.94±0.09 (✓) 99.04±0.03 (✓)
SCP-GN(LL) 20.735±2.454 44.237±2.780 177.595±4.404 90.02±0.11 (✓) 95.03±0.08 (✓) 99.04±0.03 (✓)

ACP-GN 17.986±0.480 41.063±0.770 199.331±10.821 90.36±0.16 (✓) 95.56±0.17 (✗) 99.37±0.08 (✗)
ACP-GN(LL) 17.305±0.514 36.951±1.220 134.876±6.983 89.54±0.12 (✗) 94.53±0.09 (✗) 98.63±0.09 (✗)

ACP-GN (split + refine) 29.006±4.472 54.099±4.576 172.252±6.758 90.06±0.10 (✓) 95.20±0.08 (✓) 99.14±0.04 (✓)
ACP-GN(LL) (split + refine) 19.198±0.585 42.501±0.841 175.527±2.964 90.02±0.11 (✓) 95.12±0.08 (✓) 99.06±0.03 (✓)

facebook_2
N=81,311

I=53

LA 66.088±2.760 78.749±3.289 103.493±4.322 97.47±0.12 (✗) 98.01±0.09 (✗) 98.65±0.06 (✗)
LA(LL) 64.783±4.014 77.194±4.783 101.450±6.286 97.02±0.15 (✗) 97.56±0.13 (✗) 98.23±0.09 (✗)

SCP 16.387±0.208 35.387±0.462 152.706±1.591 89.97±0.07 (✓) 95.00±0.06 (✓) 99.06±0.03 (✓)
SCP-GN 16.287±0.202 33.655±0.563 118.489±4.305 89.99±0.07 (✓) 94.98±0.06 (✓) 99.00±0.03 (✓)
SCP-GN(LL) 16.323±0.199 35.192±0.446 151.199±1.862 90.00±0.07 (✓) 94.99±0.06 (✓) 99.05±0.03 (✓)

ACP-GN 18.396±0.546 40.088±1.091 166.792±5.632 90.47±0.11 (✗) 95.45±0.08 (✗) 99.35±0.04 (✗)
ACP-GN(LL) 17.671±0.815 37.040±1.617 127.615±5.783 89.94±0.09 (✓) 94.74±0.06 (✗) 98.73±0.05 (✗)

ACP-GN (split + refine) 21.469±0.906 42.184±0.788 152.460±2.499 90.14±0.08 (✓) 95.10±0.06 (✓) 99.13±0.02 (✗)
ACP-GN(LL) (split + refine) 16.895±0.238 36.727±0.477 149.723±2.197 89.98±0.07 (✓) 95.03±0.06 (✓) 99.03±0.02 (✓)

30

	Introduction
	Background on Conformal Prediction
	Split Conformal Prediction
	Full Conformal Prediction
	Conformalized Ridge Regression (CRR)
	Normalized Nonconformity Scores

	Approximate Full-CP for Neural Network Regression
	Experiments & Results
	UCI Regression
	Bounding Box Localization

	Conclusion
	Derivation of CRR coefficients
	Derivation of Gauss-Newton influence
	Derivation of ACP-GN coefficients
	Extension of ACP-GN for multi-output regression
	Derivation of approximate add-one-in posterior with Laplace-GGN
	Multi-output regression prediction intervals
	Time complexity: FCP vs. ACP-GN
	Related Work
	Experimental details
	UCI Regression
	Bounding Box Localization

	Additional experiments
	Ablation with scalable approximations to the Gauss-Newton matrix
	Comparison against Approximate full Conformal Prediction
	Comparison against Full Conformal Prediction

