
A Details of Experimental Settings and Additional Results481

A.1 Detailed Extraction Attack Setting.482

For the surrogate model training, we use SGD optimizer with a learning rate of 0.02 for 200 epochs.483

The learning rate is multiplied by a factor of 0.2 at epochs 60, 120 and 160. For Craft-ME, we484

craft an equal number of small-loss instances for each class. We use the Adam optimizer with a485

learning rate of 0.1 and set the total number of steps (iterations) to 20 or 50 to craft each image.486

For GAN-ME, we use a conditional-GAN model as the generator, its detailed architecture is given487

in Appendix A.11. For the generator training, we use Adam optimizer with a learning rate of 1e-4488

and apply the divergence-aware regularization [Yang et al., 2019] with a factor of 50 to mitigate489

the mode collapse problem. For GM-ME, we query with the entire training dataset (i.e. 50K) of490

each auxiliary dataset (CIFAR-10, SVHN and MNIST). For Train-ME and SoftTrain-ME, we apply491

standard data augmentation techniques including random rotating and horizontal flipping, during the492

surrogate model training. For SoftTrain-ME, we train the surrogate model with both the hard labels493

and gradient-based soft labels with α parameter of 0.9. Data augmentation is disabled if training uses494

soft labels.495

A.2 Illustration of the attack workflow496

The workflow of five proposed attacks are illustrated in Fig. 5. During SFL training, a malicious497

client (the attacker) can deploy either of five ME attacks depending on its data assumption.498

For the no-data case, the attacker can use either Craft-ME or GAN-ME. Here the gradients are used499

to generate crafted data or update the conditional GAN as data generator. These two attacks require a500

longer preparation step, where the crafted data and data generator are derived, prior to the surrogate501

model training.502

For all five attacks, the surrogate model is trained using the known client-side model as the initial503

model. For Train-ME, Craft-ME and GAN-ME, the standard cross-entropy loss is used. For GM-ME,504

the gradient matching loss is used, and for SoftTrain-ME, the gradient-based soft labels are used.505
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Aux-data

Train-data

Data 
Assumption Crafted data

Figure 5: Detailed illustration of five proposed Model Extraction (ME) attacks in SFL. After prepara-
tion phase (if necessary), the attack completes by training the surrogate model till its convergence.

A.3 Gradient-based Attack Performance with Consistent Gradient Access506

We did extensive experiments for ME attacks in different settings with consistent gradient query507

access and present the results here. These are in addition to what was presented in Section 5.1. The508

query budget is set at 1K, 10K and 100K. Results for all five ME attacks with different settings are509

shown separately in Fig. 6 (a), (b), (c), (d) and (e). The victim VGG-11 model has 91.89% validation510

accuracy on CIFAR-10 dataset. For GM-ME, we CIFAR-100, SVHN, and MNIST as the auxiliary511

dataset.512

Conclusion. We observe all ME attacks are equally successful for small N . Among different settings,513

Craft-ME performs better with 20 steps compared to 50 steps. This is possibly because for the514

same query budget, fewer steps results in more images being crafted. GAN-ME performance is515

much better with a larger query budget since a generator model needs more iterations of training to516

converge. GM-ME’s performance heavily depends on the similarity of the auxiliary dataset. Because517

the victim model is on CIFAR-10, it performs well when CIFAR-100 is set as the auxiliary dataset518

while performing badly when MNIST is used. Moreover, attacks with training data perform much519

better than ME attacks without training data. Compared to Train-ME, SoftTrain-ME achieves better520

accuracy and fidelity when N ≥ 6.521
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Figure 6: Additional results for consistent gradient query case. Top row: ME attacks without training
data with different settings. (a) Craft-ME with different number of crafting steps and query budgets.
(b) GAN-ME with different query budgets. (c) GM-ME with different auxiliary datasets and query
budgets. Bottom row: ME attacks with training data with different settings. (d) Train-ME with
1K/10K training data. (e) SoftTrain-ME with 1K/10K training data with different query budgets.

A.4 Gradient-based Attack Performance with Inconsistent Gradient Access.522

Here, we provide results for ME attacks for training-from-scratch settings with inconsistent gradient523

query access; a subset of these results was presented in Section 5.2. We launch the attack by feeding524

malicious inputs at late epochs, specifically, epochs 120 or 160, for the case when the number of525

training epochs is 200. The attacker starts to collect gradients after the attack is launched till the526

the end of training (epoch 200). We start the gradient collection from later epochs since by then527

the model has achieved near-optimal accuracy and hence is valuable as an attack target. Also the528

model updating is slower because of application of learning rate decay to make the gradients more529

consistent.530

In multi-client SFL, the original 50K training data is divided equally to 5 or 10 benign clients, denoted531

as “5-client” and “10-client” case, respectively. The attacker is an additional client without training532

data so a 5-client SFL really has 6 clients (5 benign clients and 1 malicious client). All clients,533

including the attacker, perform an equal number of queries in each epoch. The performance of five534

ME attacks with inconsistent gradient queries are shown separately in Fig. 7 (a), (b), (c), (d) and535

(e). Because of the poisoning effect, the final model accuracy of the victim model is reduced by 2 ∼536

3%. For GM-ME, we use CIFAR-100 as the auxiliary dataset, and we only use the latest gradients to537

perform gradient matching instead of using all collected gradients. We use “late50” to denote only538

gradients collected in 50 latest training steps are used. This restriction greatly reduces the number of539

gradients being available but makes them much more consistent.540

Conclusion. Attacks without training data (Craft, GAN, GM MEs) work poorly with inconsistent541

gradient queries. For Craft-ME, taking 20 steps also seems to work better in both 5-client and 10-542

client cases. Collecting gradients starting later at epoch 160 gets better performance than starting early543

at epoch 120 because of more consistent gradients. The starting-later rule also holds for GAN-ME544

and GM-ME, where we can see starting later achieves consistently better ME attack performance.545

For GM-ME, it only gets meaningful accuracy if only the latest gradients (within 10 training steps546

to the end of training) are used, showing that it is extremely sensitive to gradient consistency. For547

attacks with training data, we notice Train-ME attack performance is not affected because it does not548

rely on gradients. However, SoftTrain-ME performs much worse because of the poisoning effect and549

inconsistent gradients.550
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Figure 7: Additional results for inconsistent gradient query case. Top row: ME attacks without
training data with different settings. (a) Craft-ME with different steps and starting epochs. (b) GAN-
ME with different starting epochs. (c) GM-ME uses the latest gradients with different restrictions.
Bottom row: ME attacks with training data with different settings. (d) Train-ME with 10K/5K
training data. (e) SoftTrain-ME with 10K/5K training data with different starting epochs.

A.5 Accuracy Impact of Defensive Methods551

We provide original accuracy, ME attack performance, as well as model inversion attack performance552

in addition to what was presented in the main paper in section 6. As shown in Table 3, L1 regular-553

ization works well for N = 5 where it reduces extraction performance a lot while slightly affecting554

original accuracy, and at the same time also improves the resistance to model inversion attack (better555

data privacy).556

Table 3: Detailed defensive performance of L1 regularization (L1Reg) of VGG-11 model on CIFAR-
10. Extraction performance of Train-ME with 1K training data is shown. Resistance to model
inversion attack is shown by MSE.

Regularization Strength N=4 N=5
Orig. Accu. Accuracy Fidelity MSE Orig. Accu. Accuracy Fidelity MSE

None 0.0 91.45 91.02 96.94 0.0217 91.71 90.23 94.73 0.0114
L1Reg 5e-5 90.66 89.44 95.03 0.0274 90.43 87.45 91.10 0.0270
L1Reg 1e-4 87.90 86.24 93.68 0.0280 88.37 82.18 86.01 0.0239
L1Reg 2e-4 82.96 80.56 89.98 0.0262 85.00 76.45 80.78 0.0145

A.6 Non-IID Performance.557

We demonstrate the ME attack performance in a non-IID setting, where the attacker only has access558

to training data from a subset of classes (C). The new set of results corresponding to Train-ME attack559

are shown in Table 4. We observe for C smaller than 5, attacker performance degrades badly for both560

CIFAR-10 and CIFAR-100 datasets.561

A.7 Adversarial Attack Performance.562

We demonstrate that with proper model IP protection, adversarial attacks can be mitigated. We assume563

the attacker uses the strongest Train-ME attack (with 1K data) to obtain a high-fidelity surrogate model564

to perform transfer adversarial attacks on the victim model with different IP protection strengths565

(SFL with different N ). We use FGSM [Goodfellow et al., 2014], and targeted-PGD attack [Madry566

et al., 2017] to perform the transfer adversarial attack. We set the e for FGSM at 0.1, and PGD-target567
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Table 4: Model extraction performance of Train-ME attack on VGG-11 model on CIFAR-10 and
CIFAR-100 dataset with Original Accuracy of 91.89% and 68.64%, respectively.

Method CIFAR-10 Accuracy CIFAR-100 Accuracy
N=2 N=5 N=8 N=2 N=5 N=8

C = 1 47.58 46.75 38.42 6.79 6.79 6.13
C = 2 82.45 79.30 58.69 13.18 13.36 11.25
C = 5 91.70 88.90 65.70 32.77 29.65 17.90

at 0.002 for 50 iterations (the attacker randomly chooses the original and target label). We report568

the average Attack Success Rate (ASR) - the percentage of samples that are transferred successfully569

- to show the attacking performance. The new set of results is shown in Table 5. We see that both570

adversarial attacks achieve very high ASR for small N , where model IP protection is weak. On a571

SFL scheme with large N , adversarial attack performance degrades significantly using the surrogate572

model with less fidelity.573

Table 5: Adversarial Attack ASR performance based on the surrogate model obtained using Train-ME
attack, on VGG-11 model on CIFAR-10 with different N setting.

Attack Number of Server-side Layer (N )
N=2 N=3 N=4 N=5 N=6 N=7 N=8

FGSM 82.7 82.3 77.9 77.3 63.1 56.9 37.7
PGD-target 100 100 99.8 100 99.5 73.4 34.2

A.8 Surrogate Architecture Performance.574

To investigate the impact on model extraction attacks caused by the surrogate model’s architecture575

difference, we designed four variants of the true server-side model, and used them as surrogate576

model architecture to perform model extraction attacks. We fixed the settings to N = 5 SFL and577

consistent gradient query budget to 10K. The new set of results are shown in Table 6 for VGG-11578

model on CIFAR-10 dataset. For most attacks, architecture does not make a huge difference, and579

longer or wider surrogate architecture can achieve even better accuracy and fidelity. The exception is580

GM-ME, which achieves much higher extraction performance with the surrogate model having the581

same architecture.582

Longer Architecture. Surrogate model has one extra fully connected layer compared to the original583

true server-side model.584

Shorter Architecture. Surrogate model has one less fully connected layer compared to the original585

true server-side model.586

Wider Architecture. Surrogate model has channel size that is 2 times of the original true server-side587

model588

Thinner Architecture. Surrogate model has channel size half of the original channel size of the true589

server-side model.590

A.9 Other Empirical Results.591

In this section, we present more empirical results for ME attacks without training data to show that592

our claims can generalize to other architecture and datasets. The list of experiments are:593

• 1. ME attack performance (without training data only) of VGG-11 on CIFAR-100 (Table 7).594

An interesting observation is GAN-ME performs worse than Craft-ME for consistent gra-595

dient cases for the increasing number of classes (100) makes the generator even harder to596

converge. While for the inconsistent gradient case, GAN-ME performs much better than597

Craft-ME because its generator can adapt to the inconsistent gradients and Craft-ME cannot.598
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Table 6: Extraction attack performance on surrogate models having slightly different architectures
from the true architecture of the server-side model. N is fixed at 5, gradients are consistent and the
query budget is 10K.

Attacks Accuracy (%) Fidelity (%)
same longer shorter wider thinner same longer shorter wider thinner

Craft-ME 76.67 75.05 77.90 79.00 74.86 78.38 76.70 79.72 81.04 74.74
GAN-ME 80.57 75.95 76.66 74.27 65.69 82.66 78.13 78.54 76.11 67.58
GM-ME 65.77 11.41 18.04 14.77 14.42 69.60 11.22 18.61 14.90 14.35
Train-ME 90.82 90.33 90.76 90.72 90.10 94.84 94.47 94.84 94.79 93.94
SoftTrain-ME 90.57 90.43 90.66 90.62 90.10 94.76 94.62 94.84 94.59 94.13

• 2. ME attack Performance (without training data only) of Vgg11 on 5% subset of FEMNIST599

dataset (62-class), following the same setting as leaf benchmark Caldas et al. [2018]’ online600

document (Table 8). We observe a similar trend as in VGG-11 on CIFAR-10 experiments.601

• 3. ME attack Performance (without training data only) of MobileNetV2 on CIFAR-10602

(Table 9). We observe a similar trend as in VGG-11 on CIFAR-10 experiments.603

Table 7: Model extraction performance of gradient-based ME attacks with consistent gradient query
(100K query budget) and inconsistent gradient query for 10-client SFL on VGG-11 model CIFAR-
100 dataset. Original Accuracy is 68.64%. We use 20 crafting steps for the Craft-ME for both
cases. For the inconsistent case, we launch ME attack at epoch 160, and use the “late10” setting for
GM-ME.

Case Method Accuracy (%) Fidelity (%)
N=2 N=3 N=4 N=5 N=2 N=3 N=4 N=5

Fine-tuning
Craft-ME 66.44 64.68 35.37 15.4 86.97 81.37 40.35 16.7
GAN-ME 56.54 46.53 13.11 6.69 69.91 55.56 14.86 7.11
GM-ME 68.76 68.4 57.87 1.28 99.11 94.46 71.5 1.26

Train-from-scratch
Craft-ME 11.53 8.49 2.61 2.41 13.67 10.15 2.71 2.45
GAN-ME 49.4 41.9 22.1 10.75 60.04 49.29 25.46 12.55
GM-ME 4.05 1.47 1.37 1.23 4.92 1.79 1.54 1.19

Table 8: Model extraction performance of gradient-based ME attacks with consistent gradient query
(100K query budget) on VGG-11 model FEMNIST dataset. Original Accuracy is 74.62%. We use
50 crafting steps for the Craft-ME for both cases.

Case Method Accuracy (%) Fidelity (%)
N=2 N=3 N=4 N=5 N=2 N=3 N=4 N=5

Fine-tuning

Craft-ME 53.20 43.57 43.04 40.50 59.28 48.10 46.58 42.11
GAN-ME 10.59 7.19 5.27 4.02 11.39 7.35 5.20 3.80
GM-ME 56.67 22.53 9.87 3.78 69.70 25.14 10.10 3.68
Train-ME 70.32 68.47 68.80 67.70 82.56 77.52 75.61 71.97
SoftTrain-ME 75.70 74.93 74.42 74.46 83.87 81.24 77.39 76.30

A.10 Time Cost Evaluation.604

We evaluate time cost of five attacks on VGG-11 CIFAR-10 model (fine-tuning case). The time cost605

measurement is done on a PC with a R7-5800X CPU and a single RTX-3090 GPU.606

Table 10 provides time cost breakdown for two phases, namely, preparation phase and training the607

surrogate model phase. The preparation phase includes crafting inputs in Craft-ME, fitting conditional608

GAN in GAN-ME, and crafting soft labels in SoftTrain-ME. From the results, we can see the Craft-609

ME needs the most preparation time and GAN-ME ranks the second. Both require generating crafted610

data and training the generator using collected gradients. For training the surrogate model, GM-ME611
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Table 9: Model extraction performance of gradient-based ME attacks with consistent gradient query
(100K query budget) and inconsistent gradient query for 10-client SFL on MobilenetV2 model
CIFAR-10 dataset. Original Accuracy is 93.82%. We use 20 crafting steps for the Craft-ME for
both cases. For the inconsistent case, we launch ME attack at epoch 160, and use the “late10” setting
for GM-ME.

Case Method Accuracy (%) Fidelity (%)
N=2 N=3 N=4 N=5 N=2 N=3 N=4 N=5

Fine-tuning
Craft-ME 92.29 76.74 72.74 61.08 96.04 77.86 73.24 61.46
GAN-ME 92.67 79.17 68.92 57.61 96.46 80.35 69.7 58.25
GM-ME 93.2 92.82 92.39 91.86 97.83 96.87 95.74 94.74

Train-from-scratch
Craft-ME 78.55 63.04 61.77 58.76 80.8 64.87 63.35 60.07
GAN-ME 77.08 38.2 35.08 32.49 79.43 38.87 35.6 33.11
GM-ME 31.23 11.25 15.25 17.81 32.73 11.46 15.14 17.9

Table 10: Time costs of proposed five attacks of attacking VGG-11 on CIFAR-10 (N=8) in fine-tuning
case.

Time Cost (s) Craft GAN GM Train SoftTrain

Preparation 317.8 44.5 30.7 4.7 18.9
Surrogate Training 381.2 339.3 5523.1 313.4 949.5
Total 699.0 383.8 5553.8 318.1 968.4

method requires the most time as solving the gradient matching involves computation of second-order612

derivatives. Soft-Train method also spends more time compared to Craft-, GAN- and Train-ME613

because the soft-labels are used as the second objective.614

In all the cases, the time cost of the proposed ME attacks is dominated by the cost of training the615

surrogate model. This heavily depends on the network topology, the number of iterations, and input616

size and vary from application to application, making it difficult to provide a comprehensive time617

complexity analysis.618

A.11 Conditional-GAN architecture.619

The detailed architecture of the conditional-GAN for GAN-ME attack is shown in Fig. 8.620

Generator(
(label_emb): Embedding(10, 512)
(l1): Sequential(
(0): Linear(in_features=1024, out_features=16384, bias=True)

)
(conv_blocks0): Sequential(
(0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(conv_blocks1): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True)

)
(conv_blocks2): Sequential(
(0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True)
(3): Conv2d(128, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): Tanh()
(5): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=False, track_running_stats=True)

)
)

Figure 8: Architecture detail of the c-GAN in GAN-ME.
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B Model Inversion Attack Implementation621

B.1 Model Inversion Attack Setting622

Data privacy in SFL is evaluated using Mean Squared Error (MSE) between ground-truth images and623

reconstructed images in Model Inversion Attack (MIA). For MIA, we follow the same model-based624

attack methodology as in Vepakomma et al. [2020], Li et al. [2022]. The MIA flow is shown in Fig. 9.625

We assume the honest-but-curious attacker (this time, the server) has access to the 10K validation626

dataset of CIFAR-10. We use the L3 inversion model in Li et al. [2022] to perform MIA, and use627

the trained L3 inversion model to reconstruct the raw image from the intermediate activation sent by628

benign clients.629

Activation Server-side 
Model

Client-side 
ModelInput

L3 Inversion 
Model

Reconstructed Input

L3 Inversion 
Model

Validation 
Input

Client-side 
Model

Reconstructed
Input

(a) Train Inversion Model (b) Use Inversion Model to Perform Model Inversion

Matching

Update

Figure 9: Details of model inversion attack using L3 inversion model and the available validation
dataset, done by an honest-but-curious server. (a) Train the inversion model on the validation dataset.
(b) Use the inversion model to invert intermediate activation sent by clients.
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