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Abstract Ensembling is a powerful technique for improving the accuracy of machine learning models,

withmethods like stacking achieving strong results in tabular tasks. In time series forecasting,

however, ensemble methods remain underutilized, with simple linear combinations still

considered state-of-the-art. In this paper, we systematically explore ensembling strategies for

time series forecasting. We evaluate 33 ensemble models—both existing and novel—across

50 real-world datasets. Our results show that stacking consistently improves accuracy,

though no single stacker performs best across all tasks. To address this, we propose a

multi-layer stacking framework for time series forecasting, an approach that combines the

strengths of different stacker models. We demonstrate that this method consistently provides

superior accuracy across diverse forecasting scenarios. Our findings highlight the potential

of stacking-based methods to improve AutoML systems for time series forecasting.

1 Introduction

Time series forecasting plays a critical role in applications ranging from inventory manage-

ment (Croston, 1972) to energy systems (Hong et al., 2016) and public health (Tsang et al., 2024).

Driven by growing interest in the machine learning (ML) community, numerous forecasting models

have been proposed in recent years. Yet no single model is universally dominant. Large-scale bench-

marks show that while some models perform better on average, none consistently outperforms all

others across diverse datasets and tasks (Aksu et al., 2024; Godahewa et al., 2021).

This variability in model performance motivates the use of automated machine learning

(AutoML) for time series forecasting. By evaluating multiple models on a given dataset, an AutoML

system can select the one that performs best for the specific forecasting task at hand. However,

relying solely on model selection is often insufficient to achieve the lowest possible forecast error.

A growing body of work—both in academic research and prediction competitions—demonstrates

that combining forecasts from multiple models can lead to substantial improvements in predictive

performance (Bojer and Meldgaard, 2021; Makridakis et al., 2018, 2022). Yet, several key questions

remain unanswered. While many forecast combination methods have been proposed over the

years (X. Wang et al., 2023), there is limited understanding of which ensembling strategies are

most effective in practice. In the related field of tabular AutoML, techniques such as multi-layer

stacking repeatedly demonstrate state-of-the-art performance (Gijsbers et al., 2024). In contrast,

time series forecasting has seen limited adoption of such techniques, with most practical systems

relying on simple linear combinations of model outputs (Herzen et al., 2022; Shchur et al., 2023).

Moreover, several studies suggest that in forecasting, simple arithmetic averages outperform

more sophisticated ensembling techniques, which is often referred to as the "forecast combination

puzzle" (Smith and Wallis, 2009; Stock and Watson, 2004).

To address this gap, we conduct a large-scale empirical study of forecast combination methods,

aiming to identify strategies with the best predictive performance. Our main contributions are:
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• Empirical evaluation of ensembling methods. We conduct a large-scale benchmark of 33

forecast combination methods across 50 real-world datasets on point and probabilistic forecasting

tasks. Our results show that ensembling consistently improves the predictive accuracy, with

learning-based ensembles significantly outperforming simple aggregation strategies.

• Multi-layer stacking framework. We propose a framework for building multi-layer stack en-

sembles for time series forecasting, designed to combine the strengths of different ensembling

methods. This approach consistently outperforms any individual ensemble across both point

and probabilistic forecasting tasks. Additional ablation studies reveal when and why multi-layer

stacking is effective, demonstrating its adaptability and robustness across datasets.

2 Background

2.1 Probabilistic time series forecasting

Given a collection of𝑁 time seriesD = {𝑦𝑖,1:𝑇 }𝑁𝑖=1, with𝑦𝑖,𝑡 ∈ R, the goal of time series forecasting is

to predict the future𝐻 values𝑦𝑖,𝑇+1:𝑇+𝐻 for each time series 𝑖 = 1, . . . , 𝑁 . Specifically, in probabilistic
time series forecasting, the aim is to model the conditional distribution 𝑝

(
𝑦𝑖,𝑇+1:𝑇+𝐻 | 𝑦𝑖,1:𝑇

)
for all

𝑖 . Often, it is sufficient to produce a quantile forecast rather than the full distribution. Given a

predefined set of quantile levels Q ⊂ (0, 1) with |Q| = 𝑄 , the goal is to predict 𝑦
𝑞

𝑖,𝑇+ℎ ∈ R such

that 𝑃 (𝑦𝑖,𝑇𝑖+ℎ < 𝑦
𝑞

𝑖,𝑇𝑖+ℎ) = 𝑞, for all 𝑞, 𝑖, ℎ. Alternatively, if uncertainty quantification is not needed,

a conditional mean or median forecast may suffice. In this work, we primarily focus on quantile

forecasts, but all methods also apply to point forecasts and we will also evaluate these in Sec. 6.

Time series forecasting models 𝑓𝑖 : R𝑇 → R𝐻×𝑄
produce these quantile predictions, mapping

𝑓𝑖 : 𝑦𝑖,1:𝑇 ↦→ 𝑦
𝑞

𝑖,𝑇+ℎ for all 𝑖 . Here, the collection of models {𝑓𝑖} can be individually learned for each

time series, an approach known as local time series modeling (Januschowski et al., 2020). Local

time series models include seasonal naive, exponential smoothing, and ARIMA, which typically fit a

small set of model parameters on each item individually, in order to capture simple patterns in the

data such as trends and seasonality (R. Hyndman and Athanasopoulos, 2021).

On the other hand, a global time series model uses a single model for all time series, that is

𝑓𝑖 = 𝑓 for all 𝑖 . The function 𝑓 is learned over the entire training set D. The aim in global time

series modeling is to use a higher capacity function 𝑓 (e.g., a neural network) to capture both simple

temporal patterns and any dynamics common to all time series in a dataset. This approach includes

many recent deep learning-based approaches, such as DeepAR (Salinas, Flunkert, et al., 2020), TFT
(Lim et al., 2021), PatchTST (Nie et al., 2022), DLinear (Zeng et al., 2023), or TiDE (Das et al., 2023).

Finally, pretrained models also fit parameterized functions to data, but are trained on large

corpora of real-world and/or synthetic time series from diverse domains. The model is then applied

as a zero-shot forecaster, that is, without any additional training on the dataset D associated with

the given forecasting task. Recent examples of such pretrained models include Chronos (Ansari
et al., 2024), TimesFM (Das et al., 2024),Moirai (Woo et al., 2024), and TTM (Ekambaram et al., 2024).

Time series models are trained via minimizing loss function L : R𝐻×𝑄 × R𝐻 → R≥0 over the
training set. Examples include quantile loss for probabilistic forecasting, or mean absolute error for

point forecasting (R. Hyndman and Athanasopoulos, 2021).

2.2 Forecast combination

While many approaches to modeling exist, none of these dominate others in terms of accuracy

or efficiency. The best forecasting approach is therefore often a combination of different models

(X. Wang et al., 2023). Let 𝑓𝑖,𝑚 denote the forecast model for item 𝑖 , obtained by using the modeling

approach𝑚 ∈ 1, · · · , 𝑀 . Forecasts from these models can be combined with a combination function

𝑔𝑖 : (R𝐻×𝑄 )𝑀 → R𝐻×𝑄
that operates on the outputs of a collection of base forecasting models
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Figure 1: Architecture and training procedure of a single-layer stacker model.

{𝑓𝑖,𝑚} to produce a single aggregated forecast. Composing the combination functions 𝑔𝑖 with base

forecasters {𝑓𝑖,𝑚}, we obtain forecast ensembles 𝑓 𝑖

𝑓 𝑖 : R
𝑇 → R𝐻×𝑄 , 𝑦𝑖,1:𝑇 ↦→ 𝑔𝑖 (𝑓𝑖,1(𝑦𝑖,1:𝑇 ), 𝑓𝑖,2(𝑦𝑖,1:𝑇 ), . . . , 𝑓𝑖,𝑀 (𝑦𝑖,1:𝑇 )), (1)

for all 𝑖 . See also Fig. 1 for a visual description of the approach.

Similar to base models, combination methods can also be global with 𝑔𝑖 = 𝑔 for all 𝑖 . This is
possible regardless of whether the base models are local or global. For example, we could learn

global combinations 𝑔 of individually fitted local models {𝑓𝑖,𝑚}. Conversely, we could use a different
combinationmethod𝑔𝑖 for each time series, when combining global forecasting methods {𝑓𝑚}. Com-

binations of global and local models as base models are also possible. In the following, we will rely

on this generality to drop the item index 𝑖 from our notation. For example, in the following 𝑦𝑚 may

denote either the predictions for a single item𝑦𝑖,𝑚 or for all items {𝑦𝑖,𝑚}𝑁𝑖=1, depending on the context.
Likely the most popular forecast combination approach is simple averaging via the mean or

median of individual forecasts, e.g., 𝑔(𝑦1, · · · , 𝑦𝑀 ) = 1

𝑀

∑
𝑚 𝑦𝑚 . Simple averaging has been shown

to often outperform individual forecasting models (Perrone and Cooper, 1995; X. Wang et al., 2023).

Model selection can also be cast in the same notation. That is, 𝑔(𝑦1, . . . , 𝑦𝑀 ) = 𝑦𝑚∗ , where𝑚∗
is

the index of the model with the best validation score, i.e.𝑚∗ B argmin𝑚=1,...,𝑀 L(𝑦𝑚, 𝑦out), where
𝑦out denotes the ground truth future values corresponding to the predictions 𝑦𝑚 .

In the AutoML literature, methods that combine outputs of individual models are referred to as

post-hoc ensembles (Purucker and Beel, 2023) to differentiate them from other ensembling techniques

like bagging and boosting. In forecasting literature, apart from forecast combinations (Clemen, 1989),

these methods are called forecast ensembles (Adhikari and Agrawal, 2012) and model averaging

(Montero-Manso et al., 2020). We use these terms interchangeably throughout the paper.

3 Stacking for time series forecasting

3.1 Stacking

Simple averaging and model selection are strong baseline approaches. In this work, however, we

explore a broader class of methods that can learn the combination functions 𝑔 from data. In ML

literature, such methods that learn to combine the outputs of other models are often called stacking
methods (Zhou, 2012, Ch. 4). We now review some model families that fall into this category.

Model averaging. One generalization of simple averaging is weighted model averaging, with a

stacker model of the form 𝑔(𝑦1, . . . , 𝑦𝑀 ) =
∑𝑀

𝑚=1𝜔𝑚𝑦𝑚, with weights 𝜔 ∈ R𝑀
. The weights 𝜔

can be chosen based on the model performance. For example, the weights can be computed as

𝜔𝑚 ∝ ℎ(L(𝑦𝑚, 𝑦out)), where ℎ are chosen as ℎinv(𝐿) = 1/𝐿, ℎsqr(𝐿) = 1/𝐿2, or ℎexp(𝐿) = exp(1/𝐿),
subject to

∑𝑀
𝑚=1𝜔𝑚 = 1 (Pawlikowski and Chorowska, 2020).
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Alternatively, stacker weights 𝜔 can be learned from data by minimizing the loss function,

𝜔 = argmin𝜔 ′∈R𝑀 L (𝑔(𝑦1, . . . , 𝑦𝑀 ), 𝑦out) , often subject to 𝜔𝑚 ≥ 0 and

∑
𝑚 𝜔𝑚 = 1. If the loss

is differentiable, weights can be learned via a numerical optimization method such as gradient

descent. Another popular approach is the greedy ensemble selection algorithm (Caruana et al.,

2004), which adds models to the ensemble with replacement. Ensemble selection is used by default

in several AutoML forecasting frameworks (Deng et al., 2022; Shchur et al., 2023; Zöller et al., 2024).

General combinations via linear regression. Instead of assigning a single weight per model,

weights can vary with item 𝑖 , time step ℎ, quantile 𝑞, or any combination thereof. Reintroducing

the item index 𝑖 , we write:

[𝑔𝑖 (𝑦𝑖,1, . . . , 𝑦𝑖,𝑀 )]ℎ,𝑞 =

𝑀∑︁
𝑚=1

𝜔𝑖,ℎ,𝑞,𝑚 ·
[
𝑦𝑖,𝑚

]
ℎ,𝑞

(2)

with weights 𝜔 ∈ R𝑁×𝐻×𝑄×𝑀
. These weights can be tied across horizon steps, e.g., 𝜔𝑖,ℎ,𝑞,𝑚 = 𝜔𝑖,𝑞,𝑚 ,

or even shared across items. This defines a broad family of linear combinations, as explored by

Hasson et al. (2023) through different parameter-tying and regularization schemes. Our evaluation

in Sec. 6 includes several of these linear variants.

Nonlinear regression. Finally, 𝑔 can be a nonlinear function, often implemented using tree-based

models such as gradient boosting—e.g., as in darts (Herzen et al., 2022), sktime (Löning et al., 2019),
or Gastinger et al. (2021). As with linear models, these can vary in how they tie parameters across

items, quantiles, or forecast horizons. Input normalization (e.g., scaling 𝑦𝑚) is often beneficial

before applying nonlinear models. In Sec. 6, we evaluate several nonlinear tabular models.

3.2 Training stacker models with time series cross-validation

One important detail that we have not yet addressed is how to obtain the training data for the

stacker models. It is conventional wisdom in ensemble training that in order to prevent overfitting,

stacker models 𝑔 should be trained on out-of-fold data—i.e., data that was held out during the

training of the base models {𝑓𝑚} (Zhou, 2012). Holding out data, in turn, requires special treatment

in the case of time series (R. Hyndman and Athanasopoulos, 2021, Section 5.10). In line with this, we

use a time series 𝐾-fold cross validation scheme which works as follows. For each fold 𝑘 = 1, . . . , 𝐾 ,

we first remove the last 𝑗 B (𝐾 − 𝑘 + 1) windows of size 𝐻 from each time series, obtaining the

training set 𝑦1:𝑇− 𝑗𝐻 used to train the base models {𝑓𝑚}. Next, we make 𝐻 -step-ahead predictions

with all trained base models, obtaining 𝑀 quantile forecasts {𝑦𝑘𝑚}, each covering the validation

window 𝑦𝑘 = 𝑦𝑇− 𝑗𝐻 :𝑇−( 𝑗−1)𝐻 . After repeating this process 𝐾 times, we collect the training set for

the stacker model 𝑔 consisting of the inputs (the out-of-fold predictions 𝑦𝑘𝑚 for each model𝑚 and

fold 𝑘), and the targets (the out-of-fold data 𝑦𝑘 for each fold 𝑘). See Fig. 1 for a visual depiction.

4 Multi-layer stacking for time series forecasting

4.1 Multi-layer stacking

As we will see in Sec. 6, the performance of different stacker models can vary greatly across datasets.

To address this issue, we propose a multi-layer stacking approach that aggregates the outputs of

multiple stackers with yet another stacker model (Fig. 2). This approach removes the need to decide

on a single stacker model 𝑔 in advance—we can instead learn the optimal combination of multiple

stacker models {𝑔𝑐 }𝐶𝑐=1, similar to how we considered a set of base forecasting models {𝑓𝑚}𝑀𝑚=1.

Finally, we can combine the outputs of {𝑔𝑐 }𝐶𝑐=1 using a new stacker model 𝑠 : (R𝐻×𝑄 )𝐶 → R𝐻×𝑄
.

In the following, we refer to the base models {𝑓𝑚}𝑀𝑚=1 as the first layer of the multi-layer stack

ensemble, the stacker models {𝑔𝑐 }𝐶𝑐=1 as the second layer, and the aggregator model 𝑠 as the third

layer; or in short as L1, L2, and L3 models (cf. Fig. 2).
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Figure 2: Architecture and training procedure of a multi-layer stacker model.

Concretely, to generate quantile predictions for an item, its past data 𝑦𝑖,1:𝑇 is used to produce

forecasts 𝑦𝑖,1, . . . , 𝑦𝑖,𝑀 from each L1 model. These are then aggregated by a composition of L2

models and a single L3 model 𝑠 . The resulting multi-layer stack ensemble defines the mapping:

𝑦𝑖,1:𝑇 ↦→ 𝑠 (𝑔1(𝑦𝑖,1, . . . , 𝑦𝑖,𝑀 ), . . . , 𝑔𝐶 (𝑦𝑖,1, . . . , 𝑦𝑖,𝑀 )) .

Note that all forecast combination and stacker models 𝑔 discussed in the previous sections can

also be used as the aggregator model 𝑠 . For example, the aggregator 𝑠 can perform model selection

among the L2 stacker models, or it could combine the L2 models into a weighted ensemble.

4.2 Training of multi-layer stacker models with two-level time series cross-validation

Similar to the individual stacker models 𝑔, we need to make sure that the L3 aggregator model 𝑠 is

trained on out-of-fold predictions of the L2 models to avoid overfitting. To achieve this, we adjust

the procedure described in Sec. 3.2. Like before, we train the L1 base models using 𝐾-fold time

series cross validation. Next, we only train the L2 stacker models {𝑔𝑐 } on the first 𝐾 − 1 validation

windows. We then make predictions with the L2 models for the 𝐾th validation window, and use

these predictions together with the ground truth values to fit the L3 aggregator model 𝑠 . Finally,

we re-train the L2 models using all 𝐾 validation windows to ensure that these models have access

to the most recent data. The entire process is shown in Fig. 2.

5 Related work

Time series forecasting. Time series modeling spans classical statistical methods (Box et al., 1970;

R. Hyndman, Koehler, et al., 2008), deep learning models (Benidis et al., 2022; Challu et al., 2023;

Nie et al., 2022; Salinas, Flunkert, et al., 2020), and more recently, pretrained models (Ansari et al.,

2024; Das et al., 2024; Woo et al., 2024). Despite substantial progress, no single model consistently

outperforms others across all datasets and problem settings (Aksu et al., 2024; Godahewa et al.,

2021). This motivates AutoML systems that automatically train, tune, and combine models to

achieve the best performance for a given task (Ali, 2020; Deng et al., 2022; Shchur et al., 2023; Zöller

et al., 2024). Our stacking framework is compatible with arbitrary forecasting models, making it

complementary to ongoing advances in model development.

5



Forecast combinations. The idea of combining forecasts dates back to Bates and Granger (1969) and

has inspired many methods (X. Wang et al., 2023), often featured in winning solutions of prediction

competitions (Bojer and Meldgaard, 2021; Makridakis et al., 2018, 2022). Early studies found that

simple averages often outperform more complex methods—a phenomenon known as the "forecast

combination puzzle" (Smith and Wallis, 2009; Stock and Watson, 2004). However, these results were

based on small datasets, statistical models, and point forecasts (Gastinger et al., 2021). Later work

showed that more sophisticated methods outperform simple averages when applied to modern ML

models, larger datasets, and probabilistic forecasting (Hasson et al., 2023). Our results in Sec. 6

advance this discussion and show that stacking improves over simple aggregation strategies for

both point and probabilistic forecasting.

Stacking. Stacking, or stacked generalization, was introduced by Wolpert (1992) and Breiman

(1996), where a single stacker model combines predictions from base models to produce the final

output (Van der Laan et al., 2007). Variants of stacking have been studied extensively, including

for quantile regression (Fakoor et al., 2023). In AutoML systems, a common approach is ensemble

selection (Caruana et al., 2004), popularized by Auto-Sklearn (Feurer et al., 2015). Multi-layer stack

ensembles first appeared in competition-winning solutions (Itericz and Semenov, 2016; Koren, 2009),

and gained broader adoption with AutoGluon-Tabular (Erickson et al., 2020), which introduced a

robust bagging-based implementation. However, existing work on multi-layer stacking is limited to

tabular tasks. Our paper extends this framework to point and probabilistic time series forecasting.

6 Experiments

The main goal of our experimental analysis is to determine which forecast combination methods

result in the best prediction accuracy (Sec. 6.1). In subsequent experiments, we aim to get better

understanding of these results. For this purpose, we investigate the effects of various design choices

such as selection of L1 models or the amount of validation data (Sec. 6.2–6.5).

6.1 Which combination methods produce the most accurate forecasts?

In our main experiment, we perform a large-scale benchmark comparison of 33 forecast combination

methods, including the single-layer (Sec. 3) and multi-layer stacking (Sec. 4).

Datasets. We use 50 univariate datasets from Ansari et al. (2024) and Woo et al. (2024), covering

diverse domains and frequencies, totaling 90K time series with 110M observations (see Tab. 5). To

ensure that enough data is available for training base and stacker models, we only keep time series

with at least 8 ×𝐻 observations (where 𝐻 is the forecast horizon) in each dataset. As this filtering

changes the data compared to the original publications, we re-evaluate all models ourselves.

Models. We consider 11 base forecasters (L1 models) covering all popular model categories:

statistical models (SeasonalNaive, AutoETS, Theta), deep learning models (DeepAR, PatchTST, TFT,
TiDE, DLinear), gradient-boosted trees (DirectTabular, RecursiveTabular), and one pretrained model

(Chronos-Bolt). We use model implementations from AutoGluon–TimeSeries (Shchur et al., 2023),

trained with default hyperparameters until convergence, without hyperparameter tuning for

simplicity. These 11 L1 models are used as input to all the subsequent combination methods.

In addition, we train 31 combination methods (L2 models) from Sec. 3. These include 2 simple
averages, model selection, 3 performance-weighted averages, 3 greedy ensembles, 18 linear models,
and 4 nonlinear models. A detailed breakdown for each model category is available in App. B.

Finally, we consider 2 multi-layer stacking approaches (L3 models) from Sec. 4: stacker model
selection that selects the best L2 model based on the performance on the last validation window,

and multi-layer stacking that fits a greedy ensemble on top of the L2 models. To keep the training

time reasonable, we limit the second level of the ensemble to 14 a priori chosen L2 models.
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Table 1: Aggregated probabilistic forecasting performance of the representative combination methods

based on SQL. Best result in bold, second best underlined. Individual results for all methods

and datasets are available in Tab. 8

Method (↑) Elo (↑) Champion (↓) Average
rank

(↓) Average

relative error

(↓) Median marginal

training time

Median 1000 3 5.92 1.000 1s
Model selection 1049 9 5.43 1.001 2s

Performance-based average 1130 3 4.60 0.963 2s

Greedy ensemble selection 1191 4 3.92 0.952 11s

Linear model 1220 3 3.62 0.947 11s

Nonlinear model 1046 4 5.43 1.011 27s

Stacker model selection 1157 1 4.27 0.973 484s

Multi-layer stacking 1306 20 2.81 0.945 721s

Table 2: Aggregated probabilistic forecasting performance of the representative combination methods

based on MASE. Best result in bold, second best underlined. Individual results for all methods

and datasets are available in Tab. 9.

Method (↑) Elo (↑) Champion (↓) Average
rank

(↓) Average

relative error

(↓) Median marginal

training time

Median 1000 7 5.54 1.000 1s
Model selection 997 8 5.58 1.026 1s
Performance-based average 1059 2 4.98 0.989 1s
Greedy ensemble selection 1161 4 3.84 0.975 2s

Linear model 1168 3 3.81 0.975 5s

Nonlinear model 1004 5 5.48 1.033 6s

Stacker model selection 1158 3 3.87 0.967 295s

Multi-layer stacking 1256 17 2.90 0.954 443s

Metrics. For each dataset, we evaluate two tasks: point and probabilistic forecasting. Point accuracy
is measured using mean absolute scaled error (MASE) on the median forecast, while probabilistic

accuracy is assessed via scaled quantile loss (SQL) at quantile levels Q = {0.1, 0.2, ..., 0.9}. To

aggregate results across datasets, we report the Elo rating, number of wins (champion), average
rank, and average relative error (geometric mean of errors normalized against the baseline). We use

"Simple average (median)" as the baseline for Elo and relative error. Further details are provided in

App. C.

Setup. We reserve the last 𝐻 observations of each time series as the test set. L1 models are trained

using𝐾=5-fold cross-validation, with the model from the last fold used for test prediction. Individual

L2 models are trained on all 5 validation windows. For multi-layer stacking, the L3 model is fitted

on the final window. After training, all models generate forecasts on the test set, and accuracy is

evaluated using MASE or SQL, depending on the task.

Results. Complete results for 2 task types × 50 datasets × 44 models are reported in Tables 8–9

(appendix). To summarize these, we group forecast combination methods into 8 categories: simple

average, model selection, performance-based average, greedy ensemble selection, linear model,

nonlinear model, stacker model selection, and multi-layer stacking. We select the best-performing

method (by average rank) from each category as its representative method and report aggregate

metrics for these in Tables 1–2. Note that such aggregation does not give an unfair advantage to

the multi-layer stacking approaches since there is only one method in each category. Moreover,

multi-layer stacking has the best scores both in the full results (Tables 8–9) and in the aggregated

results (Tables 1–2). Based on these results, we draw the following conclusions:

1. Combination methods outperform individual forecasting models. Combining multiple fore-

casts typically improves the accuracy compared to a single model, even if model selection is
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performed. We see major accuracy gains, with up to 200 Elo points difference (≈ 75% win rate)

and up to 5% error reduction. This result reaffirms the previous findings on the importance of

ensembling in forecasting (X. Wang et al., 2023).

2. Stacking outperforms simple aggregation techniques. Contrary to the “forecast combination

puzzle,” which suggests that complex methods rarely outperform simple ones, our results clearly

demonstrate that learned aggregation methods—like ensemble selection and linear models—yield

substantially better accuracy than simple or performance-based averages.

3. Multi-layer stacking outperforms individual combination methods. Across both point and

probabilistic tasks, multi-layer stacking achieves the highest accuracy. This result is consistent

with our earlier observations: since no single L2 model performs best across all datasets, com-

bining them in an L3 ensemble leads to improved overall accuracy. Notably, multi-layer stacking

also outperforms model selection over L2 models, highlighting that combining multiple stackers

is more effective than selecting the best one in isolation.

6.2 When and why does multi-layer stacking outperform other approaches?
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 L3 ensemble selection
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Figure 3: Weights assigned by the L3 ensemble

selection algorithm to the L2 models

(average over 50 tasks).

L3 model weights. First, we investigate the weights
assigned by the L3 ensemble selection algorithm to

the underlying L2 models. We show the average

weights in Fig. 3 and provide the per-dataset break-

down in Fig. 9–10 in the appendix. All constituent

L2 stacker models receive non-zero weight, under-

scoring the value of maintaining a diverse portfo-

lio. Notably, the nonlinear stacker LightGBM per-

forms poorly on average when evaluated in isolation

(Tab. 1), yet it is frequently selected by the L3 en-

semble. This indicates that while LightGBM may

underperform overall, it excels on specific datasets—

which can be capitalized on by the adaptive multi-

layer stacking framework.

Normalized performance. To understand where multi-layer stacking succeeds or fails, we compare

each representative model’s score to the dataset-specific “champion” (Tab. 10). In 39 out of 50

datasets, most L2 models perform within 20% of the champion, and in these cases, multi-layer

stacking typically ranks first or second in accuracy. In the remaining 11 datasets, where L2 model

performance varies widely, multi-layer stacking tends to underperform. We hypothesize that

allocating more validation data to train the L3 aggregator could mitigate this issue.

6.3 How much validation data do different combination methods require?
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Figure 4: Influence of the number of validation

windows on the model performance.

Previous experiments used 5 validation windows,

requiring each base model to be trained 5 times. To

reduce computational cost, we evaluated ensemble

performance with fewer validation folds (𝐾 = 1 to

5), using Median aggregation as a baseline since its

performance is fold-independent.

Results show that even with just 𝐾 = 2, multi-

layer stacking outperforms all other methods, fol-

lowed by the linear model. The nonlinear model

benefits most from additional folds, while model se-

lection performs best at 𝐾 = 1, suggesting that older

data is less indicative of the test set performance.

8



Table 3: Ablation: Aggregated probabilistic forecasting performance of representative combination

methods when using only 6 base models. Best result in bold, second best underlined. Multi-

layer stacking remains the top performer even with a reduced set of base models.

Method (↑) Elo (↑) Champion (↓) Average
rank

(↓) Average

relative error

(↓) Median marginal

training time

Median 1000 1 5.38 1.000 1s
Model selection 899 2 6.39 1.058 1s
Performance-based average 1095 7 4.46 0.994 2s

Greedy ensemble selection 1110 6 4.23 0.990 7s

Linear model 1145 2 3.93 0.978 8s

Nonlinear model 1047 8 4.93 1.002 21s

Stacker model selection 1128 2 4.07 0.982 418s

Multi-layer stacking 1280 22 2.61 0.947 578s

Table 4: Ablation: Aggregated probabilistic forecasting performance of multi-layer stacking with and

without L2 model retraining. Scores are computed with respect to the methods in Tab. 1.

Skipping retraining reduces fit time, but decreases forecast accuracy.

Method (↑) Elo (↑) Champion (↓) Average
rank

(↓) Average

relative error

(↓) Median marginal

training time

Multi-layer stacking (L2 retraining) 1306 20 2.81 0.945 720s

Multi-layer stacking (no L2 retraining) 1253 13 3.24 0.950 483s

6.4 What is the effect of the L1 model choice?

Our experiments use a fixed set of 11 L1 forecasting models, but a robust ensembling method should

perform well regardless of the base models used. To test this, we removed the 5 best-performing L1

models (Chronos, PatchTST, TFT,DirectTabular, RecursiveTabular) and retained only 6: SeasonalNaive,
AutoETS, Theta, DLinear, DeepAR, and TiDE. The rest of the setup follows Sec. 6.1.

Aggregate results for 8 representative ensemble methods are shown in Tab. 3. The ranking

remains unchanged: multi-layer stacking still performs best, showing robustness to L1 model choice.

Model selection drops significantly due to the absence of Chronos (the strongest individual model),

highlighting the importance of forecast combination when strong base models are unavailable.

6.5 Is it necessary to retrain the L2 models?

Our training procedure for the multi-layer stack ensemble (Sec. 4.2) includes a final step where L2

models are retrained on all validation windows. To assess whether this step is necessary, we perform

an ablation comparing performance with and without this retraining. As shown in Tab. 4, skipping

retraining leads to 1.5x faster training at the cost of lower forecast accuracy. This highlights the

importance of retraining L2 models on the full validation data to ensure optimal performance.

7 Discussion

Limitations & future work. While our study demonstrates the effectiveness of learned forecast

combination methods, several limitations remain. Most stacker models require predictions from

all base models, which results in slower inference compared to sparse methods like ensemble

selection. Future work could explore pruning strategy to mitigate this issue (Tsoumakas et al.,

2009). Similarly, multi-layer stacking incurs substantial training costs, as we currently train 14

L2 models. A more principled approach—such as offline portfolio optimization, akin to Salinas

and Erickson (2024)—could reduce computational overhead while maintaining or even improving

accuracy. In addition, this framework can be extended with meta-learning approaches such as

FFORMA (Montero-Manso et al., 2020), which aim to select or weight models based on dataset-level

9



features. Finally, the search for better aggregation models to use at the L2 and L3 levels remains an

open and important challenge.

Summary. Our large-scale empirical study shows that learned ensembling methods—particularly

stacking—consistently outperform both individual forecasting models and simple aggregation

techniques. These findings challenge the “forecast combination puzzle” and demonstrate that

flexible, data-driven ensemble strategies can significantly improve predictive accuracy. Multi-layer

stacking extends this idea by combining multiple stackers, yielding robust performance across

a wide range of datasets. While this approach provides consistent improvements overall, our

ablations show it is especially valuable when strong individual forecasting models are unavailable.

As forecasting tools and AutoML systems continue to evolve, we see strong potential in integrating

advanced ensemble methods that adapt to data characteristics, scale efficiently, and generalize well

across diverse forecasting scenarios.
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A Datasets

Table 5: Dataset statistics. Note that all datasets were filtered to only contain time series with at least

8 × 𝐻 observations to ensure that enough training & validation data is available.

Dataset Freq. Seasonality Horizon (𝐻 ) Num. Series Num. Obs. Min. Length Max. Length

BDG-2 Bear h 24 48 91 1,482,312 8,760 17,544

BDG-2 Bull h 24 48 41 719,304 17,544 17,544

BDG-2 Fox h 24 48 135 2,324,568 8,760 17,544

BDG-2 Hog h 24 48 24 421,056 17,544 17,544

BDG-2 Panther h 24 48 105 919,800 8,760 8,760

BDG-2 Rat h 24 48 280 4,728,288 8,760 17,544

Beijing Air Quality h 24 48 132 4,628,448 35,064 35,064

Beijing Subway 30min 48 96 552 867,744 1,572 1,572

Borealis h 24 48 15 83,269 3,528 7,447

CDC Fluview ILINet W 1 8 375 319,515 211 1,359

Favorita Store Sales D 7 16 1,782 3,008,016 1,688 1,688

Favorita Transactions D 7 16 54 91,152 1,688 1,688

GEF12 h 24 48 11 433,554 39,414 39,414

GEF17 h 24 48 8 140,352 17,544 17,544

HZMetro 15min 96 96 160 380,320 2,377 2,377

Hierarchical Sales D 7 14 118 212,164 1,798 1,798

IDEAL h 24 48 217 1,255,253 393 16,167

KDD Cup 2022 10min 144 96 134 4,727,519 35,279 35,280

Los-Loop 5min 288 96 207 7,094,304 34,272 34,272

M-Dense h 24 48 30 525,600 17,520 17,520

PEMS03 5min 288 96 358 9,382,464 26,208 26,208

PEMS08 5min 288 96 510 9,106,560 17,856 17,856

Project Tycho W 1 8 1,258 1,377,707 102 3,854

SHMetro 15min 96 96 576 5,073,984 8,809 8,809

SMART h 24 48 5 95,709 8,398 26,304

SZ-Taxi 15min 96 96 156 464,256 2,976 2,976

Subseasonal Precipitation D 7 14 862 9,760,426 11,323 11,323

Australian Electricity 30min 48 96 5 1,155,264 230,736 232,272

ERCOT h 24 24 8 1,238,976 154,872 154,872

ETT (15 Min.) 15min 96 96 14 975,520 69,680 69,680

ETT (Hourly) h 24 24 14 243,880 17,420 17,420

Electricity (Hourly) h 24 48 321 8,443,584 26,304 26,304

Electricity (Weekly) W 1 8 321 50,076 156 156

FRED-MD M 12 12 107 77,896 728 728

KDD Cup 2018 h 24 48 270 2,942,364 9,504 10,920

M4 (Daily) D 1 14 4,218 10,022,845 112 9,933

M4 (Hourly) h 24 48 414 373,372 748 1,008

M4 (Monthly) M 12 18 32,436 9,773,903 144 2,812

M4 (Quarterly) Q 4 8 19,049 2,167,663 64 874

M4 (Weekly) W 1 13 294 365,534 260 2,610

NN5 (Daily) D 7 56 111 87,801 791 791

NN5 (Weekly) W 1 8 111 12,543 113 113

Pedestrian Counts h 24 168 64 3,130,594 1,777 96,424

Solar (10 Min.) 10min 144 96 137 7,200,720 52,560 52,560

Taxi (30 Min.) 30min 48 96 2,428 3,589,798 1,469 1,488

Taxi (Hourly) h 24 48 2,428 1,794,292 734 744

Traffic (Weekly) W 1 8 862 89,648 104 104

Uber TLC (Daily) D 7 14 262 47,422 181 181

Uber TLC (Hourly) h 24 48 262 1,138,128 4,344 4,344

Wind Farms (Daily) D 7 14 335 119,407 149 366

B Models

B.1 Base models
We considered the following base models, using their implementations provided by Auto-

Gluon–TimeSeries (Shchur et al., 2023):
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• SeasonalNaive: Simple model that sets the forecast equal to the last observed value from the

same season (R. Hyndman and Athanasopoulos, 2021).

• AutoETS: Automatically tuned exponential smoothing with trend and seasonality (Garza et al.,

2022; R. Hyndman, Koehler, et al., 2008; R. J. Hyndman and Khandakar, 2008)

• DynamicOptimizedTheta: A generalization of the Theta method by Assimakopoulos and

Nikolopoulos (2000), that automatically selects and revises some of the model hyperparameters

(Fiorucci et al., 2016).

• DeepAR: Autoregressive forecasting model based on a recurrent neural network (Salinas, Flunkert,

et al., 2020).

• PatchTST: Transformer-based forecaster that segments each time series into patches (Nie et al.,

2022).

• TemporalFusionTransformer: Combines LSTM with a transformer layer to predict the quantiles

of all future target values (Lim et al., 2021).

• DirectTabular: Predict the future time series values by transforming the task into a tabular

prediction task and then applying the LightGBM quantile regressor (Ke et al., 2017).

• RecursiveTabular: Predict the future time series values one-by-one by transforming the task

into a tabular prediction task and then applying the LightGBM regressor (Ke et al., 2017). In

contrast to DirectTabular, the forecast is computed step-by-step by repeatedly applying the

tabular method.

• TiDEModel: Time series dense encoder model (Das et al., 2023).

• Chronos: Pretrained time series forecasting model (Ansari et al., 2024). We use the bolt_base
configuration.

For simplicity, we do not investigate the effect of hyperparameter tuning on the models and keep all

the hyperparameters to their default values. We do not expect this to affect our main conclusions,

given the stability of our results with respect to the L1 model choice (Sec. 6.4).

For each dataset, we generate the base model predictions by fitting all models with 5 validation

windows, refitting each model from scratch for each window. We set the maximum time limit of

30 minutes per window per model to avoid extremely long runtimes, though the vast majority of

models complete training within 5 minutes per window. We save the base model predictions for

all validation windows and the test window to disk. This enables us to train the stacker models

without needing to re-fit the base models.

B.2 Individual forecast combination methods

• Simple averages: We consider two simple averages, mean and median, which compute the mean

or median of all base model predictions, respectively.

• Model selection: Model selection computes the index of the best-performing model according to

the validation data during training, and then uses this individual model for forecasting.

• Performance-weighted averages: These models are weighted averages of the form

𝑔(𝑦1, . . . , 𝑦𝑀 ) =
∑𝑀

𝑚=1𝜔𝑚𝑦𝑚 , where the weights 𝜔𝑚 are computed directly from the (normal-

ized) validation scores of the individual models, as 𝜔𝑚∝ℎ(𝐿𝑚), with 𝐿𝑚∝L(𝑦𝑚, 𝑦out) such that∑𝑀
𝑚=1 𝐿𝑚 = 1, and

∑𝑀
𝑚=1𝜔𝑚 = 1. We consider three options for the function ℎ:

– Inv.: ℎinv(𝐿) = 1/𝐿,
– Sqr.: ℎsqr(𝐿) = 1/𝐿2,
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– Exp.: ℎexp(𝐿) = exp(1/𝐿)
Refer to Pawlikowski and Chorowska (2020) for more details.

• Greedy ensembles: This is the ensemble selection method by (Caruana et al., 2004), which

optimizes the validation loss by greedily adding models to an equally-weighted ensemble with
replacement. As an equally-weighted ensemble with replacement is equivalent to a weighted

average with fractional weights, the greedy ensemble can also be interpreted as a weighted

average 𝑔(𝑦1, . . . , 𝑦𝑀 ) =
∑𝑀

𝑚=1𝜔𝑚𝑦𝑚 which is optimized via coordinate-wise ascent: Starting

with zero weights 𝜔 (0) = 0 ∈ R𝑀
, the algorithm iterates for 𝑗 = 1, . . . , 𝑆 , and selects at each step

the model that would minimize the resulting loss, i.e.

𝑚 ( 𝑗 ) = argmin

𝑚=1,...𝑀

L
(
𝑔
�̂�

( 𝑗 )
𝑚

(𝑦1, . . . , 𝑦𝑀 ), 𝑦ensemble

)
, (3)

where �̂�
( 𝑗 )
𝑚 B (( 𝑗 − 1)𝜔 ( 𝑗−1) + 𝑒𝑚)/ 𝑗 are the weights that the greedy ensemble would have if it

were to select model𝑚, with 𝑒𝑚 ∈ R𝑀
being a canonical basis vector, i.e. [𝑒𝑚]𝑘 = 1𝑘=𝑚 . It then

adds the model to the ensemble and sets 𝜔 ( 𝑗 ) = �̂� ( 𝑗 )
𝑚 ( 𝑗 ) . This approach is currently also used as

the default in multiple AutoML forecasting frameworks (Deng et al., 2022; Shchur et al., 2023;

Zöller et al., 2024). In our evaluation, we consider three versions of this model, with the number

of iterations 𝑆 set to 10, 100, and 1000, respectively.

• Linear models: For linear models, we consider a class of models 𝑔𝑖 of the form

[𝑔𝑖 (𝑦𝑖,1, . . . , 𝑦𝑖,𝑀 )]ℎ,𝑞 =

𝑀∑︁
𝑚=1

𝜔𝑖,ℎ,𝑞,𝑚 ·
[
𝑦𝑖,𝑚

]
ℎ,𝑞

(4)

with weights𝜔 ∈ R𝑁×𝐻×𝑄×𝑀
. More concretely, we consider a number of variations of this model

which satisfy different constraints or have different degrees of weight-tying:

– Positivity and simplex constraints: It is often desirable to enforce positivity and/or simplex

constraints, that is, 𝜔𝑖,ℎ,𝑞,𝑚 > 0 and

∑
𝑚 𝜔𝑖,ℎ,𝑞,𝑚 = 1, respectively (X. Wang et al., 2023). In

our model, we enforce constraints by parameterizing the weights through an unconstrained

weight �̃�𝑖,ℎ,𝑞,𝑚 and then passing it through an activation function. We consider two versions:

∗ softmax: This version enforces both positivity and simplex constraints by passing the

unconstrained weights through a softmax activation function:

𝜔𝑖,ℎ,𝑞,𝑚 =
exp

(
�̃�𝑖,ℎ,𝑞,𝑚

)∑
𝑚′ exp

(
�̃�𝑖,ℎ,𝑞,𝑚′

) . (5)

∗ positive: This version enforces positivity, but not the simplex constraint, by passing the

unconstrained weights through a quadratic function:

𝜔𝑖,ℎ,𝑞,𝑚 =
(
�̃�𝑖,ℎ,𝑞,𝑚

)
2

. (6)

– Weight-tying: Instead of considering different weights for each model, item, time step, and

quantile, we can lower the complexity by tying weights across some of these dimensions

(Hasson et al., 2023). For example, tying weights across items would imply 𝜔𝑖,ℎ,𝑞,𝑚 = 𝜔𝑖′,ℎ,𝑞,𝑚

for all items 𝑖, 𝑖′. This yields a number of different linear models, denoted by the dimension

along which the weights are not tied:
∗ m: One weight per model; weights are tied across items, prediction times, and quantiles. This

case is equivalent to weighted average models.

∗ mi: One weight per model and per item; weights are tied across prediction times and quantiles.
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∗ mt: One weight per model and per prediction time; weights are tied across items and quantiles.

∗ mq: One weight per model and per quantile; weights are tied across items and prediction

times.

∗ mit: One weight per model, item, and prediction time; weights are tied across quantiles.

∗ miq: One weight per model, item, and quantile; weights are tied across prediction times.

∗ mtq: One weight per model, prediction time, and quantile; weights are tied across items.

∗ mitq: One weight per model, item, prediction time, and quantile; no weight-tying.

– Across-quantile weights: Instead of treating all quantiles independently, we can also compute

quantile predictions across quantiles and rely on the base model estimates of all quantiles, as

proposed by Fakoor et al. (2023); In its most flexible form, this corresponds to a model of the

form

[𝑔𝑖 (𝑦𝑖,1, . . . , 𝑦𝑖,𝑀 )]ℎ,𝑞 =

𝑀∑︁
𝑚=1

∑︁
𝑞′∈Q

𝜔𝑖,ℎ,𝑞,𝑞′,𝑚 ·
[
𝑦𝑖,𝑚

]
ℎ,𝑞′ , (7)

with weights 𝜔 ∈ R𝑁×𝐻×𝑄×𝑄×𝑀
. As before, we consider softmax and positive versions as

well as different weight-tying options:

∗ mqq: One weight per model and across quantiles; weights are tied across items and prediction

times.

∗ miqq: One weight per model, items, and across quantiles; weights are tied across prediction

times.

∗ mtqq: One weight per model, prediction time, and across quantiles; weights are tied across

items.

Training. We train linear stacker models by optimizing the resulting loss:

𝜔 = argmin

𝜔 ′∈R𝑁 ×𝐻×𝑄×𝑀

∑︁
𝑖

L
(
𝑔𝑖 (𝑦𝑖,1, . . . , 𝑦𝑖,𝑀 ), 𝑦𝑖,𝑇+1:𝑇+𝐻

)
, (8)

where 𝑔𝑖 is a linear model that uses the to-be-optimized weights 𝜔 ′
. This can be approached with

any numerical optimizer. In our implementation, we rely on the Adam optimizer (Kingma, 2014)

and we use a custom learning rate schedule to reduce the learning rate whenever a plateau is hit

and the loss starts oscillating. We also limit the training time to 10 minutes.

• Nonlinear models: To apply nonlinear models, we re-formulate the stacking problem as a tabular

regression problem. Each item × timestep combination corresponds to a row in the training data.

The quantile forecasts of the L1 models are used as features, and the ground truth time series

value is the training target. We can then train any tabular regression model on this data. In our

experiments we consider two methods:

– RealMLP is a deep-learning approach for tabular problems which improves on standard MLPs

through a number of tricks and better, meta-learned default parameters (Holzmüller et al.,

2024). We use the multi-quantile loss evaluated at levels Q as the training objective.

– LightGBM is a highly efficient implementation of gradient-boosted decision trees (Ke et al.,

2017). We train a separate LightGBM regressor to predict each of the quantile levels Q.

Additionally, we consider scaled versions of both methods in which we normalize the model

predictions before feeding them into the tabular stacker model and then un-normalize the outputs

again. This corresponds to a modified model 𝑔′ of the form

𝑔′𝑖 (𝑦𝑖,1, . . . , 𝑦𝑖,𝑀 ) = 𝑔𝑖 (𝛼𝑦𝑖,1 + 𝛽, . . . , 𝛼𝑦𝑖,𝑀 + 𝛽) − 𝛽
𝛼

, (9)

where 𝛼, 𝛽 are computed from the empirical mean and standard deviation of the predictions in

order to standardize the inputs, and 𝑔 is a tabular stacker model as introduced above.
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From each category we select one “representative model” for our condensed experiment sum-

mary in the paper, as described in Tab. 6 and Tab. 7.

Table 6: Representative models per category for the quantile forecast experiment.

Model category Model

Median Median

Model Selection Model selection

Performance-based average Performance-based average (exp)

Greedy ensemble selection Greedy (S=100)

Linear model Linear(mq, softmax)

Nonlinear model LightGBM (scaled)

Table 7: Representative models per category for the point forecast experiment.

Model category Model

Median Median

Model Selection Model selection

Performance-based average Performance-based average (exp)

Greedy ensemble selection Greedy (S=100)

Linear model Linear(m, softmax)

Nonlinear model LightGBM (scaled)

B.3 Multi-layer stacker models

For multilayer stacking, we use the following 14 stacker models as L2 models:

• Median

• Greedy (S=100)

• Linear (mi, softmax)

• Linear (mt, softmax)

• Linear (mq, softmax)

• Linear (mit, positive)

• Linear (mtq, positive)

• Linear (miq, positive)

• Linear (mqq, positive)

• Linear (miqq, positive)

• Linear (mtqq, positive)

• LightGBM

• LightGBM (scaled)

• RealMLP (scaled)

We have arbitrarily chosen these 14 L2 models since they provide a good coverage of different model

families. To ensure a fair comparison, we have fixed this selection before running any experiments,

and did not adjust the selection to optimize the benchmark performance.

We then consider multi-layer stackers resulting from two different L3 models:

• Stacker model selection uses model selection as its L3 model and thus relies on a single L2 model

during test time.
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• Multi-layer stacking uses Greedy (S=100) as its L3 model to compute a weighted average of the

L2 model predictions.

C Evaluation metrics

C.1 Loss functions

Loss functions are used both to train and evaluate time series models. In Sec. 2.1, we introduced them

as functions that take in the (quantile) prediction of a particular item as well as the ground-truth

values and return a positive scalar value, that is

L : R𝐻×𝑄 × R𝐻 → R≥0, (10)

with lower values indicating a more accurate forecast. We consider the following two losses to

evaluate quantile forecasts and point forecasts, respectively:

• Scaled quantile loss (SQL):

SQL(𝑦𝑖 , 𝑦𝑖) B
1

𝐻

1

𝑄

1

𝑎𝑖

𝐻∑︁
ℎ=1

∑︁
𝑞∈Q

𝜌𝑞

(
𝑦
𝑞

𝑖,𝑇+ℎ, 𝑦𝑖,𝑇+ℎ
)
, (11)

where 𝜌𝑞 : R × R → R is the quantile loss at level 𝑞, defined as

𝜌𝑞

(
𝑦
𝑞

𝑖,ℎ
, 𝑦𝑖,ℎ

)
B 2 ·


𝑞 ·

(
𝑦𝑖,ℎ − 𝑦𝑞𝑖,ℎ

)
, if 𝑦𝑖,ℎ < 𝑦

𝑞

𝑖,ℎ
,

(1 − 𝑞) ·
(
𝑦
𝑞

𝑖,ℎ
− 𝑦𝑖,ℎ

)
, if 𝑦𝑖,ℎ ≥ 𝑦𝑞

𝑖,ℎ
,

(12)

and where 𝑎𝑖 is the historic absolute seasonal error of the time series, defined as

𝑎𝑖 =
1

𝑇 −𝑚

𝑇∑︁
𝑡=𝑚+1

��𝑦𝑖,𝑡 − 𝑦𝑖,𝑡−𝑚 �� , (13)

with𝑚 the seasonality of the dataset provided in Tab. 5.

• Mean absolute scaled error (MASE):

MASE(𝑦𝑖 , 𝑦𝑖) B
1

𝐻

1

𝑎𝑖

𝐻∑︁
ℎ=1

��𝑦𝑖,𝑇+ℎ − 𝑦𝑖,𝑇+ℎ �� , (14)

where𝑎𝑖 is the historic absolute seasonal error, as defined above. Note that MASE is equivalent to

an SQL applied only to the 0.5 quantile.

To evaluate a particular time series model on a whole dataset, we average the loss across all

individual items.

When evaluating point and probabilistic forecast performance, we used MASE or SQL as the

training objective, respectively. This means, that all L2 and L3 models were trained once for point

forecasting tasks using MASE as the training loss, and one more time for probabilistic forecasting

tasks using the SQL loss.

C.2 Result aggregation

To summarize the empirical evaluation, we aggregate the individual losses 𝐿𝑚,𝑑 of each model𝑚

and dataset 𝑑 in a number of ways:
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• Elo: The Elo rating system was originally introduced to calculate the relative skill levels of players

in zero-sum games such as chess (Elo, 1967), but it has recently also been used to evaluate large

language models (Bai et al., 2022; Boubdir et al., 2024). We compute our Elo scores as done in the

recently proposed “Chatbot Arena” (Chiang et al., 2024), and calibrate the computation such that

our chosen baseline has an Elo of 1000.

• Average rank: First, for each dataset in our evaluation, we rank the methods by their achieved

error (resolving ties such that models receive the average rank of the tied models). Then, we

compute the average rank of each model over all datasets with an arithmetic mean.

• Champion: This metric counts for how many datasets the method has achieved the lowest

error among all methods included in the comparison. As we already computed a ranking for

each dataset, this can be done by simply counting how often a method achieves rank 1. Since

sometimes multiple methods are tied for the first place, the sum of the values in the "Champion"

column does not always add up to the number of the datasets.

• Average relative error: To make the errors on different datasets more comparable, we first

compute relative errors with respect to a chosen baseline method𝑚 (namely the “simple average

(median)” method), as

𝐿rel
𝑚,𝑑
B
𝐿𝑚,𝑑

𝐿𝑚,𝑑

. (15)

To limit the influence of outliers, we clip the individual relative errors to the range [10−3, 5].
Then, we compute the average relative error of each model𝑚 across all datasets by aggregating

the respective relative errors with a geometric mean:

AverageRelativeError𝑚 = GeometricMean

(
𝐿rel𝑚,1, . . . , 𝐿

rel

𝑚,𝐷

)
. (16)

D Computational resources

All models were trained on cloud-hosted machines with 16 vCPUs and 64GB RAM. The base

models were trained with a time limit of 30 minutes per window per model to avoid extremely long

runtimes, though the vast majority of models complete training within 5 minutes per window. The

inidividual L2 stacker models were trained as described in App. B.2, either for a fixed, pre-specified

number of steps, or until convergence within a time limit of 10 minutes. See also Tab. 11 and Tab. 12

for the median training times of the base and stacker models.

E Additional figures and tables

• Tab. 8: Full probabilistic forecasting results. SQL error values for all datasets × all methods (11

base models and 33 combination methods).

• Tab. 9: Full point forecasting results. MASE error values for all datasets × all methods (11 base

models and 33 combination methods).

• Fig. 5: Critical differences (CD) diagram for 8 representative combination methods (probabilistic

forecasting / SQL).

• Fig. 6: Critical differences (CD) diagram for 8 representative combination methods (point fore-

casting / MASE).

• Fig. 7: Distribution of relative error scores for 8 representative combination methods (probabilistic

forecasting / SQL).
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• Fig. 8: Distribution of relative error scores for 8 representative combination methods (point

forecasting / MASE).

• Tab. 11: Median training time per validation window for L1 models.

• Tab. 12: Median end-to-end training time for the ensemble models.

• Fig. 9: Weights assigned by the L3 ensemble selection algorithm to the constituent L2 stacker

models (probabilistic forecasting / SQL).

• Fig. 10: Weights assigned by the L3 ensemble selection algorithm to the constituent L2 stacker

models (point forecasting / MASE).

• Tab. 10: Normalized error for each representative combination method and dataset combination

(probabilistic forecasting / SQL).

E.1 Critical differences diagrams

1 2 3 4 5 6 7 8

Multi-layer stacking
Linear model

Greedy ensemble selection
Stacker model selection Performance-based average

Model selection
Nonlinear model
Median

CD

Figure 5: Critical differences (CD) diagram for 8 representative combination methods. Based on

probabilistic forecasting tasks (SQL metric).

1 2 3 4 5 6 7 8

Multi-layer stacking
Linear model

Greedy ensemble selection
Stacker model selection Performance-based average

Nonlinear model
Median
Model selection

CD

Figure 6: Critical differences (CD) diagram for 8 representative combination methods. Based on point

forecasting tasks (MASE metric).
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E.2 Distribution of relative errors
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Figure 7: Distribution of the relative errors for each combination method (normalized by the perfor-

mance of median aggregation). Based on probabilistic forecasting tasks (SQL metric).
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Figure 8: Distribution of the relative errors for each combination method (normalized by the perfor-

mance of median aggregation). Based on point forecasting tasks (MASE metric).
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Table 10: Normalized error of each representative combination method per dataset, relative to the best

model for that dataset (probabilstic tasks / SQLmetric). Two key observations: (1) Whenmost

stackers perform reasonably (normalized error < 1.2), multi-layer stacking typically ranks

among the top performers. (2) It underperforms when most constituent stackers—especially

nonlinear ones—produce poor forecasts.

Dataset Median Model selection Performance-based average Greedy ensemble selection Linear model Nonlinear model Stacker model selection Multi-layer stacking

ETTh 1.068 1.173 1.049 1.056 1.050 1.157 1.025 1.000

HZMETRO 1.096 1.139 1.115 1.095 1.086 1.029 1.032 1.000

LOS-LOOP 1.364 1.301 1.146 1.104 1.095 1.046 1.056 1.000

PEMS08 1.378 1.124 1.028 1.056 1.048 1.039 1.039 1.000

bdg-2-bear 1.089 1.107 1.064 1.087 1.123 1.070 1.045 1.000

bdg-2-rat 1.240 1.051 1.067 1.051 1.038 1.055 1.016 1.000

borealis 1.090 1.068 1.051 1.047 1.055 1.014 1.017 1.000

hog 1.199 1.224 1.146 1.160 1.120 1.040 1.040 1.000

ideal 1.041 1.021 1.007 1.001 1.001 1.006 1.010 1.000

m4-daily 1.007 1.042 1.029 1.029 1.005 1.479 1.007 1.000

m4-hourly 1.350 1.149 1.149 1.101 1.089 1.029 1.027 1.000

m4-monthly 1.043 1.436 1.097 1.436 1.078 2.118 1.024 1.000

m4-quarterly 1.033 1.066 1.029 1.017 1.019 1.001 1.012 1.000

m4-weekly 1.173 1.250 1.098 1.084 1.073 1.109 1.042 1.000

nn5 1.057 1.025 1.008 1.007 1.008 1.021 1.008 1.000

nn5-weekly 1.043 1.046 1.017 1.025 1.026 1.083 1.025 1.000

project-tycho 1.020 1.011 1.025 1.004 1.001 1.003 1.001 1.000

store-sales 1.022 1.000 1.013 1.001 1.007 1.012 1.007 1.000

transactions 1.124 1.103 1.063 1.049 1.048 1.047 1.015 1.000

uber-tlc-daily 1.027 1.024 1.002 1.001 1.009 1.026 1.027 1.000

SZ-TAXI 1.027 1.055 1.014 1.001 1.000 1.011 1.001 1.001

PEMS03 1.076 1.000 1.067 1.064 1.049 1.108 1.076 1.005

kdd-cup-2018 1.163 1.046 1.026 1.002 1.000 1.092 1.000 1.005

hierarchical-sales 1.011 1.009 1.013 1.003 1.000 1.037 1.000 1.005

taxi-30min 1.188 1.002 1.003 1.002 1.000 1.008 1.008 1.005

bull 1.008 1.031 1.000 1.017 1.005 1.048 1.017 1.008

uber-tlc-hourly 1.151 1.000 1.003 1.000 1.001 1.016 1.013 1.010

pedestrian-counts 1.026 1.060 1.060 1.052 1.039 1.000 1.028 1.011

ercot 1.121 1.124 1.052 1.000 1.069 1.030 1.000 1.016

traffic-weekly 1.043 1.084 1.020 1.000 1.004 1.064 1.045 1.025

taxi-1h 1.479 1.000 1.000 1.006 1.003 1.046 1.006 1.026

smart 1.030 1.054 1.000 1.032 1.032 1.121 1.032 1.027

ETTm 1.124 1.000 1.052 1.037 1.026 1.230 1.042 1.027

electricity-weekly 1.290 1.000 1.050 1.017 1.041 1.175 1.017 1.030

beijing-air-quality 1.343 1.042 1.048 1.089 1.061 1.093 1.000 1.030

wind-farms-daily 1.030 1.000 1.040 1.005 1.011 1.074 1.074 1.036

subseasonal-precip 1.151 1.127 1.126 1.078 1.058 1.000 1.053 1.037

electricity-hourly 1.245 1.000 1.043 1.040 1.046 1.090 1.040 1.037

cdc-fluview-ilinet 1.072 1.077 1.000 1.015 1.027 1.201 1.110 1.048

BEIJING-SUBWAY-30MIN 1.055 1.607 1.466 1.072 1.073 1.000 1.090 1.051

bdg-2-panther 1.173 1.000 1.129 1.069 1.082 1.157 1.144 1.064

fred-md 1.000 1.127 1.011 1.015 1.000 1.009 1.088 1.068

SHMETRO 1.000 1.018 1.017 1.022 1.015 1.094 1.094 1.075

kdd2022 1.034 1.382 1.226 1.341 1.120 1.000 1.140 1.140

gfc12-load 1.077 1.299 1.023 1.000 1.060 1.361 1.133 1.140

bdg-2-fox 1.555 1.000 1.335 1.152 1.150 1.111 1.152 1.150

M-DENSE 1.058 1.052 1.009 1.000 1.071 1.270 1.270 1.159

australian-electricity 1.076 1.000 1.141 1.264 1.218 1.484 1.277 1.321

gfc17-load 1.000 2.568 1.179 1.317 1.464 1.385 1.991 1.447

solar-10-minutes 1.000 1.583 1.576 1.096 1.163 2.945 2.945 2.158

Table 11: Median training time for L1 models per one validation window (in seconds) for probabilistic

tasks.

Model Duration (seconds)

AutoETS 14

Chronos 8

DLinear 26

DeepAR 149

DirectTabular 233

Theta 8

PatchTST 63

RecursiveTabular 51

SeasonalNaive 1

TFT 204

TiDE 176
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Table 12: Median end-to-end training time for ensemble models (in seconds) for probabilistic tasks.

Model Duration (seconds)

Simple Average (Mean) 1

Simple Average (Median) 1

Model Selection 1

Performance-based (Exp.) 2

Performance-based (Inv.) 2

Performance-based (Sqr.) 2

Greed (S=10) 2

Greedy (S=100) 11

Greed (S=1000) 70

Linear (m, softmax) 15

Linear (m, positive) 13

Linear (mi, softmax) 7

Linear (mi, positive) 34

Linear (miq, softmax) 12

Linear (miq, positive) 44

Linear (mit, softmax) 12

Linear (mit, positive) 44

Linear (mitq, softmax) 30

Linear (mitq, positive) 77

Linear (mq, softmax) 11

Linear (mq, positive) 15

Linear (mqq, softmax) 10

Linear (mqq, positive) 33

Linear (mt, softmax) 7

Linear (mt, positive) 31

Linear (mtq, softmax) 13

Linear (mtq, positive) 52

LightGBM 25

LightGBM (scaled) 26

RealMLP 200

RealMLP (scaled) 207

Stacker Model Selection 484

Multi-layer Stacking 721
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Figure 9: Weights assigned by the L3 ensemble selection algorithm to the L2 stacker models over 50

probabilistic forecasting tasks.
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Figure 10: Weights assigned by the L3 ensemble selection algorithm to the L2 stacker models over 50

point forecasting tasks.
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