A Proofs

We start by providing a lemma that is useful in the proofs of our main results.

Lemma 10 (Variance Reduction) Let $\mathbf{U}_k \in \mathbb{R}^d$, $k \in \{1, 2, ..., K\}$ be i.i.d standard Gaussian.⁴ For every random vector $\mathbf{V} \in \mathbb{R}^d$ independent of all \mathbf{U}_k , $k \in \{1, 2, ..., K\}$, it is true that

$$\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\langle \mathbf{V}, \mathbf{U}_{k}\rangle \mathbf{U}_{k} - \mathbf{V}\right\| \mathbf{V}\right] \leq \sqrt{\frac{3d-1}{K}} \|\mathbf{V}\|.$$
 (27)

Different versions of Lemma 10 appear already in prior works (see, e.g., [13, Proof of Corollary 2]. For completeness and clarity we provide a short proof of Lemma 10 below (Appendix, Section A.1).

A.1 Proof of Lemma 10

For fixed $\mathbf{V} \in \mathbb{R}^d$, we have due to independence

$$\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\langle \mathbf{V}, \mathbf{U}_{k}\rangle \mathbf{U}_{k} - \mathbf{V}\right\|^{2}\right] = \frac{1}{K^{2}}\mathbb{E}\left[\left\|\sum_{k=1}^{K}\langle \mathbf{V}, \mathbf{U}_{k}\rangle \mathbf{U}_{k} - \mathbf{V}\right\|^{2}\right]$$
$$= \frac{1}{K^{2}}\sum_{k=1}^{K}\mathbb{E}\left[\left\|\langle \mathbf{V}, \mathbf{U}_{k}\rangle \mathbf{U}_{k} - \mathbf{V}\right\|^{2}\right]$$
$$= \frac{1}{K}\mathbb{E}\left[\left\|\langle \mathbf{V}, \mathbf{U}_{1}\rangle \mathbf{U}_{1} - \mathbf{V}\right\|^{2}\right].$$

Now, again due to independence

$$\mathbb{E}[\|\langle \mathbf{V}, \mathbf{U}_{1} \rangle \mathbf{U}_{1} - \mathbf{V}\|^{2}] = \mathbb{E}[\|\langle \mathbf{V}, \mathbf{U}_{1} \rangle \mathbf{U}_{1}\|^{2} - 2\langle\langle \mathbf{V}, \mathbf{U}_{1} \rangle \mathbf{U}_{1}, \mathbf{V} \rangle + \|\mathbf{V}\|^{2}]$$

$$= \mathbb{E}[(\langle \mathbf{V}, \mathbf{U}_{1} \rangle)^{2} \|\mathbf{U}_{1}\|^{2}] - 2\mathbb{E}[\langle \mathbf{V}, \mathbf{U}_{1} \rangle \langle \mathbf{U}_{1}, \mathbf{V} \rangle] + \|\mathbf{V}\|^{2}$$

$$= \mathbf{V}^{T} \mathbb{E}[\mathbf{U}_{1} \mathbf{U}_{1}^{T} \|\mathbf{U}_{1}\|^{2}] \mathbf{V} - 2\mathbf{V}^{T} \mathbb{E}[\mathbf{U}_{1} \mathbf{U}_{1}^{T}] \mathbf{V} + \|\mathbf{V}\|^{2}$$

$$= \sum_{i=1}^{d} \mathbf{V}^{T} \mathbb{E}[\mathbf{U}_{1} \mathbf{U}_{1}^{T} (U_{1}^{(i)})^{2}] \mathbf{V} - 2\|\mathbf{V}\|^{2} + \|\mathbf{V}\|^{2}$$

$$\leq \sum_{i=1}^{d} 3\mathbf{V}^{T} \mathbf{V} - \|\mathbf{V}\|^{2}$$

$$= (3d-1)\|\mathbf{V}\|^{2}.$$

Therefore,

$$\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\langle\mathbf{V},\mathbf{U}_{k}\rangle\mathbf{U}_{k}-\mathbf{V}\right\|^{2}\right] \leq \frac{(3d-1)\|\mathbf{V}\|^{2}}{K}.$$

Thus, if V is random and independent of all U_k 's, it follows that

$$\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\langle \mathbf{V}, \mathbf{U}_{k}\rangle \mathbf{U}_{k} - \mathbf{V}\right\| \middle| \mathbf{V}\right] \leq \sqrt{\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\langle \mathbf{V}, \mathbf{U}_{k}\rangle \mathbf{U}_{k} - \mathbf{V}\right\|^{2} \middle| \mathbf{V}\right]}$$

$$\leq \sqrt{\frac{3d-1}{K}} \|\mathbf{V}\|^{2}$$

$$= \sqrt{\frac{3d-1}{K}} \|\mathbf{V}\|,$$

and our claim is proved.

⁴Similar bounds (i.e., $\mathcal{O}(\sqrt{d/K})$) hold for other distributions as well, e.g., when the \mathbf{U}_k 's are uniformly distributed (and independent) in [-1,+1].

A.2 Proof of Theorem 3

We start by observing that $1 - \eta - \alpha_t \beta \sqrt{\frac{3d-1}{K}} < 0$ since $\eta \ge 1$. The definition of R_t and (18) give $R_t \le (\eta + \alpha_t \beta \sqrt{(3d-1)/K}) \triangleq \tilde{R}_t$, and

$$\mathbb{E}[\delta_T | \mathcal{E}_{\delta_{t_0}}] \le \left(\frac{2L}{n} \Gamma_K^d + \mu \beta (3+d)^{3/2}\right) \sum_{t=t_0+1}^T \alpha_t \prod_{j=t+1}^T \tilde{R}_j.$$
 (28)

Recall that $\eta = 1 + \beta \alpha_t$ for general (nonconvex) losses (see [1]). Assuming that $\alpha_t \leq C/t\Gamma_K^d$ for all $t \leq T$, we have

$$\mathbb{E}[\delta_{T}|\mathcal{E}_{\delta_{t_{0}}}] \leq \left(\frac{2L}{n}\Gamma_{K}^{d} + \mu\beta(3+d)^{3/2}\right) \sum_{t=t_{0}+1}^{T} \alpha_{t} \prod_{j=t+1}^{T} \left(1 + \alpha_{j}\beta\Gamma_{K}^{d}\right) \\
\leq \frac{C}{\Gamma_{K}^{d}} \left(\frac{2L}{n}\Gamma_{K}^{d} + \mu\beta(3+d)^{3/2}\right) \sum_{t=t_{0}+1}^{T} \frac{1}{t} \prod_{j=t+1}^{T} \left(1 + \frac{C\beta}{j}\right) \\
\leq \frac{C}{\Gamma_{K}^{d}} \left(\frac{2L}{n}\Gamma_{K}^{d} + \mu\beta(3+d)^{3/2}\right) \sum_{t=t_{0}+1}^{T} \frac{1}{t} \prod_{j=t+1}^{T} \exp\left(\frac{C\beta}{j}\right) \\
\leq \frac{C(eT)^{\beta C}}{\Gamma_{K}^{d}} \left(\frac{2L}{n}\Gamma_{K}^{d} + \mu\beta(3+d)^{3/2}\right) \sum_{t=t_{0}+1}^{T} \frac{1}{t} \frac{1}{(t+1)^{\beta C}} \\
\leq \underbrace{\beta^{-1} \left(\Gamma_{K}^{d}\right)^{-1} \left(\frac{2L}{n}\Gamma_{K}^{d} + \mu\beta(3+d)^{3/2}\right)}_{\leq L} \left(\frac{eT}{t_{0}}\right)^{\beta C} - e^{\beta C}\right). \tag{31}$$

In the above, the inequality $1+x \leq e^x$ gives (29), inequality (30) follows from the inequality $\sum_{j=t+1}^T 1/j \leq \log T - \log(t+1) + 1$, and inequality (31) comes from the next inequality and integral evaluation $\sum_{t=t_0+1}^T t^{-\beta C-1} \leq \int_{t=t_0}^T x^{-\beta C-1} dx = (\beta C)^{-1} (t_0^{-\beta C} - T^{-\beta C})$. We define $q \triangleq \beta C$ and find the value of t_0 that minimizes the right part of [75, Lemma 3.11]⁵

$$\mathbb{E}\left[|f(W_T, z) - f(W_T', z)|\right] \le \frac{t_0}{n} \sup_{w, z} f(w, z) + L\mathbb{E}[\delta_T | \mathcal{E}_{\delta_{t_0}}] \le \frac{t_0}{n} + LD\left(\left(\frac{eT}{t_0}\right)^q - e^q\right), \quad (32)$$

which is $t_0^* = \min\{(qnLD)^{1/(q+1)} (eT)^{q/(q+1)}, T\}$. Then (32) gives

$$\mathbb{E}\left[\left|f(W_T,z)-f(W_T',z)\right|\right]$$

$$\leq \max \left\{ \frac{(qnLD)^{\frac{1}{q+1}} (eT)^{\frac{q}{q+1}}}{n}, \frac{1+1/q}{n} (qnLD)^{\frac{1}{q+1}} (eT)^{\frac{q}{q+1}} - LDe^q \right\}. \tag{33}$$

Choosing $\mu \le cL\Gamma_K^d/n\beta(3+d)^{3/2}$ for some c>0 in (33) proves our claim.

A.3 Proof of Corollary 4

Denote by $W_0(\cdot)$ the Lambert function [76]. Through Theorem 3 and by replacing C with $C\Gamma_K^d$ to recover the required learning rate, the generalization error is bounded as

 ϵ_{gen}

$$\leq \frac{1+(\beta C\Gamma_K^d)^{-1}}{n}((2+c)CL^2)^{\frac{1}{1+\beta C\Gamma_K^d}}\big(\Gamma_K^d\big)^{\frac{1}{1+\beta C\Gamma_K^d}}\big(eT\big)^{\frac{\beta C\Gamma_K^d}{\beta C\Gamma_K^d+1}}$$

⁵ [75, Lemma 3.11] applies to the ZoSS update rule (6) similar to SGD for nonnegative and L-Lipschitz losses. Note that $\mathbb{P}(\mathcal{I} \leq t_0) \leq t_0/n$, $t_0 \in \{0, \dots, T\}$, and (32) comes from the Lipschitz assumption on the loss as $\mathbb{E}\left[|f(W_T, z) - f(W_T', z)|\right] \leq \mathbb{P}(\mathcal{I} \leq t_0)\mathbb{E}\left[|f(W_T, z) - f(W_T', z)|\right] + L\mathbb{E}[\delta_T |\mathcal{E}_{\delta_{t_0}}]$.

$$\leq \frac{1 + (\beta C \Gamma_{K}^{d})^{-1}}{n} ((2+c)CL^{2})^{\frac{1}{1+\beta C \Gamma_{K}^{d}}} \left(\frac{1}{\beta C W_{0} \left(\frac{1}{\beta C e}\right)}\right)^{\frac{1}{1+1/W_{0} \left(\frac{1}{\beta C e}\right)}} (eT)^{\frac{\beta C \Gamma_{K}^{d}}{\beta C \Gamma_{K}^{d}+1}} \tag{34})$$

$$\leq \frac{1 + (\beta C \Gamma_{K}^{d})^{-1}}{n} ((2+c)CL^{2})^{\frac{1}{1+\beta C \Gamma_{K}^{d}}} \left(\frac{1}{W_{0} (1/e)}\right)^{\frac{1}{1+1/W_{0} \left(\frac{1}{e}\right)}} \max\{1, (\beta C)^{-1}\}(eT)^{\frac{\beta C \Gamma_{K}^{d}}{\beta C \Gamma_{K}^{d}+1}}$$

$$\leq \frac{3}{2} \frac{1 + (\beta C \Gamma_{K}^{d})^{-1}}{n} ((2+c)CL^{2})^{\frac{1}{1+\beta C \Gamma_{K}^{d}}} \max\{1, (\beta C)^{-1}\}(eT)^{\frac{\beta C \Gamma_{K}^{d}}{\beta C \Gamma_{K}^{d}+1}}$$

$$\leq \frac{3}{2} \frac{1 + (\beta C)^{-1}}{n} ((2+c)CL^{2})^{\frac{1}{1+\beta C \Gamma_{K}^{d}}} \max\{1, (\beta C)^{-1}\}(eT)^{\frac{\beta C \Gamma_{K}^{d}}{\beta C \Gamma_{K}^{d}+1}}$$

$$\leq \frac{3}{2} \frac{1 + (\beta C)^{-1}}{n} \max\{1, (2+c)CL^{2}\} \max\{1, (\beta C)^{-1}\}(eT)^{\frac{\beta C \Gamma_{K}^{d}}{\beta C \Gamma_{K}^{d}+1}}$$

$$\leq \frac{3}{2} \frac{(1 + (\beta C)^{-1})^{2}}{n} (1 + (2+c)CL^{2}) (eT)^{\frac{\beta C \Gamma_{K}^{d}}{\beta C \Gamma_{K}^{d}+1}}$$

$$(35)$$

the maximization of $x^{1/(1+x\beta C)}$ gives (34), we find (35) by maximizing the term $(\beta C)^{-1/(1+1/W_0(1/xe))}$, and $W_0\left(1/xe\right)^{-1/(1+1/W_0(1/xe))}$, and by applying the inequality $W_0\left(1/e\right)^{-1/(1+1/W_0(1/xe))} \leq 3/2$. Inequality (36) holds since $\Gamma_K^d \geq 1$, we find (37) by maximizing the function $((2+c)CL^2)^{1/(1+\beta Cx)}$ for both cases $((2+c)CL^2) < 1$ and $((2+c)CL^2) \geq 1$. Finally, (38) holds for any value of $d \in \mathbb{N}$ and $K \in \mathbb{N}$ and gives the bound of the corollary.

(38)

A.4 Proof of Theorem 5

 $\leq (1 + (\beta C)^{-1})^2 (1 + (2+c)CL^2) \frac{3Te}{2\pi}$

We start by proving the first case of the Theorem for both convex and nonconvex loss.

Proof of Theorem 5, First Case: Let $\mathcal C$ denote the set of convex loss functions. Under the assumption $\alpha_t \leq C'/T$, and $\mu \leq cL\Gamma_K^d/(n\beta(3+d)^{3/2})$ Lemma 2 (nonconvex loss) and Lemma 11 (convex loss) give

$$\begin{split} &\mathbb{E}[\delta_T|\mathcal{E}_{\delta_0}] \\ &\leq \frac{(2+c)\,L\Gamma_K^d}{n} \sum_{t=1}^T \frac{C'}{T} \prod_{j=t+1}^T \left(1 + \frac{\beta C'}{T} \left(\mathbbm{1}_{f(\cdot) \notin \mathcal{C}} + \sqrt{\frac{3d-1}{K}}\right)\right) \\ &= \frac{(2+c)\,LC'\Gamma_K^d}{Tn} \sum_{t=1}^T \left(1 + \frac{\beta C'}{T} \left(\mathbbm{1}_{f(\cdot) \notin \mathcal{C}} + \sqrt{\frac{3d-1}{K}}\right)\right)^{T-t} \\ &= \frac{(2+c)\,LC'\Gamma_K^d}{Tn} \left(1 + \frac{\beta C'}{T} \left(\mathbbm{1}_{f(\cdot) \notin \mathcal{C}} + \sqrt{\frac{3d-1}{K}}\right)\right)^T \sum_{t=1}^T \left(1 + \frac{\beta C'}{T} \left(\mathbbm{1}_{f(\cdot) \notin \mathcal{C}} + \sqrt{\frac{3d-1}{K}}\right)\right)^{-t} \\ &= \frac{(2+c)\,LC'\Gamma_K^d}{Tn} \frac{\left(1 + \frac{\beta C'}{T} \left(\mathbbm{1}_{f(\cdot) \notin \mathcal{C}} + \sqrt{\frac{3d-1}{K}}\right)\right)^T - 1}{\left(1 + \beta \frac{C'}{T} \left(\mathbbm{1}_{f(\cdot) \notin \mathcal{C}} + \sqrt{\frac{3d-1}{K}}\right)\right) - 1} \\ &= \frac{(2+c)\,L\Gamma_K^d}{n} \frac{\left(1 + \frac{\beta C'}{T} \left(\mathbbm{1}_{f(\cdot) \notin \mathcal{C}} + \sqrt{\frac{3d-1}{K}}\right)\right)^T - 1}{\beta \left(\mathbbm{1}_{f(\cdot) \notin \mathcal{C}} + \sqrt{\frac{3d-1}{K}}\right)} \end{split}$$

$$\leq \frac{(2+c)L\Gamma_K^d}{n}\frac{\exp\left(\beta C'\left(\mathbb{1}_{f(\cdot)\notin\mathcal{C}}+\sqrt{\frac{3d-1}{K}}\right)\right)-1}{\beta\left(\mathbb{1}_{f(\cdot)\notin\mathcal{C}}+\sqrt{\frac{3d-1}{K}}\right)}.$$

If the loss is convex $(f(\cdot) \in \mathcal{C})$ and $\alpha_t \leq C'/T \leq 2/\beta$, the last display under the choice

$$C' = \frac{\log(1 + C\beta\sqrt{\frac{3d-1}{K}}/\Gamma_K^d)}{\beta\sqrt{\frac{3d-1}{K}}}$$
(39)

gives

$$\mathbb{E}[\delta_T | \mathcal{E}_{\delta_0}] \le \frac{(2+c) L \Gamma_K^d}{n} \frac{\exp\left(\beta C' \sqrt{\frac{3d-1}{K}}\right) - 1}{\beta \sqrt{\frac{3d-1}{K}}} \le \frac{(2+c) CL}{n}.$$
 (40)

If the loss is nonconvex $(f(\cdot) \notin \mathcal{C})$ and $\alpha_t \leq C''/T$, then by choosing

$$C'' = \frac{\log(1 + C\beta)}{\beta \Gamma_K^d},\tag{41}$$

we find

$$\mathbb{E}[\delta_T | \mathcal{E}_{\delta_0}] \le \frac{(2+c) L \Gamma_K^d}{n} \frac{\exp\left(\beta C'' \Gamma_K^d\right) - 1}{\beta \Gamma_K^d} \le \frac{(2+c) CL}{n}.$$
 (42)

The Lipschitz assumption $\mathbb{E}\left[|f(W_T,z)-f(W_T',z)|\right] \leq L\mathbb{E}[\delta_T] = L\mathbb{E}[\delta_T|\mathcal{E}_{\delta_0}]$ (as a consequence of $\mathbb{P}(\mathcal{I} \leq 0) = \mathbb{P}(\delta_0 > 0) = 0$) completes the proof for the first case of the theorem.

Proof of Theorem 5, Second Case: Lemma 2 (nonconvex loss) under the choice $t_0 = 0$ gives

$$\mathbb{E}[\delta_T | \mathcal{E}_{\delta_0}] \le \left(\frac{2L}{n} \Gamma_K^d + \mu \beta (3+d)^{3/2}\right) \sum_{t=1}^T \alpha_t \prod_{j=t+1}^T \left(1 + \beta \alpha_j \left(1 + \sqrt{\frac{3d-1}{K}}\right)\right). \tag{43}$$

Under the assumption $\alpha_t \leq C/(T\Gamma_K^d)$, and $\mu \leq cL\Gamma_K^d/(n\beta(3+d)^{3/2})$ we find

$$\mathbb{E}[\delta_{T}|\mathcal{E}_{\delta_{0}}]$$

$$\leq (2+c)L\frac{\Gamma_{K}^{d}}{n}\sum_{t=1}^{T}\frac{C}{T\Gamma_{K}^{d}}\prod_{j=t+1}^{T}\left(1+\frac{C\beta}{T}\right)$$

$$= (2+c)L\frac{\Gamma_{K}^{d}}{n}\frac{C}{T\Gamma_{K}^{d}}\sum_{t=1}^{T}\left(1+\frac{C\beta}{T}\right)^{T-t}$$

$$= (2+c)L\frac{\Gamma_{K}^{d}}{n}\frac{C\left(1+\frac{C\beta}{T}\right)^{T}}{T\Gamma_{K}^{d}}\sum_{t=1}^{T}\left(1+\frac{C\beta}{T}\right)^{-t}$$

$$= \frac{(2+c)L}{n}\frac{C}{T}\frac{\left(1+\frac{C\beta}{T}\right)^{T}-1}{\left(1+\frac{C\beta}{T}\right)^{T}-1}$$

$$= \frac{(2+c)L}{n}\frac{\left(1+\frac{C\beta}{T}\right)^{T}-1}{\beta}.$$
(44)

The Lipschitz assumption $\mathbb{E}\left[|f(W_T,z)-f(W_T',z)|\right] \leq L\mathbb{E}[\delta_T] = L\mathbb{E}[\delta_T|\mathcal{E}_{\delta_0}]$ (as a consequence of $\mathbb{P}(\mathcal{I} \leq 0) = \mathbb{P}(\delta_0 > 0) = 0$) completes the proof.

A.5 Proof of Theorem 6

Under the assumptions $\mu \leq cL\Gamma_K^d/(n\beta(3+d)^{3/2})$ and $\alpha_t \leq C/t\Gamma_K^d$, Lemma 2 gives

$$\mathbb{E}[\delta_{T}|\mathcal{E}_{\delta_{0}}]$$

$$\leq \left(\frac{2L}{n}\Gamma_{K}^{d} + \mu\beta(3+d)^{3/2}\right) \sum_{t=1}^{T} \alpha_{t} \prod_{j=t+1}^{T} \left(1 + \beta\alpha_{j}\left(1 + \sqrt{\frac{3d-1}{K}}\right)\right)$$

$$\leq \frac{\Gamma_{K}^{d}}{n}(2+c)L \sum_{t=1}^{T} \frac{C}{t\Gamma_{K}^{d}} \prod_{j=t+1}^{T} \left(1 + \frac{C\beta}{j}\right)$$

$$\leq \frac{(2+c)L}{n} \sum_{t=1}^{T} \frac{C}{t} \exp\left(\sum_{j=t+1}^{T} \frac{C\beta}{j}\right)$$

$$\leq \frac{(2+c)L}{n} \sum_{t=1}^{T} \frac{C}{t} \exp\left(C\beta \log\left(\frac{eT}{t+1}\right)\right)$$

$$= \frac{C(2+c)L}{n} \sum_{t=1}^{T} \frac{1}{t} \left(\frac{eT}{t+1}\right)^{C\beta}$$

$$\leq \frac{C(eT)^{C\beta}(2+c)L}{n} \sum_{t=1}^{T} \frac{1}{t^{C\beta+1}}$$

$$\leq \frac{(eT)^{C\beta}(2+c)L}{n} \min\left\{\frac{C\beta+1}{\beta}, C\log(eT)\right\}.$$
(45)

The last inequality holds because of the inequalities $\sum_{t=1}^T t^{-C\beta-1} \leq \sum_{t=1}^\infty t^{-C\beta-1} \leq (C\beta+1)/C\beta$ and $\sum_{t=1}^T t^{-C\beta-1} \leq \sum_{t=1}^T 1/t \leq \log(eT)$. Then the inequality $\mathbb{E}\left[|f(W_T,z)-f(W_T',z)|\right] \leq L\mathbb{E}[\delta_T] = L\mathbb{E}[\delta_T|\mathcal{E}_{\delta_0}]$ (as a consequence of $\mathbb{P}(\mathcal{I} \leq 0) = \mathbb{P}(\delta_0 > 0) = 0$) completes the proof. \square

B Complementary Results

In this Section we provide complementary results and the corresponding proofs. The next result provides the equivalent bound of Lemma 2 for convex losses.

Lemma 11 (ZoSS Stability Convex Loss) Assume that the loss function $f(\cdot, z)$ is L-Lipschitz, convex and β -smooth for all $z \in \mathcal{Z}$. Consider the ZO-SM algorithm (6) with parameters estimates W_T and W_T' for all the data-sets S, S' respectively (that differ in exactly one entry). Then the discrepancy $\delta_T \triangleq \|W_T - W_T'\|$ under the event $\mathcal{E}_{\delta_{t_0}}$ satisfies the following inequality,

$$\mathbb{E}[\delta_T | \mathcal{E}_{\delta_{t_0}}] \le \left(\frac{2L}{n} \Gamma_K^d + \mu \beta (3+d)^{3/2}\right) \sum_{t=t_0+1}^T \alpha_t \prod_{j=t+1}^T \left(1 + \beta \alpha_j \sqrt{\frac{3d-1}{K}}\right). \tag{46}$$

We prove Lemma 11 in parallel with Lemma 2 in Section 4.1 of the main part of the paper.

C ZoSS with Mini-Batch (Section 5)

For the stability analysis of mini-batch ZoSS, we similarly consider the sequences S,S' that differ in one example. At each time t we sample a batch $J_t \subset S$ ($J'_t \subset S'$) (and batch size $m \triangleq |J_t| = |J'_t|$) with replacement, or by considering random permutation of the samples and then sample the first m examples. As a consequence in both cases $\mathbb{P}(J_t \neq J'_t) = m/n$. Under the event $\{J_t \neq J'_t\}$, the sets J_t, J'_t differ in one example $z_{i^*} \neq z'_{i^*}$ (for some i^* without loss of generality), and $z_i = z'_i$ for any $z_i \in J_t$ and $i \in \{1, \ldots, m\} \setminus \{i^*\}$. Let $U^t_{k,i} \sim \mathcal{N}(0, I_d)$ be independent for all $k \in \{1, 2, \ldots, K\}$, $i \in \{1, 2, \ldots, m\}$ and $t \leq T$ and $\mu \in \mathbb{R}^+$. Recall the definition of the smoothed approximation and

update rule mapping of mini-batch ZoSS,

$$\Delta f_{w,J_t}^{K,\mu} \equiv \Delta f_{w,J_t}^{K,\mu,\mathbf{U}^t} \triangleq \frac{1}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \frac{f(w + \mu U_{k,i}^t, z_{J_{t,i}}) - f(w, z_{J_{t,i}})}{\mu} U_{k,i}^t, \tag{47}$$

$$\tilde{G}_{J_t}(w) \triangleq w - \alpha_t \Delta f_{w,J_t}^{K,\mu}, \quad \tilde{G}'_{J'_t}(w) \triangleq w - \alpha_t \Delta f_{w,J'_t}^{K,\mu}. \tag{48}$$

For the stability error decomposition, we define the gradient based mappings $G_{J_t}(\cdot)$ and $G'_{J'_t}(\cdot)$ as

$$G_{J_t}(w) \triangleq w - \alpha_t \nabla f_{w,J_t}, \quad G'_{J'_t}(w) \triangleq w - \alpha_t \nabla f_{w,J'_t}, \text{ and } \nabla f_{w,J_t} \triangleq \frac{1}{m} \sum_{z \in J_t} \nabla f(w,z)$$
 (49)

the iterate stability error of the mini-batch ZoSS $\tilde{G}_{J_t}(w) - \tilde{G}'_{J'_t}(w')$ at time t and similarly to (5), we show that

$$\tilde{G}_{J_t}(w) - \tilde{G}'_{J'_t}(w') \propto \underbrace{G_{J_t}(w) - G'_{J'_t}(w')}_{\epsilon_{\text{fistab}}^m} + \underbrace{\left[\nabla f_{w,J_t} - \Delta f_{w,J_t}^{K,\mu}\right] + \left[\nabla f_{w',J'_t} - \Delta f_{w',J'_t}^{K,\mu}\right]}_{\epsilon_{\text{fist}}^m}.$$
(50)

For the mini-batch case the derivation of the stability differs to that of (5) (m=1). To analyze the error term $\epsilon^m_{\text{GBstab}}$ in the mini batch case, we derive (for the proof see Appendix, Section C.2) and apply the Mini-Batch SGD Growth Recursion for the mappings $G_{J_t}(\cdot)$, $G'_{J'_t}(\cdot)$, that is an extension of [1, Lemma 2.4] and describes the growth recursion property of the SGD algorithm with mini batch.

Lemma 12 (Mini-Batch SGD Growth Recursion) Fix arbitrary sequences of updates $\{G_{J_t}\}_{t=1}^T$ and $\{G'_{J_t'}\}_{t=1}^T$. Let $w_0 = w'_0$ be the starting point, $w_{t+1} = G_{J_t}(w_t)$ and $w'_{t+1} = G'_{J_t'}(w'_t)$ for any $t \in \{1, \ldots, T\}$. Then for any $t \geq 0$ the following recursion holds

$$||G_{J_t}(w_t) - G'_{J'_t}(w'_t)|| \le \begin{cases} (1 + \beta \alpha_t) ||w_t - w'_t|| & \text{if } G_{J_t}(\cdot) = G'_{J'_t}(\cdot) \\ \left(1 + \frac{m-1}{m} \beta \alpha_t\right) ||w_t - w'_t|| + \frac{2}{m} L \alpha_t & \text{if } G_{J_t}(\cdot) \ne G'_{J'_t}(\cdot). \end{cases}$$
(51)

The error $\epsilon^m_{\text{GBstab}}$ depends on the batch size m at the event of different batch selection $\{J_t \neq J_t'\}$ as appears in Lemma 12. Additionally, the error ϵ^m_{est} breaks down into the errors $\epsilon_\mu, \epsilon^m_{d/K}$. Although ϵ_μ is independent of $m, \epsilon_\mu \leq \mu \beta \mathbb{E}[\|U\|^3]$ ($U \in \mathbb{R}^d$ is standard normal), ϵ^m_{est} dependents on the batch size m similarly to gradient based stability error $\epsilon^m_{\text{GBstab}}$. If the randomized algorithm (at time t) selects $J_t \neq J_t'$ then $\epsilon^m_{d/K} \leq 2\beta\alpha_t\sqrt{d/K}[(m-1)\|w-w'\|+2L]/m$, else $\epsilon^m_{d/K} \leq 4\beta\alpha_t\|w-w'\|\sqrt{d/K}$. We provide a unified representation of the stability error $\tilde{G}_{J_t}(w)-\tilde{G}'_{J_t'}(w')$ in the Section (Mini-Batch ZoSS Growth Recursion, Lemma 13).

C.1 Results for the ZoSS with Mini-Batch

We start by providing the growth recursion lemma for the ZoSS with mini batch.

Lemma 13 (Mini-Batch ZoSS Growth Recursion) Consider the sequences of updates $\{\tilde{G}_{J_t}\}_{t=1}^T$ and $\{\tilde{G}'_{J_t}\}_{t=1}^T$ and $\mu \leq cL\Gamma_K^d/(n\beta(3+d)^{3/2})$. Let $w_0 = w'_0$ be the starting point, $w_{t+1} = \tilde{G}_{J_t}(w_t)$ and $w'_{t+1} = \tilde{G}'_{J_t}(w'_t)$ for any $t \in \{1, \ldots, T\}$. Then for any $w_t, w'_t \in \mathbb{R}^d$ and $t \geq 0$ the following recursion holds

$$\mathbb{E}[\|\tilde{G}_{J_t}(w_t) - \tilde{G}_{J_t}'(w_t')\|] \leq \begin{cases} \left(1 + \beta \alpha_t \Gamma_K^d\right) \delta_t + \frac{cL\alpha_t}{n} \Gamma_K^d & \text{if } \tilde{G}_{J_t}(\cdot) = \tilde{G}_{J_t}'(\cdot) \\ \left(1 + \frac{m-1}{m} \beta \alpha_t \Gamma_K^d\right) \delta_t + \frac{2L\alpha_t}{m} \Gamma_K^d + \frac{cL\alpha_t}{n} \Gamma_K^d & \text{if } \tilde{G}_{J_t}(\cdot) \neq \tilde{G}_{J_t}'(\cdot). \end{cases}$$

Our next result provides a stability guarantee on the difference of the mini-batch ZoSS outputs W_T, W_T' , that holds for any batch size m.

Theorem 14 (Stability of ZoSS with Mini Batch | Nonconvex Loss) Assume that the loss function $f(\cdot,z)$ is L-Lipschitz and β -smooth for all $z \in \mathcal{Z}$. Consider the ZoSS with mini batch of size $m \in \{1, \ldots, n\}$, initial state $W_0 = W_0'$, iterates $W_t = \tilde{G}_{J_t}(W_t)$, $W_t' = \tilde{G}_{J_t}'(W_t')$ for t > 0, and with final-iterate estimates W_T and W_T' corresponding to the data-sets S, S', respectively (that differ

in exactly one entry). Then the discrepancy $\delta_T \triangleq \|W_T - W_T'\|$ under the event $\mathcal{E}_{\delta_{t_0}}$ and the choice $\mu \leq cL\Gamma_K^d/(n\beta(3+d)^{3/2})$ satisfies the inequality

$$\mathbb{E}[\delta_T | \mathcal{E}_{\delta_{t_0}}] \le \frac{(2+c)L\Gamma_K^d}{n} \sum_{t=t_0+1}^T \alpha_t \prod_{j=t+1}^T \left(1 + \beta \alpha_j \Gamma_K^d \left(1 - \frac{1}{n}\right)\right). \tag{52}$$

We prove Theorem 14 in Appendix, Section C.3. Note that ${}^6\mathbb{P}(\mathcal{I} \leq t_0) = 1 - (1 - m/n)^{t_0}$. By setting the free parameter $t_0 = 0$ and through the Lipschitz assumption we find the stability bound of the loss as $\mathbb{E}\left[|f(W_T,z) - f(W_T',z)|\right] \leq L\mathbb{E}[\delta_T] = L\mathbb{E}[\delta_T|\mathcal{E}_{\delta_0}]$. The last inequality and the solution of the recursion in (52) show that Theorem 5 and Theorem 6 hold for the ZoSS algorithm with mini batch, and any batch size $m \in \{1,\ldots,n\}$ as well.

C.2 Proof of Lemma 12

Under the assumption of nonconvex losses we find the first part of the statement as

$$||G_{J_{t}}(w_{t}) - G_{J_{t}}(w'_{t})|| \leq ||w_{t} - w'_{t}|| + \frac{\alpha_{t}}{m} \left\| \sum_{z \in J_{t}} \nabla_{w} f(w, z)|_{w = w_{t}} - \sum_{z \in J_{t}} \nabla_{w} f(w, z)|_{w = w'_{t}} \right\|$$

$$\leq ||w_{t} - w'_{t}|| + \frac{\alpha_{t}}{m} \sum_{z \in J_{t}} \left\| \nabla_{w} f(w, z)|_{w = w_{t}} - \nabla_{w} f(w, z)|_{w = w'_{t}} \right\|$$

$$\leq ||w_{t} - w'_{t}|| + \frac{\alpha_{t}}{m} \sum_{z \in J_{t}} \beta ||w_{t} - w'_{t}||$$

$$= (1 + \beta\alpha_{t}) ||w_{t} - w'_{t}||.$$
(53)

Further define $J_t^{-i^*} \triangleq J_t \setminus \{z_{J_{t,i^*}}\}$ and $J_t'^{-i^*} \triangleq J_t' \setminus \{z_{J_{t,i^*}}'\}$, and notice that $J_t^{-i^*} = J_t'^{-i^*}$ for any $t \leq T$ w.p. 1.

$$\begin{aligned} &\|G_{J_{t}}(w_{t}) - G'_{J'_{t}}(w'_{t})\| \\ &= \left\| w_{t} - w'_{t} - \frac{\alpha_{t}}{m} \sum_{z \in J_{t}} \nabla_{w} f(w, z)|_{w=w_{t}} + \frac{\alpha_{t}}{m} \sum_{z' \in J'_{t}} \nabla_{w} f(w, z')|_{w=w'_{t}} \right\| \\ &= \left\| \frac{1}{m} \sum_{z \in J_{t}^{-i^{*}}} \left(w_{t} - \alpha_{t} \nabla_{w} f(w, z)|_{w=w_{t}} \right) - \frac{1}{m} \sum_{z' \in J'_{t}^{-i^{*}}} \left(w'_{t} - \alpha_{t} \nabla_{w} f(w, z')|_{w=w'_{t}} \right) \\ &+ \frac{1}{m} \left(w_{t} - \alpha_{t} \nabla_{w} f(w, z_{J_{t,i^{*}}})|_{w=w_{t}} \right) - \frac{1}{m} \left(w'_{t} - \alpha_{t} \nabla_{w} f(w, z_{J'_{t,i^{*}}})|_{w=w'_{t}} \right) \right\| \\ &= \left\| \frac{1}{m} \sum_{z \in J_{t}^{-i^{*}}} \underbrace{\left(w_{t} - \alpha_{t} \nabla_{w} f(w, z)|_{w=w'_{t}} \right)}_{G(w_{t}, z)} - \frac{1}{m} \underbrace{\sum_{z \in J_{t}^{-i^{*}}} \underbrace{\left(w'_{t} - \alpha_{t} \nabla_{w} f(w, z)|_{w=w'_{t}} \right)}_{G(w'_{t}, z_{J'_{t,i^{*}}}} \right)} \\ &+ \frac{1}{m} \underbrace{\left(w_{t} - \alpha_{t} \nabla_{w} f(w, z_{J_{t,i^{*}}})|_{w=w_{t}} \right) - \frac{1}{m} \underbrace{\left(w'_{t} - \alpha_{t} \nabla_{w} f(w, z_{J'_{t,i^{*}}})|_{w=w'_{t}} \right)}_{G'(w'_{t}, z_{J'_{t,i^{*}}}})} \right\| \\ &= \frac{1}{m} \left\| \sum_{z \in J_{t}^{-i^{*}}} \left(G(w_{t}, z) - G(w'_{t}, z) \right) + G(w_{t}, z_{J_{t,i^{*}}}) - G'(w'_{t}, z_{J'_{t,i^{*}}}}) \right\| \\ &\leq \frac{1}{m} \left\| \sum_{z \in J_{t}^{-i^{*}}} \left(G(w_{t}, z) - G(w'_{t}, z) \right) \right\| + \frac{1}{m} \left\| G(w_{t}, z_{J_{t,i^{*}}}) - G'(w'_{t}, z_{J'_{t,i^{*}}}}) \right\| \\ &\leq \frac{1}{m} \sum_{z \in J_{t}^{-i^{*}}} \left\| G(w_{t}, z) - G(w'_{t}, z) \right\| + \frac{1}{m} \left\| G(w_{t}, z_{J_{t,i^{*}}}) - G'(w'_{t}, z_{J'_{t,i^{*}}}}) \right\|. \end{aligned}$$

⁶Under the random selection rule $\mathbb{P}(\mathcal{I} \leq t_0) = 1 - \mathbb{P}(\cap_{i=1}^{t_0} \{\mathcal{I} \neq i\}) = 1 - \prod_{i=1}^{t_0} \mathbb{P}(\{\mathcal{I} \neq i\})$.

[1, Lemma 2.4] for nonconvex loss $(\eta = 1 + \beta \alpha_t)$ gives

$$||G(w_t, z) - G(w_t', z)|| \le (1 + \beta \alpha_t) \delta_t,$$
 (55)

$$||G(w_t, z_{J_{t,i^*}}) - G'(w_t', z_{J_{t,i^*}}|| \le \delta_t + 2L\alpha_t.$$
(56)

By combining the last two together with (54) we find

$$||G_{J_{t}}(w_{t}) - G'_{J'_{t}}(w'_{t})|| \leq \frac{1}{m} \sum_{z \in J_{t}^{-i^{*}}} (1 + \beta \alpha_{t}) \delta_{t} + \frac{1}{m} (\delta_{t} + 2L\alpha_{t})$$

$$= \frac{m-1}{m} (1 + \beta \alpha_{t}) \delta_{t} + \frac{1}{m} (\delta_{t} + 2L\alpha_{t})$$

$$= \left(1 + \frac{m-1}{m} \beta \alpha_{t}\right) \delta_{t} + \frac{2}{m} L\alpha_{t}.$$
(57)

The last gives the second part of the recursion and completes the proof.

C.3 Proof of Lemma 13 and Theorem 14

First we provide the proof of Lemma 13, then we apply Lemma 13 to prove Theorem 14.

Proof of Lemma 13 Consider the update rules under the event $\tilde{\mathcal{E}}_t \triangleq \{\tilde{G}_{J_t}(\cdot)\}$ that occurs with probability $\mathbb{P}(\tilde{\mathcal{E}}_t) = 1 - m/n$ for all $t \leq T$. Similarly to (9) we find

$$\tilde{G}_{J_{t}}(w_{t}) - \tilde{G}_{J_{t}}(w'_{t}) = \underbrace{w_{t} - \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}} - \left(\underbrace{w'_{t} - \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \nabla_{w} f(w, z_{J_{t,i}})|_{w=w'_{t}}} \right)}_{G_{J_{t}}(w_{t})} - \underbrace{\frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{T} \nabla_{w}^{2} f(w, z_{J_{t,i}})|_{w=W_{k,t,i}^{*}} U_{k,i}^{t} \right) U_{k,i}^{t}}_{-\frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{T} \nabla_{w}^{2} f(w, z_{J_{t,i}})|_{w=W_{k,t,i}^{*}} U_{k,i}^{t} \right) U_{k,i}^{t}}_{-\frac{\alpha_{t}}{m} \sum_{i=1}^{m} \left(\frac{1}{K} \sum_{k=1}^{K} \langle \nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}} - \nabla_{w} f(w, z_{J_{t,i}})|_{w=w'_{t}}, U_{k,i}^{t} \rangle U_{k,i}^{t}}_{-\frac{\alpha_{t}}{m} \sum_{i=1}^{m} \left(\frac{1}{K} \sum_{k=1}^{K} \langle \nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}} - \nabla_{w} f(w, z_{J_{t,i}})|_{w=w'_{t}} \right) \right)}. \tag{58}$$

Denote by $\mathbb{E}_{\mathbf{U}_t^{\otimes K \times m}}$ the expectation with respect to product measure of the random vectors $U_{k,i}^t \sim \mathcal{N}(0,I_d)$ for all $k \in \{1,2,\ldots,K\}, i \in \{1,2,\ldots,m\}$ and fixed $t \leq T$. Recall that $U_{k,i}^t$ are independent for all $k \in \{1,2,\ldots,K\}, i \in \{1,2,\ldots,m\}$ and $t \leq T$. Inequality (58) and triangle inequality give

$$\begin{split} & \mathbb{E}[\|\tilde{G}_{J_{t}}(w_{t}) - \tilde{G}_{J_{t}}(w'_{t})\|] \\ & \leq \|G_{J_{t}}(w_{t}) - G_{J_{t}}(w'_{t})\| \\ & + \mathbb{E}_{\mathbf{U}_{t}^{\otimes K \times m}} \left[\left\| \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{\mathsf{T}} \nabla_{w}^{2} f(w, z_{J_{t,i}})|_{w = W_{k,t,i}^{*}} U_{k,i}^{t} \right) U_{k,i}^{t} \right\| \right] \\ & + \mathbb{E}_{\mathbf{U}_{t}^{\otimes K \times m}} \left[\left\| \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{\mathsf{T}} \nabla_{w}^{2} f(w, z_{J_{t,i}})|_{w = W_{k,t,i}^{\dagger}} U_{k,i}^{t} \right) U_{k,i}^{t} \right\| \right] \\ & + \mathbb{E}_{\mathbf{U}_{t}^{\otimes K \times m}} \left[\left\| \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \left(\frac{1}{K} \sum_{k=1}^{K} \langle \nabla_{w} f(w, z_{J_{t,i}})|_{w = w_{t}} - \nabla_{w} f(w, z_{J_{t,i}})|_{w = w'_{t}}, U_{k,i}^{t} \rangle U_{k,i}^{t} \right) \right] \end{split}$$

$$-\left(\nabla_{w}f(w, z_{J_{t,i}})|_{w=w_{t}} - \nabla_{w}f(w, z_{J_{t,i}})|_{w=w_{t}^{t}}\right)\right) \|$$

$$\leq \|G_{J_{t}}(w_{t}) - G_{J_{t}}(w_{t}^{t})\|$$

$$+ \mathbb{E}_{\mathbf{U}_{t}^{\otimes K \times m}} \left[\left\| \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{\mathsf{T}} \nabla_{w}^{2} f(w, z_{J_{t,i}})|_{w=W_{k,t,i}^{*}} U_{k,i}^{t} \right) U_{k,i}^{t} \right] \right]$$

$$+ \mathbb{E}_{\mathbf{U}_{t}^{\otimes K \times m}} \left[\left\| \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{\mathsf{T}} \nabla_{w}^{2} f(w, z_{J_{t,i}})|_{w=W_{k,t,i}^{t}} U_{k,i}^{t} \right) U_{k,i}^{t} \right] \right]$$

$$+ \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \mathbb{E}_{\mathbf{U}_{t,i}^{\otimes K}} \left\| \left(\frac{1}{K} \sum_{k=1}^{K} \langle \nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}} - \nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}^{t}} \right) U_{k,i}^{t} \right.$$

$$- \left(\nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}} - \nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}^{t}} \right) \right) \left\|$$

$$\leq \left\| G_{J_{t}}(w_{t}) - G_{J_{t}}(w_{t}^{t}) \right\|$$

$$+ \mathbb{E}_{\mathbf{U}_{t}^{\otimes K \times m}} \left[\left\| \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{\mathsf{T}} \nabla_{w}^{2} f(w, z_{J_{t,i}})|_{w=W_{k,t,i}^{t}} U_{k,i}^{t} \right) U_{k,i}^{t} \right. \right]$$

$$+ \mathbb{E}_{\mathbf{U}_{t}^{\otimes K \times m}} \left[\left\| \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{\mathsf{T}} \nabla_{w}^{2} f(w, z_{J_{t,i}})|_{w=W_{k,t,i}^{t}} U_{k,i}^{t} \right) U_{k,i}^{t} \right. \right]$$

$$+ \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \sqrt{\frac{3d-1}{K}} \left\| \nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}} - \nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}^{t}} \right.$$

$$(59)$$

$$\leq \|G_{J_t}(w_t) - G_{J_t}(w_t')\| + \frac{2\alpha_t}{mK} \sum_{i=1}^m \sum_{k=1}^K \frac{\mu\beta}{2} \mathbb{E}_{\mathbf{U}_{t,i,k}} \left[\|U_{k,i}^t\|^3 \right]$$

$$+\frac{\alpha_t}{m} \sum_{i=1}^m \sqrt{\frac{3d-1}{K}} \|\nabla_w f(w, z_{J_{t,i}})|_{w=w_t} - \nabla_w f(w, z_{J_{t,i}})|_{w=w_t'} \|$$
(60)

$$\leq (1 + \beta \alpha_t) \delta_t + \frac{2\alpha_t}{mK} \sum_{i=1}^m \sum_{k=1}^K \frac{\mu \beta}{2} \mathbb{E}_{\mathbf{U}_{t,i,k}} \left[\|U_{k,i}^t\|^3 \right] + \alpha_t \sqrt{\frac{3d-1}{K}} \beta \delta_t \tag{61}$$

$$\leq \left(1 + \beta \alpha_t \Gamma_K^d\right) \delta_t + \mu \beta \alpha_t (3+d)^{3/2},\tag{62}$$

to find the inequality (59) we applied Lemma 10, inequality (60) comes from the triangle inequality and β -smoothness, to derive the inequality (61) we applied the $1+\beta\alpha_t$ -expansive property for the $G_{J_t}(\cdot)$ mapping (Lemma 12) and the β -smoothness of the loss function, finally the inequality (62) holds since the random vectors $U_{k,i}^t \sim \mathcal{N}(0,I_d)$ are i.i.d. and $\mathbb{E}[\|U_{k,i}^t\|] \leq (3+d)^{3/2}$ for all $k \in \{1,2,\ldots,K\}, i \in \{1,2,\ldots,m\}$ and $t \leq T$. Under the choice $\mu \leq cL\Gamma_K^d/(n\beta(3+d)^{3/2})$, (62) gives the first part the inequality in Lemma 13.

We continue by considering the event $\tilde{\mathcal{E}}_t^c \triangleq \{G_{J_t}(\cdot) \neq G'_{J'_t}(\cdot)\}$. Recall that $\tilde{\mathcal{E}}_t^c$ occurs with probability $\mathbb{P}(\tilde{\mathcal{E}}_t) = m/n$ for all $t \leq T$. Under the event $\tilde{\mathcal{E}}_t^c$ similarly to (13) we derive the difference

$$\begin{split} \tilde{G}_{J_{t}}(w_{t}) - \tilde{G}'_{J'_{t}}(w'_{t}) \\ &= \underbrace{w_{t} - \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \nabla_{w} f(w, z_{J_{t,i}})|_{w=w_{t}}}_{G_{J_{t}}(w_{t})} - \underbrace{\left(\underbrace{w'_{t} - \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \nabla_{w} f(w, z'_{J'_{t,i}})|_{w=w'_{t}}}_{G'_{J_{t}}(w'_{t})}\right)}_{G'_{J_{t}}(w_{t})} \\ &- \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{\mathsf{T}} \nabla_{w}^{2} f(w, z_{J_{t,i}})|_{w=W_{k,t,i}^{*}} U_{k,i}^{t}\right) U_{k,i}^{t} \end{split}$$

$$+ \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{\mathsf{T}} \nabla_{w}^{2} f(w, z'_{J'_{t,i}}) |_{w=W_{k,t,i}^{\dagger}} U_{k,i}^{t} \right) U_{k,i}^{t}$$

$$- \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \left(\frac{1}{K} \sum_{k=1}^{K} \langle \nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z'_{J'_{t,i}}) |_{w=w'_{t}}, U_{k,i}^{t} \rangle U_{k,i}^{t}$$

$$- (\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z'_{J'_{t,i}}) |_{w=w'_{t}}) \right). \tag{63}$$

By using the triangle inequality and Lemma 10 we get

$$\mathbb{E}[\|\tilde{G}_{J_{t}}(w_{t}) - \tilde{G}'_{J'_{t}}(w'_{t})\|] \\
\leq \|G_{J_{t}}(w_{t}) - G'_{J'_{t}}(w'_{t})\| \\
+ \mathbb{E}_{\mathbf{U}_{t}^{K \times \times m}} \left[\left\| \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{T} \nabla_{w}^{2} f(w, z_{J_{t,i}}) |_{w=W_{k,t,i}} U_{k,i}^{t} \right) U_{k,i}^{t} \right] \right] \\
+ \mathbb{E}_{\mathbf{U}_{t}^{K \times \times m}} \left[\left\| \frac{\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\frac{\mu}{2} U_{k}^{T} \nabla_{w}^{2} f(w, z_{J_{t,i}}) |_{w=W_{k,t,i}} U_{k,i}^{t} \right) U_{k,i}^{t} \right] \right] \\
+ \mathbb{E}_{\mathbf{U}_{t}^{K \times \times m}} \left[\left\| \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \left(\frac{1}{K} \sum_{k=1}^{K} (\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z'_{J'_{t,i}}) |_{w=w'_{t}} \right) U_{k,i}^{t} \right] \right] \\
+ \mathbb{E}_{\mathbf{U}_{t}^{K \times \times m}} \left[\left\| \frac{1}{m} \sum_{i=1}^{K} \sum_{k=1}^{K} (\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z'_{J'_{t,i}}) |_{w=w'_{t}} \right) \right] \right] \\
\leq \|G_{J_{t}}(w_{t}) - G'_{J'_{t}}(w'_{t})\| + \frac{2\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \frac{\mu \beta}{2} \mathbb{E}_{\mathbf{U}_{t,i,k}} \left[\|U_{k,i}^{t}\|^{3} \right] \\
+ \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \mathbb{E}_{\mathbf{U}_{t,i}^{K \times K}} \left\| \left(\sum_{k=1}^{K} \sum_{i=1}^{K} \sum_{k=1}^{K} \sum_{k=1}^{K} \frac{\mu \beta}{2} \mathbb{E}_{\mathbf{U}_{t,i,k}} \left[\|U_{k,i}^{t}\|^{3} \right] \right. \\
+ \frac{\alpha_{t}}{m} \sum_{i=1}^{m} \sqrt{\frac{3d-1}{K}} \|\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z'_{J'_{t,i}}) |_{w=w'_{t}} \right] \\
= \|G_{J_{t}}(w_{t}) - G'_{J'_{t}}(w'_{t})\| + \frac{2\alpha_{t}}{mK} \sum_{i=1}^{m} \sum_{k=1}^{K} \frac{\mu \beta}{2} \mathbb{E}_{\mathbf{U}_{t,i,k}} \left[\|U_{k,i}^{t}\|^{3} \right] \\
+ \sqrt{\frac{3d-1}{K}} \frac{\alpha_{t}}{m} \sum_{i=1,i\neq i}^{\infty} \|\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z'_{J'_{t,i}}) |_{w=w'_{t}} \| \\
+ \sqrt{\frac{3d-1}{K}} \frac{\alpha_{t}}{m} \|\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z'_{J'_{t,i}}) |_{w=w'_{t}} \| \\
+ \|\nabla_{w} \frac{3d-1}{K} \frac{\alpha_{t}}{m} \sum_{i=1,i\neq i}^{\infty} \|\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z_{J_{t,i}}) |_{w=w'_{t}} \| \\
+ \sqrt{\frac{3d-1}{K}} \frac{\alpha_{t}}{m} \sum_{i=1,i\neq i}^{\infty} \|\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z_{J_{t,i}}) |_{w=w'_{t}} \| \\
+ \sqrt{\frac{3d-1}{K}} \frac{\alpha_{t}}{m} \sum_{i=1,i\neq i}^{\infty} \|\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}} - \nabla_{w} f(w, z_{J_{t,i}}) |_{w=w'_{t}} \| \\
+ \sqrt{\frac{3d-1}{K}} \frac{\alpha_{t}}{m} \sum_{i=1,i\neq i}^{\infty} \|\nabla_{w} f(w, z_{J_{t,i}}) |_{w=w_{t}}$$

$$+\sqrt{\frac{3d-1}{K}}\frac{\alpha_t}{m}\|\nabla_w f(w, z_{J_{t,i^*}})|_{w=w_t} - \nabla_w f(w, z'_{J'_{t,i^*}})|_{w=w'_t}\|$$
(65)

$$\leq \|G_{J_t}(w_t) - G'_{J'_t}(w'_t)\| + \frac{2\alpha_t}{mK} \sum_{i=1}^m \sum_{k=1}^K \frac{\mu\beta}{2} \mathbb{E}_{\mathbf{U}_{t,i,k}} \left[\|U_{k,i}^t\|^3 \right]$$

$$+\sqrt{\frac{3d-1}{K}}\frac{\alpha_t}{m}(m-1)\beta\delta_t + \sqrt{\frac{3d-1}{K}}\frac{\alpha_t}{m}2L$$
 (66)

$$\leq \left(1 + \frac{m-1}{m}\beta\alpha_t\right)\delta_t + \frac{2}{m}L\alpha_t + \mu\beta\alpha_t(3+d)^{3/2}$$

$$+\sqrt{\frac{3d-1}{K}}\frac{\alpha_t}{m}(m-1)\beta\delta_t + \sqrt{\frac{3d-1}{K}}\frac{\alpha_t}{m}2L$$
 (67)

$$= \left(1 + \frac{m-1}{m}\beta\alpha_t\Gamma_K^d\right)\delta_t + \frac{2L\alpha_t}{m}\Gamma_K^d + \mu\beta\alpha_t(3+d)^{3/2},\tag{68}$$

we find the inequality (64) by applying Lemma 10, the inequality (65) holds since $z_{J_{t,i}} = z'_{J'_{t,i}}$ for any $i \neq i^*$, we find (66) by using the triangle inequality and β -smoothness (for $i \neq i^*$) and L-Lipschitz condition to bound the norm of the gradients $\nabla_w f(w, z_{J_{t,i^*}})|_{w=w_t}$ and $\nabla_w f(w, z'_{J'_{t,i^*}})|_{w=w'_t}$. In (67) we apply Lemma 12 to bound the quantity $||G_{J_t}(w_t) - G'_{J_t}(w'_t)||$. Under the selection of $\mu \leq cL\Gamma_K^d/(n\beta(3+d)^{3/2})$, Eq. (68) gives the second part of the inequality in Lemma 13.

Proof of Theorem 14 We apply Lemma 13 to get

$$\mathbb{E}[\delta_{t+1}|\mathcal{E}_{\delta_{t_0}}] \\
&= \mathbb{P}(\mathcal{E}_t)\mathbb{E}[\delta_{t+1}|\mathcal{E}_t, \mathcal{E}_{\delta_{t_0}}] + \mathbb{P}(\mathcal{E}_t^c)\mathbb{E}[\delta_{t+1}|\mathcal{E}_t^c, \mathcal{E}_{\delta_{t_0}}] \\
&= \left(1 - \frac{m}{n}\right)\mathbb{E}[\delta_{t+1}|\mathcal{E}_t, \mathcal{E}_{\delta_{t_0}}] + \frac{m}{n}\mathbb{E}[\delta_{t+1}|\mathcal{E}_t^c, \mathcal{E}_{\delta_{t_0}}] \\
&= \left(1 - \frac{m}{n}\right)\left(\left(1 + \beta\alpha_t\Gamma_K^d\right)\mathbb{E}[\delta_t|\mathcal{E}_{\delta_{t_0}}] + \frac{cL\alpha_t}{n}\Gamma_K^d\right) \\
&+ \frac{m}{n}\left(1 + \frac{m-1}{m}\beta\alpha_t\Gamma_K^d\right)\mathbb{E}[\delta_t|\mathcal{E}_{\delta_{t_0}}] + \frac{m}{n}\frac{2L\alpha_t}{m}\Gamma_K^d + \frac{m}{n}\frac{cL\alpha_t}{n}\Gamma_K^d \\
&= \left(1 + \beta\alpha_t\Gamma_K^d\left(1 - \frac{1}{n}\right)\right)\mathbb{E}[\delta_t|\mathcal{E}_{\delta_{t_0}}] + \frac{2L\alpha_t}{n}\Gamma_K^d + \frac{cL\alpha_t}{n}\Gamma_K^d. \tag{69}$$

The last display characterizes the general case of nonconvex loss and coincides with the inequality (17) (since $\eta = 1 + \beta \alpha_t$). As a consequence the solution of the recursion (69) is

$$\mathbb{E}[\delta_T | \mathcal{E}_{\delta_{t_0}}] \le \frac{(2+c)L\Gamma_K^d}{n} \sum_{t=t_0+1}^T \alpha_t \prod_{j=t+1}^T \left(1 + \beta \alpha_j \Gamma_K^d \left(1 - \frac{1}{n}\right)\right). \tag{70}$$

The last display completes the proof.

D Full-Batch GD

As a byproduct of our analysis we derive generalization error bounds for the full-batch gradient decent. Although our results reduce to the full-batch GD by a direct calculation of the limits $c \to 0$, $K \to \infty$ and setting the batch size m equal to n, we separately prove generalization error bounds for the full-batch GD for clarity.

Corollary 15 [Stability and Generalization Error of Full-Batch GD | Nonconvex Loss] Assume that the loss function $f(\cdot, z)$ is L-Lipschitz and β -smooth for all $z \in \mathcal{Z}$. Consider the (deterministic) full-batch GD algorithm, initial state $W_0 = W_0'$, iterates $W_t = G_S(W_t)$, $W_t' = G_{S'}(W_t')$ for t > 0, and with final-iterate estimates W_T and W_T' corresponding to the data-sets S, S', respectively (that differ in exactly one entry). Then the discrepancy $\delta_T \triangleq \|W_T - W_T'\|$ satisfies the inequality

$$\delta_T \le \frac{2L}{n} \sum_{t=1}^T \alpha_t \prod_{j=t+1}^T \left(1 + \frac{n-1}{n} \alpha_j \beta \right). \tag{71}$$

Further if $\alpha_t \leq C/t$ for any t > 0 and some C > 0 then

$$|\epsilon_{gen}| = |\mathbb{E}_S[\mathbb{E}_z[f(W_T, z)] - \frac{1}{n} \sum_{z \in S} f(W_T, z)]| \le \frac{2L^2 (eT)^{C\beta}}{n} \min\{C + \beta^{-1}, C \log(eT)\}.$$
 (72)

The proof of Corollary 15 follows.

Proof of Corollary 15 (Full-Batch GD) In the case of full-batch GD the algorithm is deterministic and we assume that $z_1, z_2, \ldots, z_i, \ldots, z_n, z_i'$ are i.i.d. and define $S \triangleq (z_1, z_2, \ldots, z_i, \ldots, z_n)$ and $S' \triangleq (z_1, z_2, \ldots, z_i', \ldots, z_n)$, $W_0 = W_0'$, the updates for any $t \geq 1$ are

$$W_{t+1} = W_t - \frac{\alpha_t}{n} \sum_{j=1}^n \nabla f(W_t, z_j),$$
 (73)

$$W'_{t+1} = W'_t - \frac{\alpha_t}{n} \sum_{j=1, j \neq i}^n \nabla f(W'_t, z_j) - \frac{\alpha_t}{n} \nabla f(W'_t, z'_i). \tag{74}$$

Then for any $t \ge 1$

$$\begin{split} &\delta_{t+1} \\ &\leq \delta_t + \frac{\alpha_t}{n} \left\| \sum_{j=1, j \neq i}^n \nabla f(W_t, z_j) - \nabla f(W_t', z_j) \right\| + \frac{\alpha_t}{n} \|\nabla f(W_t, z_i) - \nabla f(W_t', z_i')\| \\ &\leq \delta_t + \frac{\alpha_t(n-1)}{n} \beta \delta_t + \frac{2L\alpha_t}{n} \\ &= \left(1 + \frac{(n-1)}{n} \beta \alpha_t\right) \delta_t + \frac{2L\alpha_t}{n}. \end{split}$$

Then by solving the recursion we find

$$\delta_T \le \frac{2L}{n} \sum_{t=1}^T \alpha_t \prod_{j=t+1}^T \left(1 + \frac{n-1}{n} \alpha_j \beta \right). \tag{75}$$

Under the choice $\alpha_t \leq C/t$ the last display gives

$$\delta_{T} \leq \frac{2L}{n} \sum_{t=1}^{T} \frac{C}{t} \prod_{j=t+1}^{T} \left(1 + \frac{n-1}{n} \frac{C}{j} \beta \right)$$

$$\leq \frac{2L}{n} \sum_{t=1}^{T} \frac{C}{t} \prod_{j=t+1}^{T} \left(1 + \frac{C}{j} \beta \right)$$

$$\leq \frac{2L}{n} \sum_{t=1}^{T} \frac{C}{t} \prod_{j=t+1}^{T} \exp\left(\frac{C}{j} \beta\right)$$

$$= \frac{2L}{n} \sum_{t=1}^{T} \frac{C}{t} \exp\left(\sum_{j=t+1}^{T} \frac{C}{j} \beta\right)$$

$$\leq \frac{2L}{n} \sum_{t=1}^{T} \frac{C}{t} \exp\left(C\beta \left(1 + \log \frac{T}{t+1}\right)\right)$$

$$= \frac{2L (eT)^{C\beta}}{n} \sum_{t=1}^{T} \frac{C}{t} \frac{1}{(t+1)^{C\beta}}$$

$$\leq \frac{2L (eT)^{C\beta}}{n} \sum_{t=1}^{T} \frac{C}{t^{C\beta+1}}$$

$$\leq \frac{2CL(eT)^{C\beta}}{n}\min\left\{\frac{C\beta+1}{C\beta},\log(eT)\right\}.$$
(76)

Then

$$|\mathbb{E}_{S}[R_{S}(A_{S}) - R(A_{S})]| = |\mathbb{E}_{S,z'_{i}}[f(W_{T}, z'_{i}) - f(W'_{T}, z'_{i})]|$$

$$\leq \mathbb{E}_{S,z'_{i}}[|f(W_{T}, z'_{i}) - f(W'_{T}, z'_{i})|]$$
(77)

$$\leq L\mathbb{E}_{S,z_i'}\|W_T - W_T'\| \tag{78}$$

$$\leq \frac{2L^2 (eT)^{C\beta}}{n} \min \left\{ C + \beta^{-1}, C \log(eT) \right\}. \tag{79}$$

In the above, Eq. (77) follows from [17, Lemma 7], the inequality (78) holds under the Lipschitz property of the loss $f(\cdot, z)$ for any z. Finally, we find the last inequality (79) by applying the bound in (76).

E Excess Risk

Define the time average parameters as output of the algorithm

$$\bar{W}_T = \frac{1}{\sum_{t=1}^T \alpha_t} \sum_{t=1}^T \alpha_t W_t,$$
 (80)

then

$$\mathbb{E}[\|\bar{W}_T - \bar{W}_T'\||\mathcal{E}_{\delta_{t_0}}] \le \frac{1}{\sum_{t=1}^T \alpha_t} \sum_{t=1}^T \alpha_t \mathbb{E}[\|W_t - W_t'\||\mathcal{E}_{\delta_{t_0}}]$$
(81)

$$= \frac{1}{\sum_{t=1}^{T} \alpha_t} \sum_{t=1}^{T} \alpha_t \mathbb{E}[\delta_t | \mathcal{E}_{\delta_{t_0}}]$$
(82)

$$\leq \frac{1}{\sum_{t=1}^{T} \alpha_t} \sum_{t=1}^{T} \alpha_t \mathbb{E}[\delta_T | \mathcal{E}_{\delta_{t_0}}] = \mathbb{E}[\delta_T | \mathcal{E}_{\delta_{t_0}}]. \tag{83}$$

The L-Lipschitz property of the loss and the inequality (83) give

$$|\bar{\epsilon}_{\text{gen}}| \triangleq |\mathbb{E}[f(\bar{W}_T, z_i') - f(\bar{W}_T', z_i')]| \leq \mathbb{E}[|f(\bar{W}_T, z_i') - f(\bar{W}_T', z_i')|] \leq L\mathbb{E}[\delta_T |\mathcal{E}_{\delta_{t_0}}]. \tag{84}$$

Additionally, for any convex loss it is true that,

$$\overline{\epsilon}_{\text{opt}} \triangleq \mathbb{E}[R(\overline{W}_T)] - R(w^*) \leq \frac{1}{\sum_{t=1}^T \alpha_t} \sum_{t=1}^T \alpha_t \left(\mathbb{E}[R(W_t)] - R(w^*) \right) \\
\leq \frac{1}{\sum_{t=1}^T \alpha_t} \left(\frac{1}{2} \|W_0 - W^*\|^2 + \frac{d+4}{2} L \sum_{t=1}^T \alpha_t^2 \right). \tag{85}$$

If $||W_0 - W^*||^2 \le R$, K = 1, then we may choose

$$\alpha_t = \frac{CR}{L\sqrt{3d-1}t}. (86)$$

From (85) and (86) we find

$$\overline{\epsilon}_{\text{opt}} \leq \frac{L\sqrt{3d-1}}{CR\log(T+1)} \left(\frac{R^2}{2} + \frac{d+4}{2}L\left(\frac{C^2R^2}{L^2(3d-1)}\right) \frac{\pi^2}{6} \right) \\
\leq \frac{RL\sqrt{3d-1}}{2C\log(T+1)} \left(1 + \frac{C^2}{L} \right).$$
(87)

Further, inequality (84), the choice of learning rate in (86) and Lemma 11 give

$$|\overline{\epsilon}_{\text{gen}}| \le \frac{1 + \sqrt{3d - 1}}{\sqrt{3d - 1}} \frac{(eT)^{CR\beta/L} (2 + c)L^2}{n} \min\left\{\frac{CR\beta/L + 1}{\beta}, \frac{CR}{L} \log(eT)\right\}$$
(88)

$$\leq \frac{2(eT)^{CR\beta/L}(2+c)L^2}{n}\min\left\{\frac{CR\beta/L+1}{\beta}, \frac{CR}{L}\log(eT)\right\}. \tag{89}$$

If $C \leq L/2R\beta$, then

$$|\overline{\epsilon}_{\text{gen}}| \le \frac{2\sqrt{eT}(2+c)L^2}{n} \min\left\{\frac{3}{2\beta}, \frac{1}{2\beta}\log(eT)\right\} \le \frac{3\sqrt{eT}(2+c)L^2/\beta}{n}. \tag{90}$$

We conclude that

$$\overline{\epsilon}_{\text{excess}} \le |\overline{\epsilon}_{\text{gen}}| + \overline{\epsilon}_{\text{opt}} \le \frac{3\sqrt{eT}(2+c)L^2/\beta}{n} + \frac{\sqrt{3d-1}R^2\beta}{\log(T+1)} \left(1 + \frac{L}{4R^2\beta^2}\right).$$
 (91)

Similarly, by using Lemma 10 and the optimization error derivation from prior works [13], we find the corresponding bound for $K \ge 1$ function evaluations,

$$\bar{\epsilon}_{\text{excess}} \le \frac{3\sqrt{eT}(2+c)L^2/\beta}{n} + \frac{\left(1+\sqrt{\frac{3d-1}{K}}\right)R^2\beta}{\log(T)}\left(1+\frac{L}{4R^2\beta^2}\right). \tag{92}$$