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Abstract

A key element of AutoML systems is setting the types of models that will be used for each
type of task. For classification and regression problems with tabular data, the use of tree
ensemble models (like XGBoost) is usually recommended. However, several deep learning
models for tabular data have recently been proposed, claiming to outperform XGBoost
for some use-cases. In this paper, we explore whether these deep models should be a
recommended option for tabular data, by rigorously comparing the new deep models to
XGBoost on a variety of datasets. In addition to systematically comparing their accuracy,
we consider the tuning and computation they require. Our study shows that XGBoost
outperforms these deep models across the datasets, including datasets used in the papers
that proposed the deep models. We also demonstrate that XGBoost requires much less
tuning. On the positive side, we show that an ensemble of the deep models and XGBoost
performs better on these datasets than XGBoost alone.

1. Introduction

Deep neural networks have demonstrated great success across various domains, including
images, audio, and text (Devlin et al., 2018; He et al., 2016; Oord et al., 2016). Several
canonical architectures exist for these domains that encode raw data efficiently into mean-
ingful representations. These canonical architectures usually perform highly in real-world
applications.

Tabular data, which consists of a set of samples (rows) with the same set of features
(columns), is the most common data type in real-world applications. Many challenges
arise when applying deep neural networks to tabular data, including lack of locality, data
sparsity (missing values), mixed feature types (numeric, ordinal, categorical), and lack of
prior knowledge of the dataset structure (unlike with text or images). Although the 'no free
lunch’ principle (Wolpert and Macready, 1997) always applies, tree-ensemble algorithms,
such as XGBoost, are currently the recommended option for real-life tabular data problems
(Chen and Guestrin, 2016; Friedman, 2001; Prokhorenkova et al., 2017).

However, recently several attempts have been made to use deep networks with tabular
data (Arik and Pfister, 2019; Abutbul et al., 2020; Popov et al., 2019), some of which were
claimed to outperform XGBoost. Papers in this field typically use different datasets because
there is no standard benchmark. This makes comparing the models challenging, especially
since some models lack open-source implementations. Furthermore, other papers that have
attempted to compare these models did not optimize all the models equivalently.

The main purpose of this study is to explore whether any of the proposed deep models
should indeed be a recommended choice for tabular dataset problems. There are two parts
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to this question: (1) Are the models more accurate, especially for datasets that did not
appear in the paper that proposed them? (2) How long do training and hyperparameter
search take in comparison to other models?

We analyze the deep models proposed in four recent papers across eleven datasets, nine
of which were used in these papers, to answer these questions. We show that in most cases,
each model performs best on the datasets used in its respective paper but significantly worse
on other datasets. Moreover, our study shows that XGBoost (Chen and Guestrin, 2016)
usually outperforms the deep models on these datasets. Furthermore, we demonstrate that
the hyperparameter search process was much shorter for XGBoost. On the other hand, we
examine the performance of an ensemble of the deep models combined with XGBoost, and
show that this ensemble achieves the best results. It also performs better than an ensemble
of deep models without XGBoost, or an ensemble of classical models.

Of course any selection of tabular datasets cannot represent the full diversity of this
type of data, and the 'no free lunch’ principle means that no model is always better or
worse than any other model. Still, our systematic study demonstrates that deep learning is
currently not all we need for tabular data, despite the recent significant progress.

2. Deep Neural Models for Tabular Data

Among the recently proposed deep models for learning from tabular data, we examine the
following: TabNet (Arik and Pfister, 2019), NODE (Popov et al., 2019), DNF-Net (Abutbul
et al., 2020) and 1D-CNN (Baosenguo, 2021). To keep the paper self-contained, we briefly
describe the key ideas of each of these models.

TabNet - TabNet is a deep learning end-to-end model that performed well across several
datasets (Arik and Pfister, 2019). In its encoder, sequential decision steps encode features
using sparse learned masks and select relevant features using the mask (with attention)
for each row. Using sparsemax layers, the encoder forces the selection of a small set of
features. The advantage of learning masks is that features need not be all-or-nothing.
Rather than using a hard threshold on a feature, a learnable mask can make a soft decision,
thus providing a relaxation of classical (non-differentiable) feature selection methods.

Neural Oblivious Decision Ensembles (NODE) - The NODE network (Popov
et al., 2019) contains equal-depth oblivious decision trees (ODTs), which are differentiable
so that error gradients can backpropagate through them. ODTs split data along the features
and compare each with a learnable threshold. Only one feature is chosen at each level,
resulting in a balanced ODT. The complete model provides an ensemble of differentiable
trees.

DNF-Net - The idea behind DNF-Net (Abutbul et al., 2020) is to simulate disjunctive
normal formulas (DNF) in DNNs. The authors proposed replacing the hard Boolean formu-
las with soft, differentiable versions of them. A key feature of this model is the disjunctive
normal neural form (DNNF) block, which contains (1) a fully connected layer; (2) a DNNF
layer formed by a soft version of binary conjunctions over literals. The complete model is
an ensemble of these DNNF's.

1D-CNN - Recently, 1D-CNN achieved the best single model performance in a Kaggle
competition with tabular data (Baosenguo, 2021). The model is based on the idea that
CNN structure performs well in feature extraction, but it is rarely used in tabular data
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because the feature ordering has no locality characteristics. In this model, an FC layer is
used to create a larger set of features with locality characteristics, and it is followed by
several 1D-Conv layers with shortcut-like connections.

Ensemble of models - Ensemble learning is a well-known method for improving ac-
curacy and reducing variance through training multiple models and combining their predic-
tions. Our ensemble includes five different classifiers: TabNet, NODE, DNF-Net, 1D-CNN,
and XGBoost. We construct a simple and practical ensemble using a weighted average of
the single trained models predictions. The relative weights are defined simply by the nor-
malized validation loss of each model. Note that some of the models above have some form
of ensemble built into their design. However, these are ensembles of the same basic models
with different parameters, not of different types of models.

3. Comparing the models

We investigate whether the proposed deep models have advantages when used in various
tabular datasets. For real-world applications, models must (1) perform accurately, (2)
be trained and make inferences efficiently, and (3) have a short optimization time (fast
hyper-parameter tuning). We first evaluate the accuracy of the deep models, XGBoost and
ensembles on various datasets. Next, we analyze the different components of the ensemble.
We investigate how to select models for the ensemble and test whether deep models are
essential for producing good results or combining ‘classical’ models (XGBoost, SVM (Cortes
and Vapnik, 1995) and CatBoost (Dorogush et al., 2018)) is sufficient. In addition, we
explore the tradeoff between accuracy and computational resource requirements. Finally,
we compare the hyperparameter search process of the different models and demonstrate
that XGBoost outperforms the deep models.

3.1 Experimental Setup
3.1.1 DATASETS

As mentioned above, we investigate four deep learning models. We use nine datasets from
the papers on TabNet, DNF-Net, and NODE, drawing three datasets from each paper.
We additionally use two Kaggle datasets not used in any of these papers. 1D-CNN was
proposed in a Kaggle competition recently for use on one specific dataset, which we do not
explore. The datasets we use are Rossmann Store Sales, Forest Cover Type, Higgs Boson,
Gas Concentrations, Eye Movements, Gesture Phase, Year Prediction, Microsoft, Epsilon,
Shrutime, and Blastchar. For dataset details, see Appendix B.

3.1.2 THE OPTIMIZATION PROCESS

To find the hyper-parameters, we used HyperOpt (Bergstra et al., 2015), which uses Bayesian
optimization. The hyperparameter search was run for 1000 steps on each dataset by op-
timizing the results on a validation set. The initial hyperparameters were taken from the
original paper. The hyperparameter search space for each model is provided in Appendix
C. We split the datasets to training, validation and test sets in the same way as in the
original papers that used them. When the split was reported to be random, we performed
three repetitions of the random partition (as done in the original paper), and we report
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their mean (for the standard error of the mean see Appendix A). Otherwise, we used three
random seed initializations in the same partition, and we report their average. For the
classification datasets, we minimize cross-entropy loss and report the classification error.
For the regression datasets, we minimize and report mean squared error. We use the term
‘original model’ to refer to the model used on a given dataset in the paper that presented
the respective model. The ‘unseen datasets’ for each model are those not mentioned in the
paper that published the respective model. Note that a model’s unseen dataset is not a
dataset it was not trained on, but to a dataset that did not appear in its original paper.

3.2 Results
DO THE DEEP MODELS GENERALIZE WELL TO OTHER DATASETS?

We first explore whether the deep models perform well when trained on datasets that were
not included in their original paper, and compare them to XGBoost. Table 1 presents the
accuracy measures of each model for each dataset (lower indicates greater accuracy). The
first three columns correspond to datasets from the TabNet paper, the following three to the
DNF-Net paper, and the next three to the NODE paper. The last two columns correspond
to datasets that did not appear in any of these papers.

We make several observations regarding these results:

e In most cases, the models perform worse on unseen datasets than do the datasets’
original models.

e The XGBoost model generally outperformed the deep models.

e No deep model consistently outperformed the others. The 1D-CNN model perfor-
mance may seem to perform better, since all the datasets were new for it.

e The ensemble of deep models and XGBoost outperforms the other models in most
cases.

Furthermore, we calculated for each dataset the relative performance of each model
compared to the best model for that dataset. We averaged this per model on all its unseen
datasets (geometric mean). The ensemble of all the models was the best model with 2.32%
average relative increase, XGBoost was the second best with 3.4%, 1D-CNN had 7.5%,
TabNet had 10.5%, DNF-Net had 11.8% and NODE had 14.2% (see Tables 2 and 3 in the
appendix for full results).

These results are somewhat surprising. When we train on datasets other than those in
their original papers, the deep models perform worse than XGBoost. Compared to XGBoost
and the full ensemble, the single deep models performance is much more sensitive to the
specific dataset. There may be several reasons for the deep models to perform worse when
they are trained on previously unseen datasets. The first possibility is selection bias.
Each paper may have naturally demonstrated the model’s performance on datasets with
which the model worked well. The second possibility is differences in the optimization of
hyperparameters. Each paper may have set the model’s hyperparameters based on a more
extensive hyperparameter search on the datasets presented in that paper, resulting in better
performance. Our results for each model on its original datasets matched those presented
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Name Rossman CoverType Higgs Gas Eye Gesture YearPrediction Microsoft Epsilon Shrutime Blastchar
XGBoost 490.18 3.13 21.62 218 56.07 80.64 77.98 55.43 11.12 13.82 20.39
NODE 488.59 4.15 21.19 217 68.35 92.12 76.39 55.72 10.39 14.61 21.40
DNF-Net 503.83 3.96 23.68 1.44 68.38 86.98 81.21 56.83 12.23 16.80 27.91
TabNet 485.12 3.01 21.14 192 67.13 96.42 83.19 56.04 11.92 14.94 23.72
1D-CNN 493.81 3.51 2233 1.79 67.90 97.89 78.94 55.97 11.08 15.31 24.68
Simple Ensemble 488.57 3.19 2246 236 58.72 89.45 78.01 55.46 11.07 13.61 21.18
Deep Ensemble w/o XGBoost 489.94 3.52 2241 198 69.28 93.50 78.99 55.59 10.95 14.69 24.25
Deep Ensemble w XGBoost 485.33 2.99 2234 169 59.43 78.93 76.19 55.38 11.18 13.10 20.18
TabNet DNF-Net NODE New datasets

Table 1: Test results on tabular datasets. The table presents for each model the MSE
for the YearPrediction and the Rossman datasets and the logloss (with 100X factor) for the
other datasets. The values are the averages of three training runs (lower is better).

in its respective paper, thus excluding implementation issues as the possible reason for our
observations.

DO WE NEED BOTH XGBOOST AND DEEP NETWORKS?

In the previous subsection we saw that the ensemble of XGBoost and deep models performed
best across the datasets. It is therefore interesting to examine which component of our
ensemble is mandatory. One question is whether XGBoost needs to be combined with the
deep models, or would a simpler ensemble of non-deep models perform similarly. To explore
this, we trained an ensemble of XGBoost and other non-deep models: SVM (Cortes and
Vapnik, 1995) and CatBoost(Dorogush et al., 2018). Table 1 shows that the ensemble of
classical models performed much worse than the ensemble of deep networks and XGBoost.
Additionally, the table shows that the ensemble of deep models alone (without XGBoost)
did not provide good results. This indicates that combining both the deep models and
XGBoost provides an advantage for these datasets.

SUBSET OF MODELS

We observed that the ensemble improved accuracy, but the use of multiple models also re-
quires additional computation. When real-world applications are considered, computational
constraints may affect the eventual performance. We therefore considered using subsets of
the models within the ensemble, to see the tradeoff between accuracy and computation.

There are several ways to choose a subset from an ensemble of models: (1) based on
the validation loss, choosing models with low validation loss first, (2) based on the mod-
els’ uncertainty for each example, choosing the highest confidence models (by some
uncertainty measure) for each example, and (3) based on a random order.

In Figure 1 these methods of selecting models are compared for an example of an unseen
dataset (Shrutime). The best selection approach was averaging the predictions based on
the models’ validation loss. Only three models were needed to achieve almost optimal
performance this way. Choosing the models randomly provided the worst choice according
to our comparison.
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Figure 1: The impact of selecting a Figure 2: The Hyper-parameters opti-
subset of models in the ensemble. mization process for different models.

How DIFFICULT IS THE OPTIMIZATION?

In real-life applications, we often have a limited amount of time to optimize our model
for use on a new dataset. This is a significant consideration in AutoML systems, which
run multiple models on many datasets. We are therefore interested in the total number of
iterations it takes to optimize a model. Figure 2 shows the model’s performance (mean and
standard error of the mean) as a function of the number of iterations of the hyper-parameter
optimization process for the Shrutime dataset. We observe that XGBoost outperformed the
deep models, converging to good performance more quickly (in fewer iterations, which were
also shorter in terms of runtime). These results may be affected by several factors: (1) We
used a Bayesian hyperparameter optimization process, and the results may differ for
other optimization processes; (2) the initial hyperparameters of XGBoost may be more
robust because it had previously been optimized over many datasets. Perhaps we could find
some hyperparameters that would also work well for the deep models for different datasets;
and (3) the XGBoost model may have some inherent characteristics that make it more
robust and easier to optimize. It may be interesting to further investigate this behavior.

4. Summary

In this paper we investigated the accuracy of recently proposed deep models for tabular
datasets. According to our analysis, these deep models were weaker on datasets that did not
appear in their original papers, and they were weaker than XGBoost, the baseline model.
We proposed using an ensemble of these deep models with XGBoost, which performed
better on these datasets than any individual model and the ‘non-deep’ classical ensemble.
We also explored some examples for the possible tradeoffs between accuracy, inference
computational cost, and hyperparameter optimization time, which are important for real-
world applications, especially for AutoML. In conclusion, while significant progress has been
made using deep models for tabular data, they still do not outperform XGBoost, and further
research is needed in this field. Our somewhat improved ensemble results provide another
potential avenue for further research.
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Name Rossman CoverType Higgs Gas Eye Gesture YearPrediction Microsoft Epsilon Shrutime  Blastchar

XGBoost 490.18 £ 2.19 3.13+£0.09 21.62+0.33 2.18+0.20 56.07+0.65 80.64 + 0.80 77.984+0.11 5543422 11.1243e-2 13.82+£0.19 20.39 4+ 0.21
NODE 488.59 £ 1.24 4.15+0.13 21.19+£0.69 2.17+0.18 68.35+0.66 92.12+0.82 76.39 £0.13  55.72+3e-2  10.39+1e-2 14.61£0.10 21.40+0.25
DNF-Net 503.83 £ 1.41 3.96 £0.11 23.68+0.83 1.44 £0.09 68.3840.65 86.98+0.74 81.21+£0.18 56.8343e-2  12.23+4e-2  16.84+0.09 27.91+0.17
TabNet 485.12+1.93 3.01£0.08 21.1440.20 1.92+0.14 67.134+0.69 96.42 £ 0.87 83.19+£0.19 56.04%1e-2 11.92+3e-2 14.944,0.13 23.72£0.19
1D-CNN 493.81 £ 2.23 3.561£0.13 2233+0.73 1.79+£0.19 67.94£0.64 97.89+0.82 78.9440.14  55.97+4e-2  11.0846e-2 15.31 £0.16 24.68 4 0.22
Simple Ensemble 488.57 £+ 2.14 3.19+£0.18 22464038 2.36+0.13 58.724+0.67 89.45+0.89 78.014£0.17 55.46+4e-2  11.07+de-2 13.61+,0.14 21.18 £0.17
Deep Ensemble w/o XGBoost  489.94 + 2.09 3.52+£0.10 2241+0.54 1.98+0.13 69.2840.62 93.50 £ 0.75 78.9940.11  55.59+3e-2  10.95%1e-2 14.69 £0.11 24.25+0.22
Deep Ensemble w XGBoost 48533 £1.29  2.99 £0.08 22.34+£0.81 1.6940.10 59.43+£0.60 78.93 +0.73 76.19 £0.21 55.38+le-2 11.18+1e-2 13.10£0.15 20.18+0.16

TabNet DNF-Net NODE New datasets

Table 2: Full test results on the tabular datasets. The table presents for each model the
MSE for the YearPrediction and the Rossman datasets and the logloss (with 100X factor)
for the other datasets. The values are the averages of three training runs (lower is better),
along with the standard error of the mean (SEM).

Average Relative

R Performance (%)
XGBoost 3.34
NODE 14.21
DNF-Net 11.96
TabNet, 10.51
1D-CNN 7.56
Simple Ensemble 3.15
Deep Ensemble w/o XGBoost, 6.91
Deep Ensemble w XGBoost 2.32

Table 3: Average relative performance deterioration for each model on its unseen datasets
(lower is better)

Appendix A. Full Results

In Table 2 we show the mean and the standard error of the mean (SEM) for each dataset
and for each model. In Table 3 we present the average relative performance deterioration
of each model on its unseen datasets (geometric mean, lower is better).

Appendix B. Tabular Data-sets Description

In our experiments we use datasets that differ in their characteristics, such as the number of
features, the number of classes and the number of samples (see Table 4). For each dataset,
we followed the prepossessing and training procedures described in the original paper.

Dataset Features Classes Samples Source Paper Link

Gesture Phase 32 5 9.8k OpenML DNF-Net openml.org/d/4538

Gas Concentrations 129 6 13.9k OpenML DNF-Net openml.org/d/1477

Eye Movements 26 3 10.9k OpenML DNF-Net openml.org/d/1044

Epsilon 2000 2 500k PASCAL Challenge 2008 NODE https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets /binary.html
YearPrediction 90 1 515k Million Song Dataset NODE https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
Microsoft 136 5 964k MSLR-WEB10K NODE https://www.microsoft.com/en-us/research/project /mslr/
Rossmann Store Sales 10 1 1018K Kaggle TabNet https://www.kaggle.com/c/rossmann-store-sales

Forest Cover Type 54 7 580k Kaggle TabNet https://www.kaggle.com/c/forest-cover-type-prediction
Higges Boson 30 2 800k Kaggle TabNet https://www.kaggle.com/c/higgs-boson

Shrutime 11 2 10k Kaggle New dataset  https://www.kaggle.com/shrutimechlearn/churn-modelling
Blastchar 20 2 Tk Kaggle New dataset https://www .kaggle.com/blastchar/telco-customer-churn

Table 4: Description of the tabular datasets
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Appendix C. Optimization of hyperparameters

In order to tune the hyperparameters, we split the datasets to training, validation and test
sets in the same way as in the original papers that used them. Specifically, we performed
a random stratified split of the full training data into train set (80%) and validation set
(20%) for the Epsilon, YearPrediction, Microsoft, Shrutime and Blastchar datasets. For
Eye, Gesture and Year datasets, we split the full data to validation set (10%), test set
(20%) and train set (70%). For Forest Cover Type, we used train/val/test split provided
by the dataset authors (Mitchell et al., 2018). For the Rossmann dataset we used the same
preprocessing and data split as (Prokhorenkova et al., 2017) — data from 2014 was used
for training and validation, whereas 2015 was used for testing. We split 100k samples for
validation from the training dataset, and after the optimization of the hyperparameters we
retrained with the entire training dataset. For the Higgs dataset, we split 500k samples for
validation from the training dataset, and after the optimization of the hyperparameters we
retrained with the entire training dataset. We used the Hyperopt library to optimize the
models. For the final configuration we selected the set of hyperparameters corresponding
to the smallest loss on the validation set.

C.1 CATBOOST

The list of hyperparameters and their search spaces for Catboost:
e Learning rate: Log-Uniform distribution [e=?, 1]

e Random strength: Discrete uniform distribution [1,20]

Max size: Discrete uniform distribution [0, 25]

L2 leaf regularization: Log-Uniform distribution [1, 10]

Bagging temperature: Uniform distribution [0, 1]

e Leaf estimation iterations: Discrete uniform distribution [1,20]
C.2 XGBoost
The list of hyperparameters and their search spaces for XGBoost:

e Eta: Log-Uniform distribution [e~7, 1]

Max depth: Discrete uniform distribution [1, 10]

Subsample: Uniform distribution [0.2, 1]

Colsample bytree: Uniform distribution [0.2, 1]

Colsample bylevel: Uniform distribution [0.2, 1]

Min child weight: Log-Uniform distribution [e~16, €?]

Alpha: Uniform choice {0, Log-Uniform distribution [e~16, 2]}
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e Lambda: Uniform choice {0, Log-Uniform distribution [e~1, ¢?]}

e Gamma: Uniform choice {0, Log-Uniform distribution [e~16, €]}

C.3 NODE
The list of hyperparameters and their search spaces for NODE:

e Num layers: Discrete uniform distribution [1, 10]

e Total tree count: {256,512,1024,2048}

Tree depth: Discrete uniform distribution [4, 9]

Tree output dim: Discrete uniform distribution [1, 5]

e Learning rate - Log-Uniform distribution [e =%, 0.5]

C.4 TabNet
The list of hyperparameters and their search spaces for TabNet:

e feature dim: Discrete uniform distribution [20, 60]

output dim: Discrete uniform distribution [20, 60]

n steps: Discrete uniform distribution [1, 8]

bn epsilon: Uniform distribution [e™°, e™1]

relaxation factor: Uniform distribution [0.3, 2]

C.5 DNF-Net
The list of hyperparameters and their search spaces for DNF-Net:

e n. formulas: Discrete uniform distribution [256, 2048]

Feature selection beta: Discrete uniform distribution [le~2,2]

e Learning rate - Log-Uniform distribution [e™*, 0.5]

Batch size - Uniform choice {512, 1024, 2048, 4096, 8192}
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