A Proofs

We start by providing a lemma that is useful in the proofs of our main results.

Lemma 10 (Variance Reduction) Let U, € R k € {1,2..., K} be i.i.d standard Gaussian.*
For every random vector V. € R® independent of all Uy, k € {1,2..., K}, it is true that

“[ls

Different versions of Lemma 10 appear already in prior works (see, e.g., [13, Proof of Corollary 2].
For completeness and clarity we provide a short proof of Lemma 10 below (Appendix, Section A.1).

K 3d
> (VU Uy —VHM < /2Ly 27)
k=1

A.1 Proof of Lemma 10

For fixed V € R?, we have due to independence
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(V,Up)U, -V
k=1

|

‘ K

K

1
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k=1
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= ZE[I(V. U0, - V.

Now, again due to independence
E[[{V,U1)U; = VIP] = E[[(V,U)Ui|* - 2((V,U1) Uy, V) + || V|?]
2
=E[((V,U0)[[0:|P] = 2E[(V, U1 (U, V)] + [V
= VTE[U, U] ||U4|?]V —2VTE[U, UT]V + || V|?

d
= VTE[UUT (U{7)]V = 2| V| + | V|

i=1
d
<> VIV —|v|?
i=1
= (3d - 1)|[V|*.

Therefore,
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H‘KkgA(V,Uk}Uk \4

Thus, if V is random and independent of all U},’s, it follows that

2

K K
1
ZVUk Uk—VHM < El EZ<V,U,€>U,€—V V]
k k=1
3d —
< \/*IIVH2
3d
— /vy,
and our claim is proved. O

*Similar bounds (i.e., O(~/d/K)) hold for other distributions as well, e.g., when the Uy ’s are uniformly
distributed (and independent) in [—1, +1].
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A.2 Proof of Theorem 3

We start by observing that 1 — nn — a3 3‘17’1 < 0 since 7 > 1. The definition of R; and (18) give
R; < (n+ aB+/(3d —1)/K) £ Ry, and

E[o7(Es,,] < <2L %+ B 3+d3/2) Z o H (28)

t=to+1  j=t+1

Recall that = 1 + B for general (nonconvex) losses (see [1]). Assuming that oy < C'/ tI‘;l( for all
t < T, we have

2L
E[Jﬂg%]g( ¢+ 53+d5/2> Z o H (1+ a;BT%)

t=to+1  j=t+1
C

gw(2LF?<+ B3+d3/2> Z H <1+)
K

t= t0+1 j=t+1

F(’;(% + B3+d3/2> Z H eXP( ) (29)
K

t= t0+1 j=t+1

T

M 2L 3/2) 11
<& ( A TC tz%;lt(tﬂ)ﬂc (30)
BC
<at(re)” <25F?(+uﬁ(3+d)3/2><<iT> 660>. (3D
0

D

In the above, the inequality 1 + =z < e® gives (29), inequality (30) follows from the inequality
T i=t111/7 < logT —log(t + 1) + 1, and inequality (31) comes from the next inequality and

_gCo— T _go— C1y— _
integral evaluation Zt=t0+1t AO-1 < ft:to 7Py = (BC) 7 (t, PC _ T-8C). We define
q = BC and find the value of ¢ that minimizes the right part of [75, Lemma 3.11P°

q
BF(Wr.2) - S0V 2] < sup flw,) + Lfrles, ] < 2+ 20 () =) @
which is £ = min{(gnLD)" 4"V (e1)2/(a+1D) T}, Then (32) gives

1 q
LD)«t1 (eT)a+T 1+1 1
< max { (qnLD)7 (eT) 7 ; +1/a (qnLD)T (eT) 74T — LDeq} . (33)
n n

Choosing y < ¢cLT'% /nB(3 + d)*/? for some ¢ > 0 in (33) proves our claim. O

A.3 Proof of Corollary 4

Denote by W (-) the Lambert function [76]. Through Theorem 3 and by replacing C' with CT'% % to
recover the required learning rate, the generalization error is bounded as

€gen
1+ (ﬂCFd )71 1 1 BT

< K ((2 + C)CL2) 1+Bcr§< (F;i() 1+5CFdK (eT) ﬁcrfg<+1
n

3 [75, Lemma 3.11] applies to the ZoSS update rule (6) similar to SGD for nonnegative and L-Lipschitz
losses. Note that P(Z < to) < to/n, to € {0,...,T}, and (32) comes from the Lipschitz assumption on the
loss as E[|f(Wr, z) — f(Wr, 2)[] < P(Z < t0)E[|f(Wr, 2) — f(Wr, 2)||€5, | + LE[67|Es,, .
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1
1+1/Wo( ée) pord.

< (Birg{)_l (2 + ) CL?) 7Tk sowe () 1( ] (eT)Perictt — (34)
0\ BCe
dy-1 - Towe(D) _sorg
< FEETR @ g0y T (et ) s, (50) e P
_ pord.
< gl + (601_‘?() 1 ((2 n )CL2) 1+;301“§< max{l (ﬁC) 1}(6T) 3CF‘}<+1 (35)
_ pord.
< 271 + (50) ((2+c)CL2)1+ﬂCFd max{1, (BC) ' }(eT) Tkt (36)
31 (ﬁ ) 2 1 ;3@?5%-1
< R max{1, (2 + ¢)CL*} max{1, (8C) ™" }(eT) T 37
sorg
< %( (n ) (L+(2+¢)CL?) (eT) i+t
< (14 (B0)™)? (14 (2+ 0)CL?) 32T7f, (38)

the maximization of z!/(1+=8C) gives (34), we find (35) by maximizing the term
(BC) "V AFYWo/ze))  ang Wy (1/ze) ™Y/ Wo/2e) = 4nd by applying the inequality
W (1/e) 1/ AF/Woll/ze)) < 39 Inequality (36) holds since T'% > 1, we find (37) by maxi-
mizing the function ((2 + ¢)C L?)Y/ (1+8C%) for both cases ((2+¢)CL?) < 1and ((2+¢)CL?) > 1.
Finally, (38) holds for any value of d € N and K € N and gives the bound of the corollary.

A.4 Proof of Theorem 5

We start by proving the first case of the Theorem for both convex and nonconvex loss.

Proof of Theorem 5, First Case: Let C denote the set of convex loss functions. Under the
assumption ay < C”/T and p1 < cLT'% /(nB(3 + d)3/?) Lemma 2 (nonconvex loss) and Lemma 11

(convex loss) give
3d—1
1 -
( roge T\ T >)
Jj=t+1
( LC’F 3d 1 o

(2+¢) LC'TY feled 3d —1 a c’ 3d—1Y)\
- Tn s 7 | Lroge + Z Lroyge + ——
t=1
C/
(24 ¢) LC'TY <1+B (MWJFV ))
Tn _
1+ <1f(.)¢c+ 3K1>)—1

T
3d1 _
oy (1 (Lot 52)) -

n _
s (1f<~>¢c +y/ 3dK1>
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(2 n C) LF?( exp <ﬁC/ (]lf(.)¢0 + 5dK1)> —1
< .

< - -
B (ﬂf<->¢c + 3dz<1)
If the loss is convex (f(-) € C) and oy < C’/T < 2/p, the last display under the choice
log(1 4 CB, /2421 14d.)
o — KK (39)
5 3d];1

gives

) [3a1) _
(2+C)LF§<QXP(30 K) 1<(2+c)C'L
- .

< 4
E[5T|850] = B 3d—1 - n (40)
VK
If the loss is nonconvex (f(-) ¢ C) and oy < C”' /T, then by choosing
log(1
o _ og(ﬂ;rdCB)’ (41)
K
we find
2 +¢)LT% exp (BC'TE) — 1 2+¢)CL
E[(;T‘g(;o] § ( ) K ( dK) S ( ) ) (42)
n BrY, n

The Lipschitz assumption E [| f(Wr, 2) — f(WF, 2)|] < LE[07] = LE[07|E5,]] (as a consequence
of P(Z < 0) = P(do > 0) = 0) completes the proof for the first case of the theorem.

Proof of Theorem 5, Second Case: Lemma 2 (nonconvex loss) under the choice ¢ty = 0 gives
T T
2L 3d—1
]E[(ST|(€60] < <nFC[l( + ,U,B(B + d)3/2) Zat H (1 + BOéj (1 + K)) . (43)
t=1  j=t+1
Under the assumption oy < C'/(TT%), and 1 < cLT'% /(nB(3 + d)3/?) we find
E[or|Es,]

M & C 1 cp
§(2+C)L7ZTI‘L}( H1<1+T>
c

= . (44)

The Lipschitz assumption E [| f(Wr, 2) — f(WF, 2)|] < LE[07] = LE[0r|&s,]] (as a consequence
of P(Z <0) =P(dp > 0) = 0) completes the proof. O
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A.5 Proof of Theorem 6
Under the assumptions y < cLT'% /(nB(3 + d)*/?) and a; < C/tT'%, Lemma 2 gives
E[o7[Es]

T T
2L 3d—1
g( +uﬁ(3+d3/2>2at 11 (Hﬂaj <1+ K))
t=1 j=t+1
d T T
C Cp
<E@e+ord — ] <1+.>
n t=1 tF(fi{j:t-H J
24 )L < C = op
< — eX —
a n tz:;t b j:ztjl J

L ¢ log(eT)} . (45)

The last inequality holds because of the inequalities ZtT L EOPTL S #ORL < (OB+1)/CB

and Y, t7CF~1 < S°T 1/t < log(eT). Then the inequality E[|f(Wr,2) — f(Wh, 2)[] <
LIE[éT] L]E[5T|550H (as a consequence of P(Z < 0) = P(dp > 0) = 0) completes the proof. [J

B Complementary Results

In this Section we provide complementary results and the corresponding proofs. The next result
provides the equivalent bound of Lemma 2 for convex losses.

Lemma 11 (ZoSS Stability Convex Loss) Assume that the loss function f(-, z) is L-Lipschitz, con-
vex and B-smooth for all z € Z. Consider the ZO-SM algorithm (6) with parameters estimates W
and W, for all the data-sets S, S’ respectively (that differ in exactly one entry). Then the discrepancy

op £ ||[Wp — Wi || under the event Es,  satisfies the following inequality,

E[CST&;tO]s(QL a4 B 3+d3/2) Z o H <1+ﬁaj ?’dK‘1> (46)

t=to+1  j=t+1

We prove Lemma 11 in parallel with Lemma 2 in Section 4.1 of the main part of the paper.

C ZoSS with Mini-Batch (Section 5)

For the stability analysis of mini-batch ZoSS, we similarly consider the sequences S, S’ that differ in
one example. At each time ¢ we sample a batch J, C S (J; C ") (and batch size m = |.J;| = | J}|)
with replacement, or by considering random permutation of the samples and then sample the first m
examples. As a consequence in both cases P(J; # J/) = m/n. Under the event {.J; # J,}, the sets
J, Ji differ in one example z;» # z}. (for some i* without loss of generality), and z; = 2/ for any
zi € Jyandi € {1,...,m}\ {i*}. Let U{ ; ~ N(0, I) be independent for all k € {1,2,..., K},
i€{1,2,...,m}and t < T and € RT. Recall the definition of the smoothed approximation and
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update rule mapping of mini-batch ZoSS,

m K t
1 f(w+MU iv 2, .)—f(’U.),ZJ )
= ., Ut A ki ti t,i t
Ayl =Af50 & — ;; . Ul @D
G (w) & w—arAfyl,  Gh(w) £ w—aAfh. (48)

For the stability error decomposition, we define the gradient based mappings Gy, () and Gg, (+) as

Gy, (w) & w — ¥V fu.1,, Gf,t,( )—w—atVwa/ and Vf, 7, = ZVfwz (49)

ZGJf

the iterate stability error of the mini-batch ZoSS Gy, (w) — G "H (w’) at time ¢ and similarly to (5), we
show that /

Gy, (w) = Gy (w') o Gy, (w) = Gy (W) + [Vfuws, = Afu k] + [Vhw,s — A ffj;ff,t,] . (50

m m
€GBstab €est

For the mini-batch case the derivation of the stability differs to that of (5) (m = 1).To analyze the
error term €gp,, in the mini batch case, we derive (for the proof see Appendix, Section C.2) and
apply the Mini-Batch SGD Growth Recursion for the mappings G, (-), G J,( ), that is an extension

of [1, Lemma 2.4] and describes the growth recursion property of the SGD algonthm with mini batch.

Lemma 12 (Mini-Batch SGD Growth Recursion) Fix arbitrary sequences of updates {Gy, }1_,
and {G’t,}z;l. Let wyg = wy be the starting point, wy 11 = Gy, (w;) and wi, = G«/JZ (w}) for any
t € {1,...,T}. Then for anyt > 0 the following recursion holds

(1 + Bay)[lwe — wi if Gy (-) = G, ()

1
(14 2=1Bay) s — will + Loy Gy, () £ G D

G (we) — Gy ()] < {

The error €., depends on the batch size m at the event of different batch selection {J; # J|} as

appears in Lemma 12. Additionally, the error €y, breaks down into the errors ¢,,, eg“/ i+ Although €,

is independent of m, ¢, < puBE[||U||®] (U € R is standard normal), €7, dependents on the batch size
m similarly to gradient based stability error €ijg,,- If the randomized algorithm (at time ) selects

Je # Ji then e o < 2Bay/d/K[(m —1)[Jw — v’ —|—~2L]/m, el~se i < ABailjw —w'||\/d/K.
We provide a unified representation of the stability error G, (w) — fo; (w’) in the Section (Mini-Batch
Z0SS Growth Recursion, Lemma 13).

C.1 Results for the ZoSS with Mini-Batch

We start by providing the growth recursion lemma for the ZoSS with mini batch.

Lemma 13 (Mlnl Batch ZoSS Growth Recursion) Consider the sequences of updates {G 7,
and {GJ " and 1 < cLT% /(nB(3 + d)®/?). Let wo = w), be the starting point, w1, = Gy, (w;)
and wi | = GJf (wy) for any t € {1,...,T}. Then for any w;,w, € R% and t > 0 the following
recursion holds
. - 1+ Baylf) 6, + <424 if G, (1) = GJ, ()
E[|G. -G (wy)]] < ( K n K 7 7 Jt
1o 0) = G Lol < {(1 + Bl ) 6 + 2T + ERTE i Gy () # G, ().

Our next result provides a stability guarantee on the difference of the mini-batch ZoSS outputs
Wr, W} that holds for any batch size m.

Theorem 14 (Stability of ZoSS with Mini Batch | Nonconvex Loss) Assume that the loss func-
tion f(-,z) is L-Lipschitz and B-smooth for all z € Z. Consider the ZoSS with mini batch of

sizem € {1,...,n}, initial state Wo = WY, iterates W, = Gy, (W,), W} = é}t,(W{)fort > 0, and
with final-iterate estimates W and W, corresponding to the data-sets S, S’, respectively (that differ
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in exactly one entry). Then the discrepancy 67 = |Wg — Wh|| under the event &s,, and the choice
w < cLT'% /(nB(3 + d)3/?) satisfies the inequality

(24 )Ll & 1
E[6T|55t0] S C e« "HE K Z o H (1 + BO&jF?( (1 — n)) . (52)

t=to+1  j=t+1

We prove Theorem 14 in Appendix, Section C.3. Note that® P(Z < ty) = 1 — (1 — m/n)*. By
setting the free parameter ¢y = 0 and through the Lipschitz assumption we find the stability bound
of the loss as E[| f(Wr, z) — f(WF, 2)|] < LE[§r] = LE[67|Es,]]. The last inequality and the
solution of the recursion in (52) show that Theorem 5 and Theorem 6 hold for the ZoSS algorithm
with mini batch, and any batch size m € {1,...,n} as well.

C.2 Proof of Lemma 12

Under the assumption of nonconvex losses we find the first part of the statement as

Z vwf w, z |w Wi Z vwf w Z)|w =wj

z€Jy z€Jy

&
< ey —wil] + 2 >

G, (we) = G, (wi)|| < flwe — wi| + —

Vi f(w, 2)lw=w, — vwf(wvz)‘w:w{

z€Jy
< Jlwe — wj]| + = Z Bllwe — wi|
ZEJt
= (1+ Bau)|lwe — wy|. (53)

Further define J;*" 2 J;\ {2, .. }and J;~* £ J/\ {2, '}, and notice that J7 = J7 for any
t<Twp. 1l 1

Gy, (we) = Gy (wi)]

(0% (0%
we = wy = YV f (0, 2) e+ D Varf (0,2 o

z€d; 2e)
1
o 3w Tt ) - o F (0l - @ 00 ama)
zEJ;i* Z/EJffii*
1 1 /
+ m (wt — oV f(w, 2y, ,.) w:wt) m (wt — Vo f(w, BT, )\w:w;)
1
Hm S (= V(0 Mm) — 7 S (0] = Tl 02w
zeJ; " G(w¢,z) z€J; " G(wy,z)

1 1
+ E(wt - atvwf(wa ZJt,i*)|w:wf,) - E(w:ls - atvwf(wv ZJ{q* )|w:w§)

G(we,20, ;) G'(whyzy )
: t,i%

_1 ’ Z (G(w, 2) = G(w}, 2)) + Glwy, 25, ) — G'(wy, 27 )

m ‘

zeJ{’i*
1 1
< m‘ Z* (G(wi, 2) — G(w), 2)) H + G, 20,,.) = G (w2 )
zeJ; "
1 1
< 3 G 2) = Gl 2 + G lwns ) = 6 )zl 54
zeJ, "

SUnder the random selection rule P(Z < to) = 1 — P(N/2 {Z #i}) = 1 — [[}°, P{Z # i}).
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[1, Lemma 2.4] for nonconvex loss (n = 1 + Say) gives

1G(we, 2) = G(w}, 2)|| < (14 Bow)dy, (55)
|G (we, 2, . ) = G'(wy, 27 || < 00 + 2Ly (56)
By combining the last two together with (54) we find
1 1
|G, (we) — }{ (wy)]| < o Z*(l + Bo)dr + o (0t + 2Loy)
zed; "
m—1 1
=——(1+Bay)d + — (0 +2Lcvy)
m m
m—1 2
= <1 + Bat> (St + —Lat. (57)
m m
The last gives the second part of the recursion and completes the proof. O

C.3 Proof of Lemma 13 and Theorem 14
First we provide the proof of Lemma 13, then we apply Lemma 13 to prove Theorem 14.
Proof of Lemma 13  Consider the update rules under the event & £ {Gy,(-) = é}; ()} that occurs
with probability P(£;) = 1 — m,/n for all t < T'. Similarly to (9) we find
éJt (wt> - GJt (wé)

m
«
= Wt — Et Z; wa(w, ZJt,i)
1=

m

Qi
w=wy _(wg - E Z wa(wa ZJt,i)|w:w,£ )
=1

Gy (we) G, (w) =Gy, (wy)

Ul;rquuf(wv ZJtTi)

|
3
NS
]
1
o=

t t
w=Wy, ., k,i) Ukyi

m K
ay 7’
oSS (BUIVE w2, oy Uks) Uk

1 K
(K Z<wa(wa ZJt,i)

- (wa(wv Z.]t,i)

w=w; — Vwf(w, ZJf,,i) w=w}> Ulz,i>Ulz,i

w=w¢ vwf(w7 ZJM)

w_w;>> : (58)

Denote by E;9xxm the expectation with respect to product measure of the random vectors U, ,ﬁ i~
N(0, 1) for all k e {1,2,...,K}, i € {1,2,...,m} and fixed t < T. Recall that Uy ; are
independent for all k € {1,2,..., K}, i € {1,2,...,m} and t < T. Inequality (58) and triangle
inequality give

E[| Gy, (we) — Gy, (wp)]]

<G, (wi) = G, (i)

m K
(0%
+Eyercm mft > (gUgiuf(waZJt,i) w:W,:,t,lUli,i) Ug,i
i=1 k=1
m K
E at Fyry? . Ut UL
t+ Eyerxm mizz Uk wf(waZJt,in:ijt’i ki) Uk,
=1 k=1
m K
E Qe LAY v Ut U
+ ygKxm Ez ?Z< wf(w, 2, Nw=w, = Vuwf(w,2y,,) w=w}> k1> ki
=1 k=1
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- (vwf(wv ZJt,i)

w=w¢ vwf(wvzaft,i) w=

ol

<G, (wi) = G, (i)

m K
a;(;Z( UIv2 £( flw,zs,,)

1

Eqex
+ U§ Xm

wew, Uks) Uk

k,t,i

m K
it 2o 2 UV 0 iy, k) Uk

1=1 k=1

K
1
<K Z<vwf(wa ZJf,,i) w=we vwf(w7 ZJt,i) w=wy» Uli,z>Ul§,1

k=1

+ EUSaKXm [ m

a m

t

=N Eyex

m t,i
i=1

- (v’wf(wa ZJt,i)|'w:wt - vwf(w7 ZJt,i)"w=7U{) H

< NG, (we) = G, (wy) |

m K
«
+EU$§KXm }(,ZZ( Uk waJ“)|w Wk”Ukz)Ukz
1=1 k=1
a m K
t
+ EU§>K><m [ Z Z ( U V2 fw, Z,]m.) w:W;I,t,ZU]iJ) Ulf:,i
z:l k=1
ar e~ [3d—
+— ; 100, 20, am — Vaod (07, (59)
m K M
< ||GJt(wt) GJt wt ZZ 7 Uf ik ||Uk 2” }
i=1 k=1
e~ [3d—1
+ Et Zl T”wa(wv ZJf,,i) w=w, = Vuwf(w, ZJt,q‘,) w=w) | (60)
2a
< (Ut B+ 20305 By 101 P) + o[ o)
i=1 k=1
< (14 BauT) 8¢ + pBo (3 + d)*/2, (62)

to find the inequality (59) we applied Lemma 10, inequality (60) comes from the triangle inequality
and [S-smoothness, to derive the inequality (61) we applied the 1 + [So;-expansive property for
the Gy, (-) mapping (Lemma 12) and the S-smoothness of the loss function, finally the inequality
(62) holds since the random vectors U}, ; ~ N(0, I4) are i.i.d. and E[[|U{ ;[]] < (3 + d)3/? for all

ke {1,2,....,K},i € {1,2,...,m} and t < T. Under the choice < cLT'% /(n3(3 + d)*/?),
(62) gives the first part the inequality in Lemma 13.

We continue by considering the event £ £ {Gy, (-) # G, (-)}. Recall that £ occurs with probability
P(&;) = m/n forall t < T. Under the event £ similarly to (13) we derive the difference

Gy, (w) — Gy (w))
a m
_wt_izv f w ZJtL)w wt_(wé_Trzszf(U)’Z«/]t/,i”w_wé)
=1 =1

Gy (we) G, (w))

m K
Qi
- mK ZZ ( flw,20.0)

i=1 k=1

t t
w:WI:,t,iUkvi) Ukyi
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m K
(673 ﬂ
DI <5U V?uf(w,z.']tlyi)|w:wg7t,iU,§vi) Ut

w=w, = Vuf(w, z&g,i)|w:w;a Uli,i>Ulﬁ,i

m K
- o Z (Il( Z<vwf(wv ZJt,i)
w=w; wa('wa zf]t’l)|w—w£)> .

- (vwf(wv ZJt,i)
By using the triangle inequality and Lemma 10 we get

E[lIGy, (we) = G (wp)ll]
<G (wi) = Gy (wi)|

M Uty t t
(5 i Vo f (w, ZJH)|w W,:HUk,i Uk,i

o
INgE

K
+EU§KX7n Z
i=1 k=1
a m K "
t
+EU?KX77L [ K ZZ (§U w’Z/J,’,”w:W,I“U/i,Z) Uli,i
=1 k=1
a1 &
t
+ Eyerxm [ — Z (K Z Vo f(w, 25, ) w=w;, — wa(w,zt’]t,,i)|w:w£,U,?»U,ﬁ,i
i=1 k=1

- (vwf(wa ZJ,,,I')

w=w¢ vwf(w7zf];l)‘w:w;) ‘H

’]

Mw

m
w3
< |1Gy, (we) = G (wy)|| + 72 3 By, 11U ;

a m K
t j :
+ - EU®K
m ti
i=1

<I];v Z<vwf(w7 ZJ,,,I')
(V0,2 i — V0,2 o) H

;\N
Il
-

w=w; wa(’w, Z{If’qi)‘w:w;v Ulﬁ,i>Ulz,i

k=1

Mx

10
< |Gy, (we) — G (w)) || + Z 5 Eui. U 1]

=
Il
_

wee — Va2l Mg

p 3d—1
+Et§_; ?”vwf(wvze]t,i)
m K M
= |Gy, (we) — G, (w; ||+7ZZ7 Ui [NUL°]
i=1 k=1

3d—1
+ §j IV f(w, 25,.)

i=1,i#0*

3d—1a
+ \/ Ti||vwf(w BTy % lw=w, — wa(w,zf]/ .*)|w:w;H

ﬂ@%)@@M%Q}T%WM%M

i=1 k=1

/3d lo
= Z IV f(w, 25, ) w=w, = Vi (w, 25, ) lw=w; |

i=1,i7#*

w=w¢ wf(w ZJ’ )|u) wa
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3d—1a
+ \/ K m : 1V f(w, BTy % o =, — wa(w,zf]/ .*)|w:w§H (65)

2a pB
< NG (we) = Gy (wi)ll + = . Z 5 Eu (U]
1=1 k=1

3d — lOét 3d — lO[f

-1 2
S <1 —+ m Bat> (St —+ ELO@ + uﬁat(?) + d)3/2

m
3d—1 it 3d—1 it
Ty T (m — 1)s6, + /222 % (©7)

B (1 + ™2 o ) St 220D 1 o (3 + d)*, (68)

we find the mequahty (64) by applying Lemma 10, the inequality (65) holds since z;, , = 2’ Jr for any

1 # i*, we find (66) by using the triangle inequality and S-smoothness (for i # i*) and L— L1psch1tz
condition to bound the norm of the gradients V., f(w, 27, .. )|w=w, and V, f(w, 2/ i Nw=w;- In

(67) we apply Lemma 12 to bound the quantity |Gy, (w;) — G (w;)||. Under the selectlon of
w < cLT'% /(nB(3 + d)3/2), Eq. (68) gives the second part of the inequality in Lemma 13. O

Proof of Theorem 14 We apply Lemma 13 to get
E[0¢+11s,,]
= P(E)E[0111(Er, Es,y | + PEE[O1411E7, s, ]

m m .
= (1= 2) Eldesrl€n, €5, + Elbr1[€F €5,

_ (1 - %) ((1 + BT ) E[6:]E5,, ] + CLat rd >

m m—1 m 2Lo¢t m cLoy
+— (1 + 504tF‘1i<> E[6¢|&5,,] + m I'e + g I'%
1 2L cLa
— (1 —+ ﬁatl“?{ <1 — n)) E[5t|55t0] th + - tl—‘?( (69)

The last display characterizes the general case of nonconvex loss and coincides with the inequality
(17) (since n = 1 + Bay). As a consequence the solution of the recursion (69) is
T
2+ c)LT¢ 1
E[5T|géto} < ( T K Z H (1 + Bosz‘?( (1 — n)) . (70)
t=to+1  j=t+1
The last display completes the proof. ]

D Full-Batch GD

As a byproduct of our analysis we derive generalization error bounds for the full-batch gradient
decent. Although our results reduce to the full-batch GD by a direct calculation of the limits ¢ — 0,
K — oo and setting the batch size m equal to n, we separately prove generalization error bounds for
the full-batch GD for clarity.

Corollary 15 [Stability and Generalization Error of Full-Batch GD | Nonconvex Loss ] Assume
that the loss function f(-, z) is L-Lipschitz and -smooth for all z € Z. Consider the (deterministic)
full-batch GD algorithm, initial state Wy = W{, iterates Wy = Gs(Wy), W} = G&, (W) fort > 0,
and with final-iterate estimates W and W corresponding to the data-sets S, S’, respectively (that
differ in exactly one entry). Then the discrepancy 5t £ |Wq — Wh|| satisfies the inequality

<5 T (14

= Jj=t+1

1
aj5> . (71)
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Further if oy < C/t for any t > 0 and some C > 0 then

(ET)CB . 1
legen| = [Es[E-[f(Wr, 2)] — — E f(Wrp, 2)]| < 771 min {C + ', Clog(eT)} . (72)
ZGS

The proof of Corollary 15 follows.

Proof of Corollary 15 (Full-Batch GD) In the case of full-batch GD the algorithm is deterministic

and we assume that 21, 2o, ..., 2;, . . ., 2n, 7, are i.i.d. and define S = (21, 29,...,%, ..., 2,) and
S (21, 29,... V2 ooy Zn), Wo = W, the updates for any ¢ > 1 are
Wip1 =Wy — — Z Vf Wy, Zg) (73)
Qi
1 =W — o Z VW, z) — - TP W, ). (74)
Jj=1,j#i

Then forany ¢ > 1

5t+1
[0 n (0%
<ot 2| S0 VHOz) - VIOV )| + ST - VO]
j=1,j#i
<54 =Ygy | QLnO‘t

=<1+( _1)ﬁ >5t+2Lat
n

Then by solving the recursion we find

6T<—Zat H (

= Jj=t+1

1
aj5> . (75)

Under the choice oy < C'/t the last display gives

T T

2L C n—1C
T < E ||
0 n t . (1 n jﬂ)

IA
=8
~1Q
t S
7 N
—
+
IS
=
N—

IN

IA
N
=8
(]~
=|Q
@
»
o
/N
Q
™
VR
=
+
<}
0]
~
—
N—
N——

n — t (t+1)°F
2L (eT)? & C©
n 2t06+1
t=



c
< 2CL(:;T)[3 min {C’ggl, log(eT)} . (76)
Then
|Es[Rs(As) — R(As)|| = |Es ./ [f(Wr, 27) — f(Wr, 27)]| (77)
< Es o [lf(Wr, 2) = f(Wr, 2)]
< LEs . [[Wr — Wy (78)
< MQ(ZT)CBmin{C—i—B_l,Clog(eT)}. (79)

In the above, Eq. (77) follows from [17, Lemma 7], the inequality (78) holds under the Lipschitz
property of the loss f(-, z) for any z. Finally, we find the last inequality (79) by applying the bound
in (76). =

E Excess Risk

Define the time average parameters as output of the algorithm

1 T
WT = =7 atWt, (80)
e 1
then
1 T
E[|Wr — Wz[|&s,,] < Z aE[[W: — Will|Es,, ] (81)
Zt 1%t 4=
CYtE 6t|g5t (82)
Zt 10 Z
1
ZatIE 67|Es,,] = E[07[E5,, |- (83)
Zt 1 Oét _

The L-Lipschitz property of the loss and the inequality (83) give

[€gen| 2 |E[f (Wr, 2;) — f(Wr, 2)]| < E[If(Wr, 2]) — f(Wg, 2)[] < LE[67[Es,, . (84)
Additionally, for any convex loss it is true that,
_ 1 T

opt = E[R(Wr)] = R(w*) < ——— > _ a¢ (E[R(W})] — R(w*))
D1 1

T
1 1 d+4
< —— | 2 Wo = WH P+ ——L ) aof|. (85)
Zthl at (2 2 ; t
If [Wy — W*||?2 < R, K = 1, then we may choose
CR
= 86
T IVEd -1t (80)
From (85) and (86) we find
_ L+/3d — R2 d+ 4L C?R? w2
Eopt < —
PY= CRlog(T + 1) 1) 2 [2(3d—1)) 6
L+/3d —
o RLBTTE () Y -
2Clog(T + 1) L
Further, inequality (84), the choice of learning rate in (86) and Lemma 11 give
1++/3d—1(eT)FF/L(2 4 ¢)L? CRB/L+1 CR
[Egen] < — (D)2 4 ) min{ plL+1 OR og(eT)} (88)
Vv3d —1 n I6] L

30



CRB/L 2
< 2(eT) 2+l min { CRO/L+1 , SE og(eT)} . (89)
n B L
If C < L/2Rg, then
2veT' (2 L? 3 1 3veTl (2 L?
[gen| < @ min {26, 5 log(eT)} < VeI ( ;C) /ﬂ (90)

‘We conclude that

€excess < ‘ggcn‘ + Eopt S

3VeT(2+¢)L?/B  /3d—1R?B . L o1
- n log(T + 1) ( ) Ob

4R232

Similarly, by using Lemma 10 and the optimization error derivation from prior works [13], we find
the corresponding bound for K > 1 function evaluations,

<3M(Q+C)L2/6+(H\/@)R%<l+ - >

€excess > n log(T) 4R252

92)
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