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Abstract Ensembling is a powerful technique for improving the accuracy of machine learning models,
with methods like stacking achieving strong results in tabular tasks. In time series forecasting,
however, ensemble methods remain underutilized, with simple linear combinations still
considered state-of-the-art. In this paper, we systematically explore ensembling strategies for
time series forecasting. We evaluate 33 ensemble models—both existing and novel—across
50 real-world datasets. Our results show that stacking consistently improves accuracy,
though no single stacker performs best across all tasks. To address this, we propose a
multi-layer stacking framework for time series forecasting, an approach that combines the
strengths of different stacker models. We demonstrate that this method consistently provides
superior accuracy across diverse forecasting scenarios. Our findings highlight the potential
of stacking-based methods to improve AutoML systems for time series forecasting.

1 Introduction

Time series forecasting plays a critical role in applications ranging from inventory manage-
ment (Croston, 1972) to energy systems (Hong et al., 2016) and public health (Tsang et al., 2024).
Driven by growing interest in the machine learning (ML) community, numerous forecasting models
have been proposed in recent years. Yet no single model is universally dominant. Large-scale bench-
marks show that while some models perform better on average, none consistently outperforms all
others across diverse datasets and tasks (Aksu et al., 2024; Godahewa et al., 2021).

This variability in model performance motivates the use of automated machine learning
(AutoML) for time series forecasting. By evaluating multiple models on a given dataset, an AutoML
system can select the one that performs best for the specific forecasting task at hand. However,
relying solely on model selection is often insufficient to achieve the lowest possible forecast error.

A growing body of work—both in academic research and prediction competitions—demonstrates
that combining forecasts from multiple models can lead to substantial improvements in predictive
performance (Bojer and Meldgaard, 2021; Makridakis et al., 2018, 2022). Yet, several key questions
remain unanswered. While many forecast combination methods have been proposed over the
years (X. Wang et al., 2023), there is limited understanding of which ensembling strategies are
most effective in practice. In the related field of tabular AutoML, techniques such as multi-layer
stacking repeatedly demonstrate state-of-the-art performance (Gijsbers et al., 2024). In contrast,
time series forecasting has seen limited adoption of such techniques, with most practical systems
relying on simple linear combinations of model outputs (Herzen et al., 2022; Shchur et al., 2023).
Moreover, several studies suggest that in forecasting, simple arithmetic averages outperform
more sophisticated ensembling techniques, which is often referred to as the "forecast combination
puzzle" (Smith and Wallis, 2009; Stock and Watson, 2004).

To address this gap, we conduct a large-scale empirical study of forecast combination methods,
aiming to identify strategies with the best predictive performance. Our main contributions are:

AutoML 2025 © 2025 the authors, released under CC BY 4.0


mailto:nathanael.bosch@uni-tuebingen.de
mailto:shchuro@amazon.com
mailto:
mailto:
mailto:
https://creativecommons.org/licenses/by/4.0/

2.1

2.2

« Empirical evaluation of ensembling methods. We conduct a large-scale benchmark of 33
forecast combination methods across 50 real-world datasets on point and probabilistic forecasting
tasks. Our results show that ensembling consistently improves the predictive accuracy, with
learning-based ensembles significantly outperforming simple aggregation strategies.

« Multi-layer stacking framework. We propose a framework for building multi-layer stack en-
sembles for time series forecasting, designed to combine the strengths of different ensembling
methods. This approach consistently outperforms any individual ensemble across both point
and probabilistic forecasting tasks. Additional ablation studies reveal when and why multi-layer
stacking is effective, demonstrating its adaptability and robustness across datasets.

Background

Probabilistic time series forecasting

Given a collection of N time series D = {y,-’lzT}fi 1> withy;; € R, the goal of time series forecasting is

to predict the future H values y; 7+1.7+5 for each time seriesi = 1,..., N. Specifically, in probabilistic
time series forecasting, the aim is to model the conditional distribution p(y,-,TH:TJrH | y,-,l;T) for all
i. Often, it is sufficient to produce a quantile forecast rather than the full distribution. Given a
predefined set of quantile levels Q c (0, 1) with |Q| = Q, the goal is to predict QZT+h € R such
that P(y; ,+n < ngﬁh) = g, for all g, i, h. Alternatively, if uncertainty quantification is not needed,
a conditional mean or median forecast may suffice. In this work, we primarily focus on quantile
forecasts, but all methods also apply to point forecasts and we will also evaluate these in Sec. 6.

Time series forecasting models f; : RT — R7*Q produce these quantile predictions, mapping
fityirr QZT+h for all i. Here, the collection of models { f;} can be individually learned for each
time series, an approach known as local time series modeling (Januschowski et al., 2020). Local
time series models include seasonal naive, exponential smoothing, and ARIMA, which typically fit a
small set of model parameters on each item individually, in order to capture simple patterns in the
data such as trends and seasonality (R. Hyndman and Athanasopoulos, 2021).

On the other hand, a global time series model uses a single model for all time series, that is
fi = f for all i. The function f is learned over the entire training set D. The aim in global time
series modeling is to use a higher capacity function f (e.g., a neural network) to capture both simple
temporal patterns and any dynamics common to all time series in a dataset. This approach includes
many recent deep learning-based approaches, such as DeepAR (Salinas, Flunkert, et al., 2020), TFT
(Lim et al., 2021), PatchTST (Nie et al., 2022), DLinear (Zeng et al., 2023), or TiDE (Das et al., 2023).

Finally, pretrained models also fit parameterized functions to data, but are trained on large
corpora of real-world and/or synthetic time series from diverse domains. The model is then applied
as a zero-shot forecaster, that is, without any additional training on the dataset D associated with
the given forecasting task. Recent examples of such pretrained models include Chronos (Ansari
et al., 2024), TimesFM (Das et al., 2024), Moirai (Woo et al., 2024), and TTM (Ekambaram et al., 2024).

Time series models are trained via minimizing loss function £ : R?*Q x R” — R, over the
training set. Examples include quantile loss for probabilistic forecasting, or mean absolute error for
point forecasting (R. Hyndman and Athanasopoulos, 2021).

Forecast combination

While many approaches to modeling exist, none of these dominate others in terms of accuracy
or efficiency. The best forecasting approach is therefore often a combination of different models
(X. Wang et al., 2023). Let f; ,,, denote the forecast model for item i, obtained by using the modeling
approach m € 1, - - -, M. Forecasts from these models can be combined with a combination function
gi + (REXQM _, RIXQ that operates on the outputs of a collection of base forecasting models
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Figure 1: Architecture and training procedure of a single-layer stacker model.

{fi.m} to produce a single aggregated forecast. Composing the combination functions g; with base
forecasters {f;,}, we obtain forecast ensembles f;

]_Cl- RT — RHXQ, YT gi(fi,l(yi,l:T)9fi,2(yi,1:T), cen ,ﬁ,M(yi,l:T))s (1)

for all i. See also Fig. 1 for a visual description of the approach.

Similar to base models, combination methods can also be global with g; = g for all i. This is
possible regardless of whether the base models are local or global. For example, we could learn
global combinations g of individually fitted local models {f; »}. Conversely, we could use a different
combination method g; for each time series, when combining global forecasting methods { f;,}. Com-
binations of global and local models as base models are also possible. In the following, we will rely
on this generality to drop the item index i from our notation. For example, in the following §,, may
denote either the predictions for a single item g; , or for all items {y;  }\Y,, depending on the context.

Likely the most popular forecast combination approach is simple averaging via the mean or
median of individual forecasts, e.g., g(91,- - - , Gm) = ]\—14 > m Um- Simple averaging has been shown
to often outperform individual forecasting models (Perrone and Cooper, 1995; X. Wang et al., 2023).
Model selection can also be cast in the same notation. That is, g(4y, . . ., §m) = Jm+, where m* is
the index of the model with the best validation score, i.e. m* := argmin,,_; 31 £(Jm; Yout), Where
Yout denotes the ground truth future values corresponding to the predictions gy,.

In the AutoML literature, methods that combine outputs of individual models are referred to as
post-hoc ensembles (Purucker and Beel, 2023) to differentiate them from other ensembling techniques
like bagging and boosting. In forecasting literature, apart from forecast combinations (Clemen, 1989),
these methods are called forecast ensembles (Adhikari and Agrawal, 2012) and model averaging
(Montero-Manso et al., 2020). We use these terms interchangeably throughout the paper.

Stacking for time series forecasting

Stacking

Simple averaging and model selection are strong baseline approaches. In this work, however, we
explore a broader class of methods that can learn the combination functions g from data. In ML
literature, such methods that learn to combine the outputs of other models are often called stacking
methods (Zhou, 2012, Ch. 4). We now review some model families that fall into this category.

Model averaging. One generalization of simple averaging is weighted model averaging, with a
stacker model of the form g(9s,...,0m) = SM_, pijm, with weights © € RM. The weights w
can be chosen based on the model performance. For example, the weights can be computed as
@Wm & h(L(Jm, Your)), where h are chosen as hiny(L) = 1/L, hyqr(L) = 1/L?, or hexp(L) = exp(1/L),

subject to XM_ w,, = 1 (Pawlikowski and Chorowska, 2020).
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Alternatively, stacker weights w can be learned from data by minimizing the loss function,
w = argmin,, cpm £ (g(J1, ..., Um), Your) , often subject to w,, > 0 and 3, w, = 1. If the loss
is differentiable, weights can be learned via a numerical optimization method such as gradient
descent. Another popular approach is the greedy ensemble selection algorithm (Caruana et al.,
2004), which adds models to the ensemble with replacement. Ensemble selection is used by default
in several AutoML forecasting frameworks (Deng et al., 2022; Shchur et al., 2023; Zoller et al., 2024).

General combinations via linear regression. Instead of assigning a single weight per model,
weights can vary with item i, time step h, quantile g, or any combination thereof. Reintroducing
the item index i, we write:

M
[9: @it Gim)lng = ) @ingm  [Gim] g (2)
m=1

with weights w € RN*H*Q*M Thege weights can be tied across horizon steps, e.g., 0 hg.m = @i gm,
or even shared across items. This defines a broad family of linear combinations, as explored by
Hasson et al. (2023) through different parameter-tying and regularization schemes. Our evaluation
in Sec. 6 includes several of these linear variants.

Nonlinear regression. Finally, g can be a nonlinear function, often implemented using tree-based
models such as gradient boosting—e.g., as in darts (Herzen et al., 2022), sktime (Loning et al., 2019),
or Gastinger et al. (2021). As with linear models, these can vary in how they tie parameters across
items, quantiles, or forecast horizons. Input normalization (e.g., scaling 7,,) is often beneficial
before applying nonlinear models. In Sec. 6, we evaluate several nonlinear tabular models.

Training stacker models with time series cross-validation

One important detail that we have not yet addressed is how to obtain the training data for the
stacker models. It is conventional wisdom in ensemble training that in order to prevent overfitting,
stacker models g should be trained on out-of-fold data—i.e., data that was held out during the
training of the base models {f,,} (Zhou, 2012). Holding out data, in turn, requires special treatment
in the case of time series (R. Hyndman and Athanasopoulos, 2021, Section 5.10). In line with this, we
use a time series K-fold cross validation scheme which works as follows. For each fold k =1, ..., K,
we first remove the last j := (K — k + 1) windows of size H from each time series, obtaining the
training set y;.7— jg used to train the base models {f;,,}. Next, we make H-step-ahead predictions
with all trained base models, obtaining M quantile forecasts {{* }, each covering the validation
window y* = yr_ jH.T-(j-1)H- After repeating this process K times, we collect the training set for
the stacker model g consisting of the inputs (the out-of-fold predictions §¥, for each model m and
fold k), and the targets (the out-of-fold data y* for each fold k). See Fig. 1 for a visual depiction.

Multi-layer stacking for time series forecasting

Multi-layer stacking

As we will see in Sec. 6, the performance of different stacker models can vary greatly across datasets.
To address this issue, we propose a multi-layer stacking approach that aggregates the outputs of
multiple stackers with yet another stacker model (Fig. 2). This approach removes the need to decide
on a single stacker model g in advance—we can instead learn the optimal combination of multiple
stacker models {gc}le, similar to how we considered a set of base forecasting models { fm}f‘n/le.
Finally, we can combine the outputs of {g.}¢_, using a new stacker model s: (R7*Q)¢ — RF*C.
In the following, we refer to the base models {f;,}™_, as the first layer of the multi-layer stack
ensemble, the stacker models {g.}<_, as the second layer, and the aggregator model s as the third
layer; or in short as L1, L2, and L3 models (cf. Fig. 2).
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Figure 2: Architecture and training procedure of a multi-layer stacker model.

Concretely, to generate quantile predictions for an item, its past data y; ;.7 is used to produce
forecasts @;1, ..., Jim from each L1 model. These are then aggregated by a composition of L2
models and a single L3 model s. The resulting multi-layer stack ensemble defines the mapping:

YirT — S(g1(Gits - Gim)s - 9c (it - - -, Yim))-

Note that all forecast combination and stacker models g discussed in the previous sections can
also be used as the aggregator model s. For example, the aggregator s can perform model selection
among the L2 stacker models, or it could combine the L2 models into a weighted ensemble.

Training of multi-layer stacker models with two-level time series cross-validation

Similar to the individual stacker models g, we need to make sure that the L3 aggregator model s is
trained on out-of-fold predictions of the L2 models to avoid overfitting. To achieve this, we adjust
the procedure described in Sec. 3.2. Like before, we train the L1 base models using K-fold time
series cross validation. Next, we only train the L2 stacker models {g.} on the first K — 1 validation
windows. We then make predictions with the L2 models for the Kth validation window, and use
these predictions together with the ground truth values to fit the L3 aggregator model s. Finally,
we re-train the L2 models using all K validation windows to ensure that these models have access
to the most recent data. The entire process is shown in Fig. 2.

Related work

Time series forecasting. Time series modeling spans classical statistical methods (Box et al., 1970;
R. Hyndman, Koehler, et al., 2008), deep learning models (Benidis et al., 2022; Challu et al., 2023;
Nie et al., 2022; Salinas, Flunkert, et al., 2020), and more recently, pretrained models (Ansari et al.,
2024; Das et al., 2024; Woo et al., 2024). Despite substantial progress, no single model consistently
outperforms others across all datasets and problem settings (Aksu et al., 2024; Godahewa et al.,
2021). This motivates AutoML systems that automatically train, tune, and combine models to
achieve the best performance for a given task (Ali, 2020; Deng et al., 2022; Shchur et al., 2023; Z6ller
et al., 2024). Our stacking framework is compatible with arbitrary forecasting models, making it
complementary to ongoing advances in model development.
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Forecast combinations. The idea of combining forecasts dates back to Bates and Granger (1969) and
has inspired many methods (X. Wang et al., 2023), often featured in winning solutions of prediction
competitions (Bojer and Meldgaard, 2021; Makridakis et al., 2018, 2022). Early studies found that
simple averages often outperform more complex methods—a phenomenon known as the "forecast
combination puzzle" (Smith and Wallis, 2009; Stock and Watson, 2004). However, these results were
based on small datasets, statistical models, and point forecasts (Gastinger et al., 2021). Later work
showed that more sophisticated methods outperform simple averages when applied to modern ML
models, larger datasets, and probabilistic forecasting (Hasson et al., 2023). Our results in Sec. 6
advance this discussion and show that stacking improves over simple aggregation strategies for
both point and probabilistic forecasting.

Stacking. Stacking, or stacked generalization, was introduced by Wolpert (1992) and Breiman
(1996), where a single stacker model combines predictions from base models to produce the final
output (Van der Laan et al., 2007). Variants of stacking have been studied extensively, including
for quantile regression (Fakoor et al., 2023). In AutoML systems, a common approach is ensemble
selection (Caruana et al., 2004), popularized by Auto-Sklearn (Feurer et al.,, 2015). Multi-layer stack
ensembles first appeared in competition-winning solutions (Itericz and Semenov, 2016; Koren, 2009),
and gained broader adoption with AutoGluon-Tabular (Erickson et al., 2020), which introduced a
robust bagging-based implementation. However, existing work on multi-layer stacking is limited to
tabular tasks. Our paper extends this framework to point and probabilistic time series forecasting.

Experiments

The main goal of our experimental analysis is to determine which forecast combination methods
result in the best prediction accuracy (Sec. 6.1). In subsequent experiments, we aim to get better
understanding of these results. For this purpose, we investigate the effects of various design choices
such as selection of L1 models or the amount of validation data (Sec. 6.2-6.5).

Which combination methods produce the most accurate forecasts?

In our main experiment, we perform a large-scale benchmark comparison of 33 forecast combination
methods, including the single-layer (Sec. 3) and multi-layer stacking (Sec. 4).

Datasets. We use 50 univariate datasets from Ansari et al. (2024) and Woo et al. (2024), covering
diverse domains and frequencies, totaling 90K time series with 110M observations (see Tab. 5). To
ensure that enough data is available for training base and stacker models, we only keep time series
with at least 8 X H observations (where H is the forecast horizon) in each dataset. As this filtering
changes the data compared to the original publications, we re-evaluate all models ourselves.

Models. We consider 11 base forecasters (L1 models) covering all popular model categories:
statistical models (SeasonalNaive, AutoETS, Theta), deep learning models (DeepAR, PatchTST, TFT,
TiDE, DLinear), gradient-boosted trees (Direct Tabular, RecursiveTabular), and one pretrained model
(Chronos-Bolt). We use model implementations from AutoGluon-TimeSeries (Shchur et al., 2023),
trained with default hyperparameters until convergence, without hyperparameter tuning for
simplicity. These 11 L1 models are used as input to all the subsequent combination methods.

In addition, we train 31 combination methods (L2 models) from Sec. 3. These include 2 simple
averages, model selection, 3 performance-weighted averages, 3 greedy ensembles, 18 linear models,
and 4 nonlinear models. A detailed breakdown for each model category is available in App. B.

Finally, we consider 2 multi-layer stacking approaches (L3 models) from Sec. 4: stacker model
selection that selects the best L2 model based on the performance on the last validation window,
and multi-layer stacking that fits a greedy ensemble on top of the L2 models. To keep the training
time reasonable, we limit the second level of the ensemble to 14 a priori chosen L2 models.



Table 1: Aggregated probabilistic forecasting performance of the representative combination methods
based on SQL. Best result in bold, second best underlined. Individual results for all methods
and datasets are available in Tab. 8

Average Average Median marginal

Method (T)Elo (1) Champion (1) rank () relative error ) training time
Median 1000 3 5.92 1.000 1s
Model selection 1049 9 5.43 1.001 2s
Performance-based average 1130 3 4.60 0.963 2s
Greedy ensemble selection 1191 4 3.92 0.952 11s
Linear model 1220 3 3.62 0.947 11s
Nonlinear model 1046 4 5.43 1.011 27s
Stacker model selection 1157 1 4.27 0.973 484s
Multi-layer stacking 1306 20 2.81 0.945 721s

Table 2: Aggregated probabilistic forecasting performance of the representative combination methods
based on MASE. Best result in bold, second best underlined. Individual results for all methods
and datasets are available in Tab. 9.

Average Average Median marginal

Method (1) Elo (1) Champion (1) rank ) relative error () training time
Median 1000 7 5.54 1.000 1s
Model selection 997 8 5.58 1.026 1s
Performance-based average 1059 2 4.98 0.989 1s
Greedy ensemble selection 1161 4 3.84 0.975 28
Linear model 1168 3 3.81 0.975 5s
Nonlinear model 1004 5 5.48 1.033 6s
Stacker model selection 1158 3 3.87 0.967 295s
Multi-layer stacking 1256 17 2.90 0.954 443s

Metrics. For each dataset, we evaluate two tasks: point and probabilistic forecasting. Point accuracy
is measured using mean absolute scaled error (MASE) on the median forecast, while probabilistic
accuracy is assessed via scaled quantile loss (SQL) at quantile levels @ = {0.1,0.2,...,0.9}. To
aggregate results across datasets, we report the Elo rating, number of wins (champion), average
rank, and average relative error (geometric mean of errors normalized against the baseline). We use
"Simple average (median)" as the baseline for Elo and relative error. Further details are provided in
App. C.

Setup. We reserve the last H observations of each time series as the test set. L1 models are trained
using K=5-fold cross-validation, with the model from the last fold used for test prediction. Individual
L2 models are trained on all 5 validation windows. For multi-layer stacking, the L3 model is fitted
on the final window. After training, all models generate forecasts on the test set, and accuracy is
evaluated using MASE or SQL, depending on the task.

Results. Complete results for 2 task types X 50 datasets X 44 models are reported in Tables 8-9
(appendix). To summarize these, we group forecast combination methods into 8 categories: simple
average, model selection, performance-based average, greedy ensemble selection, linear model,
nonlinear model, stacker model selection, and multi-layer stacking. We select the best-performing
method (by average rank) from each category as its representative method and report aggregate
metrics for these in Tables 1-2. Note that such aggregation does not give an unfair advantage to
the multi-layer stacking approaches since there is only one method in each category. Moreover,
multi-layer stacking has the best scores both in the full results (Tables 8-9) and in the aggregated
results (Tables 1-2). Based on these results, we draw the following conclusions:
1. Combination methods outperform individual forecasting models. Combining multiple fore-
casts typically improves the accuracy compared to a single model, even if model selection is
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performed. We see major accuracy gains, with up to 200 Elo points difference (= 75% win rate)
and up to 5% error reduction. This result reaffirms the previous findings on the importance of

ensembling in forecasting (X. Wang et al., 2023).

2. Stacking outperforms simple aggregation techniques. Contrary to the “forecast combination
puzzle,” which suggests that complex methods rarely outperform simple ones, our results clearly
demonstrate that learned aggregation methods—like ensemble selection and linear models—yield
substantially better accuracy than simple or performance-based averages.

3. Multi-layer stacking outperforms individual combination methods. Across both point and
probabilistic tasks, multi-layer stacking achieves the highest accuracy. This result is consistent
with our earlier observations: since no single L2 model performs best across all datasets, com-
bining them in an L3 ensemble leads to improved overall accuracy. Notably, multi-layer stacking
also outperforms model selection over L2 models, highlighting that combining multiple stackers
is more effective than selecting the best one in isolation.

When and why does multi-layer stacking outperform other approaches?

L3 model weights. First, we investigate the weights
assigned by the L3 ensemble selection algorithm to
the underlying L2 models. We show the average
weights in Fig. 3 and provide the per-dataset break-
down in Fig. 9-10 in the appendix. All constituent
L2 stacker models receive non-zero weight, under-
scoring the value of maintaining a diverse portfo-
lio. Notably, the nonlinear stacker LightGBM per-
forms poorly on average when evaluated in isolation
(Tab. 1), yet it is frequently selected by the L3 en-
semble. This indicates that while LightGBM may
underperform overall, it excels on specific datasets—
which can be capitalized on by the adaptive multi-
layer stacking framework.

LightGBM (scaled)
Greedy (5=100)
Linear (mi, softmax)
Linear (mt, softmax)
Linear (mqg, positive)
Linear (mtq, positive)
RealMLP (scaled)
Median

Linear(mtqgq, positive)
LightGBM

Linear (mgq, softmax)
Linear (miq, positive)
Linear(miqg, positive)
Linear (mit, positive)

L2 model name

0.00

0.05

0.10 0.15

Average weight assigned by
L3 ensemble selection

Figure 3: Weights assigned by the L3 ensemble
selection algorithm to the L2 models
(average over 50 tasks).

Normalized performance. To understand where multi-layer stacking succeeds or fails, we compare
each representative model’s score to the dataset-specific “champion” (Tab. 10). In 39 out of 50
datasets, most L2 models perform within 20% of the champion, and in these cases, multi-layer
stacking typically ranks first or second in accuracy. In the remaining 11 datasets, where L2 model
performance varies widely, multi-layer stacking tends to underperform. We hypothesize that
allocating more validation data to train the L3 aggregator could mitigate this issue.

How much validation data do different combination methods require?

Previous experiments used 5 validation windows,
requiring each base model to be trained 5 times. To
reduce computational cost, we evaluated ensemble
performance with fewer validation folds (K = 1 to
5), using Median aggregation as a baseline since its
performance is fold-independent.

Results show that even with just K = 2, multi-
layer stacking outperforms all other methods, fol-
lowed by the linear model. The nonlinear model
benefits most from additional folds, while model se-
lection performs best at K = 1, suggesting that older
data is less indicative of the test set performance.
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Figure 4: Influence of the number of validation
windows on the model performance.



Table 3: Ablation: Aggregated probabilistic forecasting performance of representative combination
methods when using only 6 base models. Best result in bold, second best underlined. Multi-
layer stacking remains the top performer even with a reduced set of base models.

Method (o (1) champion () TE (1) ity O ining sime
Median 1000 1 5.38 1.000 1s
Model selection 899 2 6.39 1.058 1s
Performance-based average 1095 7 4.46 0.994 2s
Greedy ensemble selection 1110 6 4.23 0.990 7s
Linear model 1145 2 3.93 0.978 8s
Nonlinear model 1047 8 4.93 1.002 21s
Stacker model selection 1128 2 4.07 0.982 418s
Multi-layer stacking 1280 22 2.61 0.947 578s

Table 4: Ablation: Aggregated probabilistic forecasting performance of multi-layer stacking with and
without L2 model retraining. Scores are computed with respect to the methods in Tab. 1.
Skipping retraining reduces fit time, but decreases forecast accuracy.

. Average Average Median marginal
Method (T Elo (1) Champion  ({) rank ) relative error &% training time
Multi-layer stacking (L2 retraining) 1306 20 2.81 0.945 720s
Multi-layer stacking (no L2 retraining) 1253 13 3.24 0.950 483s

6.4 What is the effect of the L1 model choice?

6.5

Our experiments use a fixed set of 11 L1 forecasting models, but a robust ensembling method should
perform well regardless of the base models used. To test this, we removed the 5 best-performing L1
models (Chronos, PatchTST, TFT, Direct Tabular, RecursiveTabular) and retained only 6: SeasonalNaive,
AutoETS, Theta, DLinear, DeepAR, and TiDE. The rest of the setup follows Sec. 6.1.

Aggregate results for 8 representative ensemble methods are shown in Tab. 3. The ranking
remains unchanged: multi-layer stacking still performs best, showing robustness to L1 model choice.
Model selection drops significantly due to the absence of Chronos (the strongest individual model),
highlighting the importance of forecast combination when strong base models are unavailable.

Is it necessary to retrain the L2 models?

Our training procedure for the multi-layer stack ensemble (Sec. 4.2) includes a final step where L2
models are retrained on all validation windows. To assess whether this step is necessary, we perform
an ablation comparing performance with and without this retraining. As shown in Tab. 4, skipping
retraining leads to 1.5x faster training at the cost of lower forecast accuracy. This highlights the
importance of retraining L2 models on the full validation data to ensure optimal performance.

Discussion

Limitations & future work. While our study demonstrates the effectiveness of learned forecast
combination methods, several limitations remain. Most stacker models require predictions from
all base models, which results in slower inference compared to sparse methods like ensemble
selection. Future work could explore pruning strategy to mitigate this issue (Tsoumakas et al.,
2009). Similarly, multi-layer stacking incurs substantial training costs, as we currently train 14
L2 models. A more principled approach—such as offline portfolio optimization, akin to Salinas
and Erickson (2024)—could reduce computational overhead while maintaining or even improving
accuracy. In addition, this framework can be extended with meta-learning approaches such as
FFORMA (Montero-Manso et al., 2020), which aim to select or weight models based on dataset-level



features. Finally, the search for better aggregation models to use at the L2 and L3 levels remains an
open and important challenge.

Summary. Our large-scale empirical study shows that learned ensembling methods—particularly
stacking—consistently outperform both individual forecasting models and simple aggregation
techniques. These findings challenge the “forecast combination puzzle” and demonstrate that
flexible, data-driven ensemble strategies can significantly improve predictive accuracy. Multi-layer
stacking extends this idea by combining multiple stackers, yielding robust performance across
a wide range of datasets. While this approach provides consistent improvements overall, our
ablations show it is especially valuable when strong individual forecasting models are unavailable.
As forecasting tools and AutoML systems continue to evolve, we see strong potential in integrating
advanced ensemble methods that adapt to data characteristics, scale efficiently, and generalize well
across diverse forecasting scenarios.
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A Datasets

Table 5: Dataset statistics. Note that all datasets were filtered to only contain time series with at least
8 X H observations to ensure that enough training & validation data is available.

Dataset Freq. Seasonality Horizon (H) Num. Series Num. Obs. Min. Length Max. Length
BDG-2 Bear h 24 48 91 1,482,312 8,760 17,544
BDG-2 Bull h 24 48 41 719,304 17,544 17,544
BDG-2 Fox h 24 48 135 2,324,568 8,760 17,544
BDG-2 Hog h 24 48 24 421,056 17,544 17,544
BDG-2 Panther h 24 48 105 919,800 8,760 8,760
BDG-2 Rat h 24 48 280 4,728,288 8,760 17,544
Beijing Air Quality h 24 48 132 4,628,448 35,064 35,064
Beijing Subway 30min 48 96 552 867,744 1,572 1,572
Borealis h 24 48 15 83,269 3,528 7,447
CDC Fluview ILINet \%% 1 8 375 319,515 211 1,359
Favorita Store Sales D 7 16 1,782 3,008,016 1,688 1,688
Favorita Transactions D 7 16 54 91,152 1,688 1,688
GEF12 h 24 48 11 433,554 39,414 39,414
GEF17 h 24 48 8 140,352 17,544 17,544
HZMetro 15min 96 96 160 380,320 2,377 2,377
Hierarchical Sales D 7 14 118 212,164 1,798 1,798
IDEAL h 24 48 217 1,255,253 393 16,167
KDD Cup 2022 10min 144 96 134 4,727,519 35,279 35,280
Los-Loop 5min 288 96 207 7,094,304 34,272 34,272
M-Dense h 24 48 30 525,600 17,520 17,520
PEMS03 5min 288 96 358 9,382,464 26,208 26,208
PEMS08 5min 288 96 510 9,106,560 17,856 17,856
Project Tycho w 1 8 1,258 1,377,707 102 3,854
SHMetro 15min 96 96 576 5,073,984 8,809 8,809
SMART h 24 48 5 95,709 8,398 26,304
SZ-Taxi 15min 96 96 156 464,256 2,976 2,976
Subseasonal Precipitation D 7 14 862 9,760,426 11,323 11,323
Australian Electricity 30min 48 96 5 1,155,264 230,736 232,272
ERCOT h 24 24 8 1,238,976 154,872 154,872
ETT (15 Min.) 15min 96 96 14 975,520 69,680 69,680
ETT (Hourly) h 24 24 14 243,880 17,420 17,420
Electricity (Hourly) h 24 48 321 8,443,584 26,304 26,304
Electricity (Weekly) W 1 8 321 50,076 156 156
FRED-MD M 12 12 107 77,896 728 728
KDD Cup 2018 h 24 48 270 2,942,364 9,504 10,920
M4 (Daily) D 1 14 4,218 10,022,845 112 9,933
M4 (Hourly) h 24 48 414 373,372 748 1,008
M4 (Monthly) M 12 18 32,436 9,773,903 144 2,812
M4 (Quarterly) Q 4 8 19,049 2,167,663 64 874
M4 (Weekly) w 1 13 294 365,534 260 2,610
NN5 (Daily) D 7 56 111 87,801 791 791
NN5 (Weekly) w 1 8 111 12,543 113 113
Pedestrian Counts h 24 168 64 3,130,594 1,777 96,424
Solar (10 Min.) 10min 144 96 137 7,200,720 52,560 52,560
Taxi (30 Min.) 30min 48 96 2,428 3,589,798 1,469 1,488
Taxi (Hourly) h 24 48 2,428 1,794,292 734 744
Traffic (Weekly) w 1 8 862 89,648 104 104
Uber TLC (Daily) D 7 14 262 47,422 181 181
Uber TLC (Hourly) h 24 48 262 1,138,128 4,344 4,344
Wind Farms (Daily) D 7 14 335 119,407 149 366

B Models
B.1 Base models

We considered the following base models, using their implementations provided by Auto-
Gluon-TimeSeries (Shchur et al., 2023):
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+ SeasonalNaive: Simple model that sets the forecast equal to the last observed value from the
same season (R. Hyndman and Athanasopoulos, 2021).

+ AUtoETS: Automatically tuned exponential smoothing with trend and seasonality (Garza et al.,
2022; R. Hyndman, Koehler, et al., 2008; R. J. Hyndman and Khandakar, 2008)

« DynamicOptimizedTheta: A generalization of the Theta method by Assimakopoulos and
Nikolopoulos (2000), that automatically selects and revises some of the model hyperparameters
(Fiorucci et al., 2016).

« DeepAR: Autoregressive forecasting model based on a recurrent neural network (Salinas, Flunkert,
et al., 2020).

« PatchTST: Transformer-based forecaster that segments each time series into patches (Nie et al.,
2022).

+ TemporalFusionTransformer: Combines LSTM with a transformer layer to predict the quantiles
of all future target values (Lim et al., 2021).

« DirectTabular: Predict the future time series values by transforming the task into a tabular
prediction task and then applying the LightGBM quantile regressor (Ke et al., 2017).

+ RecursiveTabular: Predict the future time series values one-by-one by transforming the task
into a tabular prediction task and then applying the LightGBM regressor (Ke et al.,, 2017). In
contrast to DirectTabular, the forecast is computed step-by-step by repeatedly applying the
tabular method.

« TiDEModel: Time series dense encoder model (Das et al., 2023).

+ Chronos: Pretrained time series forecasting model (Ansari et al., 2024). We use the bolt_base
configuration.

For simplicity, we do not investigate the effect of hyperparameter tuning on the models and keep all
the hyperparameters to their default values. We do not expect this to affect our main conclusions,
given the stability of our results with respect to the L1 model choice (Sec. 6.4).

For each dataset, we generate the base model predictions by fitting all models with 5 validation
windows, refitting each model from scratch for each window. We set the maximum time limit of
30 minutes per window per model to avoid extremely long runtimes, though the vast majority of
models complete training within 5 minutes per window. We save the base model predictions for
all validation windows and the test window to disk. This enables us to train the stacker models
without needing to re-fit the base models.

B.2 Individual forecast combination methods

« Simple averages: We consider two simple averages, mean and median, which compute the mean
or median of all base model predictions, respectively.

« Model selection: Model selection computes the index of the best-performing model according to
the validation data during training, and then uses this individual model for forecasting,.

+ Performance-weighted averages: These models are weighted averages of the form
g1, ..., gm) = Z%I:l ©OmYm, Where the weights w,, are computed directly from the (normal-
ized) validation scores of the individual models, as @y, «<h(L,,), with Ly, &< £(§m, Yout) such that

an/le L, =1,and Z%zl ®m = 1. We consider three options for the function h:

- Inv.: by (L) = 1/L,
- Sqr.: hggr (L) = 1/L?,
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— Exp.: hexp(L) = exp(1/L)
Refer to Pawlikowski and Chorowska (2020) for more details.

Greedy ensembles: This is the ensemble selection method by (Caruana et al., 2004), which
optimizes the validation loss by greedily adding models to an equally-weighted ensemble with
replacement. As an equally-weighted ensemble with replacement is equivalent to a weighted
average with fractional Weights the greedy ensemble can also be interpreted as a weighted
average (91, .., 0m) = S M_, wmim which is optimized via coordinate-wise ascent: Starting
with zero weights 0©® =0eRM, the algorithm iterates for j = 1,..., S, and selects at each step
the model that would minimize the resulting loss, i.e.

(]) = arg mmﬁ (g @) (y1, . -,ﬁM), yensemble) s (3)

m=1,.

where a)(J) = ((j = 1)wY™Y +ep,)/j are the weights that the greedy ensemble would have if it
were to select model m, with e,,, € RM being a canonical basis vector, i.e. [ey]|r = Lg=p,. It then
adds the model to the ensemble and sets /) = a)(] ) . This approach is currently also used as
the default in multiple AutoML forecasting frameworks (Deng et al., 2022; Shchur et al., 2023;
Zoller et al., 2024). In our evaluation, we consider three versions of this model, with the number
of iterations S set to 10, 100, and 1000, respectively.

Linear models: For linear models, we consider a class of models g; of the form

[gi(gi,b---,ylM) Zwlhqm' ylm]hq (4)

with weights @ € RN*H*OXM More concretely, we consider a number of variations of this model
which satisfy different constraints or have different degrees of weight-tying:

— Positivity and simplex constraints: It is often desirable to enforce positivity and/or simplex
constraints, that is, w;pgm > 0 and X, ;ngm = 1, respectively (X. Wang et al., 2023). In
our model, we enforce constraints by parameterizing the weights through an unconstrained
weight @; 4, 4m and then passing it through an activation function. We consider two versions:
« softmax: This version enforces both positivity and simplex constraints by passing the

unconstrained weights through a softmax activation function:

exp(@ipqm)
Wihgm = . . 5)
b Do exp(a)i,h,q,m/)

» positive: This version enforces positivity, but not the simplex constraint, by passing the
unconstrained weights through a quadratic function:

Wi hqgm = (aN)i,h,q,m)2 . (6)

— Weight-tying: Instead of considering different weights for each model, item, time step, and
quantile, we can lower the complexity by tying weights across some of these dimensions
(Hasson et al., 2023). For example, tying weights across items would imply @; pg.m = @i’ hgm
for all items i, i’. This yields a number of different linear models, denoted by the dimension
along which the weights are not tied:

« m: One weight per model; weights are tied across items, prediction times, and quantiles. This
case is equivalent to weighted average models.
» mi: One weight per model and per item; weights are tied across prediction times and quantiles.
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« mt: One weight per model and per prediction time; weights are tied across items and quantiles.

+ mg: One weight per model and per quantile; weights are tied across items and prediction
times.

» mit: One weight per model, item, and prediction time; weights are tied across quantiles.

» mig: One weight per model, item, and quantile; weights are tied across prediction times.

» mtqg: One weight per model, prediction time, and quantile; weights are tied across items.

» mitg: One weight per model, item, prediction time, and quantile; no weight-tying.

— Across-quantile weights: Instead of treating all quantiles independently, we can also compute
quantile predictions across quantiles and rely on the base model estimates of all quantiles, as
proposed by Fakoor et al. (2023); In its most flexible form, this corresponds to a model of the
form

[9:(Di1 - Dim) I ng =

M=

Z Wihqq' m " [yAi,m]h,q, > (7)

m=1q'€Q

with weights @ € RNXHXQXQXM ~ Aq before, we consider softmax and positive versions as

well as different weight-tying options:

» mqq: One weight per model and across quantiles; weights are tied across items and prediction
times.

+ migqq: One weight per model, items, and across quantiles; weights are tied across prediction
times.

+ mtqq: One weight per model, prediction time, and across quantiles; weights are tied across
items.

Training. We train linear stacker models by optimizing the resulting loss:

@ = argmin Z L(9:(Git,- - 9im)s YiT+1:1+H) » (8)
@’ ERNXHXQxM “5
where g; is a linear model that uses the to-be-optimized weights «’. This can be approached with
any numerical optimizer. In our implementation, we rely on the Adam optimizer (Kingma, 2014)
and we use a custom learning rate schedule to reduce the learning rate whenever a plateau is hit
and the loss starts oscillating. We also limit the training time to 10 minutes.

Nonlinear models: To apply nonlinear models, we re-formulate the stacking problem as a tabular
regression problem. Fach item X timestep combination corresponds to a row in the training data.
The quantile forecasts of the L1 models are used as features, and the ground truth time series
value is the training target. We can then train any tabular regression model on this data. In our
experiments we consider two methods:

— RealMLP is a deep-learning approach for tabular problems which improves on standard MLPs
through a number of tricks and better, meta-learned default parameters (Holzmiiller et al.,
2024). We use the multi-quantile loss evaluated at levels Q as the training objective.

— LightGBM is a highly efficient implementation of gradient-boosted decision trees (Ke et al.,
2017). We train a separate LightGBM regressor to predict each of the quantile levels Q.

Additionally, we consider scaled versions of both methods in which we normalize the model
predictions before feeding them into the tabular stacker model and then un-normalize the outputs
again. This corresponds to a modified model g’ of the form

gi(agii+p,....a0im+p) — B

i (it Yim) = o , 9)

where a, § are computed from the empirical mean and standard deviation of the predictions in
order to standardize the inputs, and g is a tabular stacker model as introduced above.
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From each category we select one “representative model” for our condensed experiment sum-
mary in the paper, as described in Tab. 6 and Tab. 7.

Table 6: Representative models per category for the quantile forecast experiment.

Model category Model
Median Median
Model Selection Model selection

Performance-based average
Greedy ensemble selection
Linear model

Nonlinear model

Performance-based average (exp)
Greedy (S=100)

Linear(mg, softmax)

LightGBM (scaled)

Table 7: Representative models per category for the point forecast experiment.

Model category Model
Median Median
Model Selection Model selection

Performance-based average
Greedy ensemble selection
Linear model

Nonlinear model

Performance-based average (exp)
Greedy (S=100)

Linear(m, softmax)

LightGBM (scaled)

B.3 Multi-layer stacker models

For multilayer stacking, we use the following 14 stacker models as L2 models:

« Median

+ Greedy (S=100)

« Linear (mi, softmax)
« Linear (mt, softmax)
« Linear (mq, softmax)
« Linear (mit, positive)
« Linear (mtq, positive)
« Linear (miq, positive)
« Linear (mqq, positive)
« Linear (miqq, positive)
« Linear (mtqq, positive)
+ LightGBM

+ LightGBM (scaled)

« RealMLP (scaled)

We have arbitrarily chosen these 14 L2 models since they provide a good coverage of different model
families. To ensure a fair comparison, we have fixed this selection before running any experiments,
and did not adjust the selection to optimize the benchmark performance.

We then consider multi-layer stackers resulting from two different L3 models:

« Stacker model selection uses model selection as its L3 model and thus relies on a single L2 model

during test time.
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C
C1

C.2

« Multi-layer stacking uses Greedy (5=100) as its L3 model to compute a weighted average of the
L2 model predictions.
Evaluation metrics

Loss functions

Loss functions are used both to train and evaluate time series models. In Sec. 2.1, we introduced them
as functions that take in the (quantile) prediction of a particular item as well as the ground-truth
values and return a positive scalar value, that is

L:REXOxRE 5 R, (10)

with lower values indicating a more accurate forecast. We consider the following two losses to
evaluate quantile forecasts and point forecasts, respectively:

« Scaled quantile loss (SQL):

SO U) = § 50 S S ot virer). (1)

h=1q€Q

where p, : R X R — R is the quantile loss at level g, defined as

~q . ~q
A q-(yih—y- ) i yin <7
pa(3% yin) =2 o (12
(1-9)- ( y,h) ifyin > 7;,,
and where a; is the historic absolute seasonal error of the time series, defined as
1 T
A - Z |yi,t - yi,t—m|a (13)
t=m+1
with m the seasonality of the dataset provided in Tab. 5.
« Mean absolute scaled error (MASE):
1
MASE(9;, y;) = Yi+h|, (14)
l
h=1

wherea; is the historic absolute seasonal error, as defined above. Note that MASE is equivalent to
an SQL applied only to the 0.5 quantile.

To evaluate a particular time series model on a whole dataset, we average the loss across all
individual items.

When evaluating point and probabilistic forecast performance, we used MASE or SQL as the
training objective, respectively. This means, that all L2 and L3 models were trained once for point
forecasting tasks using MASE as the training loss, and one more time for probabilistic forecasting
tasks using the SQL loss.

Result aggregation

To summarize the empirical evaluation, we aggregate the individual losses L,, 4 of each model m
and dataset d in a number of ways:
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+ Elo: The Elo rating system was originally introduced to calculate the relative skill levels of players
in zero-sum games such as chess (Elo, 1967), but it has recently also been used to evaluate large
language models (Bai et al., 2022; Boubdir et al., 2024). We compute our Elo scores as done in the
recently proposed “Chatbot Arena” (Chiang et al., 2024), and calibrate the computation such that
our chosen baseline has an Elo of 1000.

« Average rank: First, for each dataset in our evaluation, we rank the methods by their achieved
error (resolving ties such that models receive the average rank of the tied models). Then, we
compute the average rank of each model over all datasets with an arithmetic mean.

« Champion: This metric counts for how many datasets the method has achieved the lowest
error among all methods included in the comparison. As we already computed a ranking for
each dataset, this can be done by simply counting how often a method achieves rank 1. Since
sometimes multiple methods are tied for the first place, the sum of the values in the "Champion"
column does not always add up to the number of the datasets.

« Average relative error: To make the errors on different datasets more comparable, we first
compute relative errors with respect to a chosen baseline method m (namely the “simple average
(median)” method), as

el = e (15)

To limit the influence of outliers, we clip the individual relative errors to the range [1073,5].
Then, we compute the average relative error of each model m across all datasets by aggregating
the respective relative errors with a geometric mean:

AverageRelativeError,, = GeometricMean(Lffl’ll, . .,Lﬁ}D) . (16)

Computational resources

All models were trained on cloud-hosted machines with 16 vCPUs and 64GB RAM. The base
models were trained with a time limit of 30 minutes per window per model to avoid extremely long
runtimes, though the vast majority of models complete training within 5 minutes per window. The
inidividual L2 stacker models were trained as described in App. B.2, either for a fixed, pre-specified
number of steps, or until convergence within a time limit of 10 minutes. See also Tab. 11 and Tab. 12
for the median training times of the base and stacker models.

Additional figures and tables

« Tab. 8: Full probabilistic forecasting results. SQL error values for all datasets X all methods (11
base models and 33 combination methods).

« Tab. 9: Full point forecasting results. MASE error values for all datasets X all methods (11 base
models and 33 combination methods).

« Fig. 5: Critical differences (CD) diagram for 8 representative combination methods (probabilistic
forecasting / SQL).

« Fig. 6: Critical differences (CD) diagram for 8 representative combination methods (point fore-
casting / MASE).

« Fig. 7: Distribution of relative error scores for 8 representative combination methods (probabilistic
forecasting / SQL).

22



« Fig. 8: Distribution of relative error scores for 8 representative combination methods (point
forecasting / MASE).

« Tab. 11: Median training time per validation window for L1 models.
« Tab. 12: Median end-to-end training time for the ensemble models.

« Fig. 9: Weights assigned by the L3 ensemble selection algorithm to the constituent L2 stacker
models (probabilistic forecasting / SQL).

« Fig. 10: Weights assigned by the L3 ensemble selection algorithm to the constituent L2 stacker
models (point forecasting / MASE).

« Tab. 10: Normalized error for each representative combination method and dataset combination
(probabilistic forecasting / SQL).

E.1 Critical differences diagrams

CD
p—
1 2 3 4 5 6 7 8
L 1 1 1 1 1 1 1
Multi-layer stackihg —M8M8M8 L——— Median
Linear model Nonlinear model
Greedy ensemble selection Model selection
Stacker model selection Performance-based average

Figure 5: Critical differences (CD) diagram for 8 representative combination methods. Based on
probabilistic forecasting tasks (SQL metric).

CD
P
1 2 3 4 5 6 7 8
L 1 1 1 1 1 1
Multi-layer stacking —M88M8 Model selection
Linear model Median
Greedy ensemble selection Nonlinear model
Stacker model selection Performance-based average

Figure 6: Critical differences (CD) diagram for 8 representative combination methods. Based on point
forecasting tasks (MASE metric).
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E.2 Distribution of relative errors

Median 1
Model selection 1
Performance-based average 1

Greedy ensemble selection {

Method

Linear model 1

Nonlinear model 1

Stacker model selection 1

Multi-layer stacking 1
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Figure 7: Distribution of the relative errors for each combination method (normalized by the perfor-
mance of median aggregation). Based on probabilistic forecasting tasks (SQL metric).
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Figure 8: Distribution of the relative errors for each combination method (normalized by the perfor-

mance of median aggregation). Based on point forecasting tasks (MASE metric).
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Table 10: Normalized error of each representative combination method per dataset, relative to the best
model for that dataset (probabilstic tasks / SQL metric). Two key observations: (1) When most
stackers perform reasonably (normalized error < 1.2), multi-layer stacking typically ranks
among the top performers. (2) It underperforms when most constituent stackers—especially
nonlinear ones—produce poor forecasts.

Dataset Median  Model selection  Performance-based average ~Greedy ensemble selection Linear model Nonlinear model ~Stacker model selection Multi-layer stacking
ETTh 1.068 1173 1.049 1.056 1.050 1.157 1.025 1.000
HZMETRO 1.096 1.139 1.115 1.095 1.086 1.029 1.032 1.000
LOS-LOOP 1.301 1.146 1.104 1.095 1.046 1.056 1.000
PEMS08 1.124 1.028 1.056 1.048 1.039 1.039 1.000
bdg-2-bear 1.089 1.107 1.064 1.087 1123 1.070 1.045 1.000
bdg-2-rat 1.240 1.051 1.067 1.051 1.038 1.055 1.016 1.000
borealis 1.090 1.068 1.051 1.047 1.055 1.014 1.017 1.000
hog 1.199 1.224 1.146 1.160 1.120 1.040 1.040 1.000
ideal 1.041 1.021 1.007 1.001 1.001 1.006 1.010 1.000
m4-daily 1.007 1.042 1.029 1.029 1.005 1.007 1.000
m4-hourly 1.149 1.149 1.101 1.089 1.029 1.027 1.000
m4-monthly 1.043 1097 [ 1.078 1.024 1.000
m4-quarterly 1.033 1.066 1.029 1.017 1.019 1.001 1.012 1.000
m4-weekly 1.173 1.250 1.098 1.084 1.073 1.109 1.042 1.000
nn5 1.057 1.025 1.008 1.007 1.008 1.021 1.008 1.000
nn5-weekly 1.043 1.046 1.017 1.025 1.026 1.083 1.025 1.000
project-tycho 1.020 1.011 1.025 1.004 1.001 1.003 1.001 1.000
store-sales 1.022 1.000 1.013 1.001 1.007 1.012 1.007 1.000
transactions 1124 1.103 1.063 1.049 1.048 1.047 1015 1.000
uber-tle-daily 1.027 1.024 1.002 1.001 1.009 1.026 1.027 1.000
SZ-TAXI 1.027 1.055 1.014 1.001 1.000 1.011 1.001 1.001
PEMS03 1.076 1.000 1.067 1.064 1.049 1.108 1.076 1.005
kdd-cup-2018 1.163 1.046 1.026 1.002 1.000 1.092 1.000 1.005
hierarchical-sales 1.011 1.009 1.013 1.003 1.000 1.037 1.000 1.005
taxi-30min 1.188 1.002 1.003 1.002 1.000 1.008 1.008 1.005
bull 1.008 1.031 1.000 1.017 1.005 1.048 1.017 1.008
uber-tle-hourly 1.151 1.000 1.003 1.000 1.001 1.016 1.013 1.010
pedestrian-counts 1.026 1.060 1.060 1.052 1.039 1.000 1.028 1.011
ercot 1121 1124 1.052 1.000 1.069 1.030 1.000 1.016
traffic-weekly 1.043 1.084 1.020 1.000 1.004 1.064 1.045 1.025
taxi-1h 1.000 1.000 1.006 1.003 1.046 1.006 1.026
smart 1.030 1.054 1.000 1.032 1.032 1.121 1.032 1.027
ETTm 1.124 1.000 1.052 1.037 1.026 1.230 1.042 1.027
electricity-weekly 1.290 1.000 1.050 1.017 1.041 1.175 1.017 1.030
beijing-air-quality 1.042 1.048 1.089 1.061 1.093 1.000 1.030
wind-farms-daily 1.030 1.000 1.040 1.005 1.011 1.074 1.074 1.036
subseasonal-precip 1.151 1127 1.126 1.078 1.058 1.000 1.053 1.037
electricity-hourly 1.245 1.000 1.043 1.040 1.046 1.090 1.040 1.037
cde-fluview-ilinet 1.072 1.077 1.000 1.015 1.027 1.201 1.110 1.048
BEIJING-SUBWAY-30MIN 1.055 1.072 1.073 1.000 1.090 1.051
bdg-2-panther 1173 1.000 1129 1.069 1.082 1.157 1.144 1.064
fred-md 1.000 1127 1.011 1.015 1.000 1.009 1.088 1.068
SHMETRO 1.000 1.018 1.017 1.022 1.015 1.094 1.094 1.075
kdd2022 1.034 1.226 1.120 1.000 1.140 1.140
gfc12-load 1.077 1.299 1.023 1.000 1.060 1.133 1.140
bdg-2-fox 1.000 1.152 1.150 1.111 1.152 1.150
M-DENSE 1.058 1.052 1.009 1.000 1.071 1.270 1.270 1.159
australian-electricity 1.076 1.000 1.264 1.218 1.277

gfc17-load 1.000

solar-10-minutes 1.000 1.096 1.163

Table 11: Median training time for L1 models per one validation window (in seconds) for probabilistic
tasks.

Model Duration (seconds)
AutoETS 14
Chronos 8
DLinear 26
DeepAR 149
DirectTabular 233
Theta 8
PatchTST 63
RecursiveTabular 51
SeasonalNaive 1
TFT 204
TiDE 176
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Table 12: Median end-to-end training time for ensemble models (in seconds) for probabilistic tasks.

Model Duration (seconds)
Simple Average (Mean) 1
Simple Average (Median) 1
Model Selection 1
Performance-based (Exp.) 2
Performance-based (Inv.) 2
Performance-based (Sqr.) 2
Greed (S=10) 2
Greedy (S=100) 11
Greed (S=1000) 70
Linear (m, softmax) 15
Linear (m, positive) 13
Linear (mi, softmax) 7
Linear (mi, positive) 34
Linear (miq, softmax) 12
Linear (mig, positive) 44
Linear (mit, softmax) 12
Linear (mit, positive) 44
Linear (mitq, softmax) 30
Linear (mitq, positive) 77
Linear (mgq, softmax) 11
Linear (mgq, positive) 15
Linear (mqgq, softmax) 10
Linear (mqgq, positive) 33
Linear (mt, softmax) 7
Linear (mt, positive) 31
Linear (mtq, softmax) 13
Linear (mtq, positive) 52
LightGBM 25
LightGBM (scaled) 26
RealMLP 200
RealMLP (scaled) 207
Stacker Model Selection 484
Multi-layer Stacking 721
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dataset

S s & S8 jés ,‘Q°é§ jé’& R & NQQ’y j&\ \%@@ @“&
Fe ST TS
F ¥ FE TS
BEIJING-SUBWAY-30MIN - ' o R ' ' Y YR Y ' !
ETTh - 0.23 [0437 o003 0.24 0.07
ETTm - 001 KK 0.05 010 0.09
HZMETRO - 0.21 010 0.18 025 026
LOS-LOOP - 0.14 0.37 010 029 0.10
M-DENSE - 0.13 0.07 0.21
PEMS03 - 048
PEMS08 - 017 0.10 0.04
SHMETRO - 014 0.14 011 024 0.16
SZ-TAXI - 0.29 0.03 028 0.31 0.04 0.05
australian-electricity - 0.01 [044] o.04 0.10 0.06 021 0.14
bdg-2-bear - 015 023 010 0.02 0.10 017 023
bdg-2-fox NN 0.10 006 0.14 0.01 0.04
bdg-2-panther - 0.03 006 021 0.32 0.10 018 009 0.01
bdg-2-rat - 036 003 023 009 001 018 0.10
beijing-air-quality - 0.21 0.06 0.01  0.09 0.38 0.25
borealis - 0.10  0.02 0.18 001 0.15 [048] 002 o004
[ 0.73 | 0.11 003 0.05 0.08
cdc-fluview-ilinet - 0.10 0.32 0.37 0.11 0.10
electricity-hourly — 0.19 0.14 0.07
electricity-weekly — 0.25 0.18 0.02  0.01
ercot -JIB 0.03 0.27
fred-md - 0.34 0.17
gfc12-load - [ 0.60 | 0.19 0.19 0.02
gfc17-load - 0.06 0.32
hierarchical-sales - 0.27 0.39 021 0.13

hog - 031 0.02 0.06
ideal - 0.1 0.04 028

kdd-cup-2018 - 0.26 0.32  0.42
kdd2022 -
m4-daily - 007 0.2 0.01 0.02
m4-hourly - 0.01 1033 0.01 0.28 0.01 0.02 0.29 0.05
m4-monthly - 0.13 | 035 0.04 001 047
m4-quarterly - 0.16 0.05 | 0.28 0.38  0.13
m4-weekly - 0.11 016 0.09 [0H8N 0.10  0.06
nns - 0.10 029 0.02 0.04 0.03 0.14  0.30 0.08
nn5-weekly - 0.20 0.02  0.03 0.11 0.10 0.17  0.10 0.06 0.21
pedestrian-counts —- 0.20 0.22 0.08 0.03
project-tycho - 0.13 0.04 0.02 0.06
smart - 0.20  0.21 0.04 0.23
solar-10-minutes - 0.25 0.08
store-sales - 0.18 0.19  0.04 0.01 0.05 0.20 0.04 0.29
subseasonal-precip - 0.17 033 0.19 0.06 022 0.03
taxi-1h -[J0H8] 0.04 0.22 0.26
taxi-30min - 0.17  0.01 0.15 032 016 0.19
traffic-weekly - 0.37 0.33 0.10 0.12  0.08
transactions - 0.14 - 0.26 0.17
uber-tle-daily {0447 0.12 [0.34 0.02 0.08
uber-tle-hourly - 0.37 0.03

wind-farms-daily - m

Figure 9: Weights assigned by the L3 ensemble selection algorithm to the L2 stacker models over 50
probabilistic forecasting tasks.
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BEIJING-SUBWAY-30MIN - I 0.;)7 I 0.;32 I I I I I I I I I I !
ETTh - 0.05 0.10 0.16
ETTm -[[043 [ 0.49 | 0.08
HZMETRO - 0.41 0.03 0.19 0.25 0.05 0.07
LOS-LOOP - 0.02 0.19 0.22 0.05 0.21 0.31
M-DENSE - 0.25 0.04 047 0.24
PEMS03 - 018 0.04 0.13
PEMS08 - 0.10 0.03  0.09 0.14 0.02 XY
SHMETRO - 0.06 0.12 0.02 0.07 0.17 0.06 0.20 0.23 0.07
SZ-TAXI - 027 0.11 0.12
australian-electricity - 0.01 0.03 0.01 0.16 0.06 0.20
bdg-2-bear - (vEs 0.02 0.03  0.06 0.05 0.10
bdg-2-fox -JUVEN 0.24 0.02 0.01
bdg-2-panther - 0.04 MUSYA 0.23 0.03 0.03 0.10
bdg-2-rat - 057 006 027 0.10 0.10
beijing-air-quality - 0.23  0.04 020 0.39 0.14
borealis -[JOEZY 002 008 0.08
bull [N 0.20 0.22 0.05 0.03
cde-fluview-ilinet — 0.31 0.12
electricity-hourly - 0.26 1048 0.11 0.10 0.05
electricity-weekly - 0.36 0.37 0.20  0.07
ercot - 0.31
fred-md - 031 [046 023
gfc12-load - 0.35 0.02 0.63
gfc17-load -
hierarchical-sales - 0.20 0.21 - 0.03 0.12
hog - 0.11 0.12 0.33 0.10 0.21 0.04 0.09
ideal 105" 0.08 0.03 | 034 0.10
kdd-cup-2018 - 0.12  0.15 OVE}
kdd2022 -
md-daily -JEEY 0.25 0.03
m4-hourly - 0.02 MM 0.06 0.11  0.01
m4-monthly - 0.20 0.12 0.24 0.03 0.02 0.07 0.31 0.01
m4-quarterly - 0.15 - 0.27 0.15
m4-weekly - 0.42 0.08 0.41 0.05 0.04
nn5 - 0.1 002 025 003 0.01
nn5-weekly - 0.16 0.27 0.23 0.03 0.31
pedestrian-counts - 0.24 - 0.28
project-tycho - 0.34 0.61 0.05
smart - 0.42 0.22 0.01 0.17 0.18
solar-10-minutes - 0.02 = 0.30 0.01 XY
store-sales - 0.10 0.20 (IZW 0.06
subseasonal-precip - 0.49 0.14 0.37
taxi-1h -0 0.02 0.40
taxi-30min - (vl 0.01 0.07 0.27 0.13
traffic-weekly - 0.01 0.34  0.36 0.15  0.14
transactions - 0.27 0.01 0.26 0.34 0.06 0.06
uber-tle-daily - 0.41 | 0.39  0.18 0.02
uber-tle-hourly - - 0.42 0.01 0.14
wind-farms-daily - 0.06 0.02 0.21 0.15 MU

Figure 10: Weights assigned by the L3 ensemble selection algorithm to the L2 stacker models over 50
point forecasting tasks.
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