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Abstract: While natural language offers a convenient shared interface for humans1

and robots, enabling robots to interpret and follow language commands remains a2

longstanding challenge in manipulation. A crucial step to realizing a performant3

instruction-following robot is achieving semantic manipulation — where a robot4

interprets language at different specificities, from high-level instructions like ‘Pick5

up the stuffed animal’ to more detailed inputs like ‘Grab the left ear of the elephant.’6

To tackle this, we propose KITE: Keypoints + Instructions to Execution, a two-7

step framework for semantic manipulation which attends to both scene semantics8

(distinguishing between different objects in a visual scene) and object semantics9

(precisely localizing different parts within an object instance). KITE first grounds10

an input instruction in a visual scene through 2D image keypoints, providing a11

highly accurate object-centric bias for downstream action inference. Provided an12

RGB-D scene observation, KITE then executes a learned keypoint-conditioned skill13

to carry out the instruction. The combined precision of keypoints and parameterized14

skills enables fine-grained manipulation with generalization to scene and object15

variations. Empirically, we demonstrate KITE in 3 real-world environments: long-16

horizon 6-DoF tabletop manipulation, semantic grasping, and a high-precision17

coffee-making task. In these settings, KITE achieves a 75%, 70%, and 71% overall18

success rate for instruction-following, respectively. KITE outperforms frameworks19

that opt for pre-trained visual language models over keypoint-based grounding, or20

omit skills in favor of end-to-end visuomotor control, all while being trained from21

fewer or comparable amounts of demonstrations. Supplementary material, datasets,22

code, and videos can be found on our website.123
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1 Introduction25

Language has the potential to serve as a powerful communication channel between humans and robots26

in homes, workplaces, and industrial settings. However, two primary challenges prevent today’s27

robots from handling free-form language inputs. The first is enabling a robot to reason over what to28

manipulate. Instruction-following requires not only recognizing task-relevant objects from a visual29

scene, but possibly refining visual search to specific features on a particular object. For instance,30

telling a robot to “Open the top shelf” vs. “Yank open the bottom shelf” of a cabinet requires not only31

parsing and resolving any liberties taken with phrasing and localizing the cabinet in the scene (scene32

semantics), but also identifying the exact object feature that matters for the task — in this case the33

top or bottom handle (object semantics). In this work, we refer to instruction-following with scene34

and object awareness as semantic manipulation. Similarly, pick-and-place is a standard manipulation35

benchmark [1, 2, 3, 4], knowing how to pick up a stuffed animal by the ear versus leg, or a soap bottle36

by the dispenser versus side requires careful discernment. After identifying what to manipulate, the37

second challenge is determining how the robot can accomplish the desired behavior, i.e., low-level38

sensorimotor control. In many cases, low-level action execution requires planning in SE(3) with 639

degrees-of-freedom (DoF), such as reorienting the gripper sideways to grasp and pull open a drawer.40

1https://tinyurl.com/kite-manip

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://sites.google.com/view/kitemanip/home


Figure 1: Real-World Semantic Manipulation Environments: We visualize our semantic manipulation
framework KITE on three real-world environments: long-horizon instruction following, semantic grasping,
and coffee-making. Using keypoint-based grounding, KITE contextualizes scene-level semantics (‘Pick up the
green/red/blue/brown coffee pod’) as well as object-level semantics (‘Pick up the unicorn by the leg/ear/tail’,
‘Open the cabinet by the top/middle/bottom shelf’) and precisely executes keypoint-conditioned skills.

Going beyond grasping, we want robots to assist us in many daily real-world tasks which may require41

even finer-grained precision. Making coffee, for example, is a simple daily task for humans, but for a42

robot it involves complex steps like reorienting a mug from sideways to upright or carefully inserting43

a coffee pod into an espresso machine. Thus to achieve semantic manipulation, robots must extract44

scene and object semantics from input instructions and plan precise low-level actions accordingly.45

Leveraging advances in open-vocabulary object detection [5, 6, 7, 8], prior works in language-based46

manipulation determinine what to manipulate via bounding boxes or keypoints obtained from pre-47

trained [9] or fine-tuned vision language models (VLMs) [10]. So far, these works operate at the48

level of scene semantics (distinguishing amongst objects) rather than object semantics (identifying49

within-object features). In addition, these works do not apply VLMs to any complex manipulation50

beyond simple pick-and-place. To address these shortcomings, follow-up works couple the what51

and how subproblems together and learn end-to-end 6-DoF language-conditioned policies from52

demonstrations [11, 12, 13]. However, learning high dimensional action spaces from raw sensor inputs53

such as images or voxelized scene representations can require excessive amounts of data [12, 13] and54

can be difficult in high-precision tasks especially when using discretized actions [11].55

Between approaches that leverage pre-trained visual representations from off-the-shelf VLMs, and56

those that plan directly from pixels or voxels, we lack an intermediate object-centric representation57

that can link natural language to scene and object semantics. Prior work has demonstrated that58

open-vocabulary VLMs can address scene semantics to some extent by locating different objects with59

coarse bounding boxes [9], but these representations are still too granular to precisely locate parts60

on objects. A suitable visual representation would be one that can represent both across-object or61

within-object features, and is interpretable enough to inform downstream 6-DoF action planning. We62

argue that keypoints provide this happy medium by offering a way to precisely pinpoint objects at63

the scene-level or even features within an object (what) and a way to condition downstream 6-DoF64

manipulation (how) on a region of interest.65

In this work, we present KITE: Keypoints + Instructions To Execution, a flexible framework for66

semantic manipulation. KITE is decoupled into a grounding policy which maps input images and67

language commands to task-relevant keypoints, and an acting module which employs keypoint-68

conditioned skills to carry out low-level 6-DoF actions. We show that KITE can be trained from just69

a few hundred annotated examples for the grounding model, and less than 50 demos per skill for the70

acting module, while outperforming and generalizing better than methods that do not make use of71

either keypoints or skills. We experimentally evaluate KITE on semantic manipulation across three72

challenging real-world scenarios with varying tiers of difficulty: 6-DoF tabletop manipulation, se-73

mantic grasping, and coffee-making (Figure 1). Results indicate that KITE demonstrates fine-grained74

instruction following, while exhibiting a capacity for long-horizon reasoning and generalization.75
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2 Related Work76

Language-Based Manipulation: Many recent works ground language to manipulation skills as a77

means for long-horizon instruction following. Several methods learn language conditioned policies78

end-to-end using imitation learning; however, end-to-end learning can require many demonstrations79

and can be brittle to novel scenes or objects [12, 11, 14, 15, 16, 17, 18, 19, 10, 20]. To improve sample80

efficiency, Shridhar et al. [11] predicts robot waypoints rather than low-level actions, conditioned81

on language and point cloud inputs. Waypoints alone do not specify how to go from one waypoint82

to another, and thus fail to capture dynamic tasks such as peg insertion or pouring motions. Other83

works take a hierarchical approach that first learn or define a library of language-conditioned skills,84

and then plan over skills with large language models (LLM) [21, 22, 23, 24, 25, 26]. However, each85

skill often requires hundreds of demonstrations. In addition, the LLM planner can only reason about86

the scene at a high level, lacking visual grounding. Alternatively, Liang et al. [27] query the LLM to87

generate code using an API for low-level skills, but predicting continuous parameters of these skills88

is challenging for an ungrounded LLM limiting this approach to tasks that do not require precision or89

dexterity. Vision-Language Models (VLM) are often proposed to ground LLM planners. For instance,90

Stone et al. [28] leverage a pretrained VLM to identify task-relevant objects from language. However,91

this approach has also been limited to pick and place tasks suggesting that today’s pretrained VLMs92

struggle with more precise language instructions. In contrast, KITE maps language and vision directly93

to desired keypoints, enabling precise and semantic manipulation over long horizons.94

Skill-Based Manipulation: Many prior works study multi-task manipulation by defining skills to95

represent sub-tasks, and then composing these skills over long horizons. These skills can either be96

learned to output each action or parameterized by expert-defined features. In reinforcement learning97

(RL), hierarchy can be imposed on the policy to learn both skills and composition end-to-end, but98

these methods can be sample inefficient and rarely integrate well with natural language [29, 30, 31].99

Other RL works parameterize skills to reduce the action space size for sample efficiency, but these100

skills are usually rigid and cannot generalize to new settings [32, 33, 34]. Imitation learning (IL) aims101

to learn skills from demonstrations in a more sample efficient manner than RL, but these skills still102

fail to generalize to scene perturbations [35, 36]. Furthermore, in both IL and RL, connecting learned103

skills to precise language in a generalizable fashion is an open challenge. KITE avoids learning skills104

from scratch and instead defines a library of keypoint-conditioned skills, where the exact parameters105

of each skill are learned from demonstration. We show that keypoint-conditioned skills are sample106

efficient to learn and generalizable to new objects, while also easily integrated with precise language.107

Keypoints for Manipulation: Keypoints have emerged in the literature as a more robust skill108

representation for manipulation [37, 10]. Keypoints are 2D points on images that serve as a natural109

intermediary between images and low-level behaviors. Several methods use keypoints to force the110

model to attend to the most important features in the input images [37]. Others predict keypoints111

and then translate keypoints into 3D points, or directly predict 3D points, to parameterize low level112

behaviors in a general and visually-grounded fashion [38, 10, 39, 40]. For example, Shridhar et al.113

[10] parameterize pick and place tasks using keypoints learned with image supervision, showing that114

this keypoint abstraction generalizes better to new objects. Keypoint action spaces have also helped115

in deformable object manipulation, for example in the domains of cloth folding, rope untangling,116

and food manipulation [41, 42, 43, 44, 45]. For many of these prior works, keypoints have yet to be117

integrated with language, and the methods that are linked to language are limited to a small library of118

primitives, usually focusing only on pick and place scenarios. Our approach defines a much broader119

library of keypoint-conditioned skills, and integrates keypoints with complex language instructions.120

3 KITE: Keypoints + Instructions To Execution121

In this work, our goal is to train an instruction-following agent capable of performing semantic122

manipulation at both scene and object-level granularity. We accomplish this with KITE, a sample-123

efficient and generalizable framework operating in two stages: grounding language into keypoints124

and acting on those keypoints. In this section, we first formalize the semantic manipulation problem125

(Section 3.1), discuss data collection (Section 3.2), and then discuss the training procedures for the126

grounding (Section 3.3) and acting modules (Section 3.4).127
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Figure 2: KITE System Overview: KITE receives an image observation It along with user instruction it and
grounds these inputs to a 2D semantic keypoint in the image. After inferring which skill type lt is appropriate
from a set of skill labels, KITE takes an RGB-D point cloud observation Pt, annotated with the deprojected
keypoint Mt, and infers the appropriate waypoint policy π for execution. After executing this action, KITE
replans based on a new observation (It+1, it+1) and repeats the whole process.

3.1 Semantic Manipulation Problem Formulation128

We aim to tackle instruction-following with scene and object-level semantic awareness using a library129

of skills. We assume each skill can be parameterized by 6-DoF waypoints, and we decouple each130

skill into a waypoint policy π and controller ρ to move between waypoints in a task-specific manner.131

Additionally, we assume each skill can be represented by a skill label l, e.g., pick, open, etc. We132

construct a library L of M specialized skills where L = {l1 : (π1, ρ1), . . . , lM : (πM , ρM )} maps133

from a skill label to an underlying policy π and controller ρ.134

We assume access to multiple calibrated cameras that provide RGB and depth. We assume that at135

least one “grounding” camera can partially see all relevant objects. An observation ot = (It,Pt)136

where It ∈ RW×H×3 is the image from the grounding camera, and Pt ∈ RD×6 is a multi-view137

point cloud. We denote low-level robot actions at = (x, y, z, ψ, θ, ϕ) at time t which consist of the138

end-effector position, yaw, pitch, and roll. We denote waypoints as κ which is also a 6-DoF pose, but139

represents a high-level pose (e.g., grasp pose for pick) rather than a low-level action.140

At time t, given an instruction it, we want to know which skill to execute by associating it to a141

corresponding skill label lt ∈ {l1, . . . , lM}. Next, we aim to infer a 2D keypoint [u, v] in the current142

visual observation ot which grounds it to an associated object or object part. Finally, the chosen143

skill (π, ρ) = L[lt] is executed (Figure 2). For each skill, we want to find a waypoint policy π144

that takes as input the visual observation ot and 2D keypoint [ut, vt] and outputs K waypoints:145

π : (ot, [ut, vt]) → {κ1, . . . , κK}. Then, the associated controller ρ can output a low-level trajectory146

between waypoints ρ : {κ1, . . . , κK} → τ = {(ot, at), . . . , (ot+T−1, at+T−1)} (i.e. via linear147

interpolation, motion planning, etc.) for the robot to execute. For multi-step manipulation tasks, we148

restart the above process at each step with the new observation ot+T and paired language input it+T .149

We consider instructions which refer to scene semantics, such as specifying desired spatial rearrange-150

ments of objects (e.g. “Pick up the lemon”), and object semantics, which reference desired object151

parts to be manipulated (e.g. “Grab the kangaroo stuffed animal by the tail”). As we do not assume152

access to the interaction history, our space of feasible language inputs excludes post-hoc feedback153

(“Pick up the other marker”) or online-corrections (“No, to the left!”), which we leave to future work.154

Next we outline how KITE learns to predict keypoints (grounding) and learns each skill π (acting).155

3.2 Demonstration Collection156

To learn both the grounding and acting modules, we collect a dataset Dπ consisting of N expert157

demonstrations per skill. Each demonstration has an initial observation, a list of K waypoints,158

and a language instruction: Dπ =
{
(on, {κ1n . . . κKn }, in) : n ∈ {1, . . . , N}

}
. For instance, for a159

pick skill, we record the initial image and point cloud, provide an instruction (e.g., ‘Pick up the160

lemon’), and then kinesthetically move the robot and record each end-effector waypoint. We use the161

calibrated robot-to-camera transformation to automatically project each robot end-effector pose κjn to162

2D coordinates [un, vn] in the image plane of the camera used for grounding. For each skill, we train163

the acting module from Dπ . Aggregating across all skills yields a dataset of paired images, keypoint164

annotations, and language instructions with which to train the grounding module.165
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3.3 Grounding Module166

The grounding module learns to identify 2D keypoints from RGB images that correspond to object167

features mentioned in an input instruction. We draw inspiration from recent works which use explicitly168

supervised [10, 38] or self-supervised keypoint attention networks [37, 46] to implement a grounding169

model Qground. Specifically, we learn a grounding function Qground(u, v, It, it) representing the170

likelihood of keypoint [u, v] given image It and paired language instruction it. In this work, we171

attempt to learn a single-step look-ahead grounding function that takes a language input (e.g. “Put172

the lemon into the cabinet”) and outputs the most immediately relevant keypoint (e.g. the pixel for173

the lemon if not already grasped, otherwise the pixel for the cabinet drawer to be placed) (see Fig. 2).174

Given this grounding function Qground, we infer the 2D pixel in the image with highest likelihood:175

[ut, vt] = argmax
u,v

Qground(u, v, It, it) (1)

In practice, we implement Qground using the two-stream architecture from [10] which fuses pre-176

trained CLIP [47] embeddings of visual and textual features in a fully-convolutional network to177

output a heatmap of Qground. The grounding function is trained with a binary cross-entropy loss178

between the predicted heatmaps and 2D Gaussian heatmaps centered at the ground-truth pixel.179

3.4 Acting Module180

Although keypoints can pinpoint both scene and object semantics, they critically lack the 3D geometric181

context necessary to recover precise 6-DoF actions for a given task. For instance, the command182

“Pick up the bowl” may result in a predicted keypoint located at the bottom of a bowl, where there183

is no feasible grasp The exact 6-DoF actions are also dependent not just on the keypoint, but also184

language: “pick the lemon” and “cut the lemon” have similar keypoints but require completely185

different actions. We need a way to refine a predicted keypoint into candidate 6-DoF actions based on186

a desired language command, which we discuss next.187

Skill Selection: Given a free-form language instruction, KITE first leverages the knowledge of LLMs188

to determine the appropriate skill label (e.g. it =“Put the lemon in the cabinet” should result in189

the LLM outputting l̂t = ‘pick place’), following prior work [48, 21]. The procedure entails190

prompting the LLM, in our case OpenAI’s text-davinci-003 [49], with in-context examples191

of instructions and the appropriate skill type (see Appendix B.3 for examples of our prompting192

strategy). At test-time, we concatenate the example prompt with instruction it and generate skill label193

l̂t ∈ {l1, . . . , lM} using the LLM. Then, we obtain the skill, consisting of the waypoint policy π and194

controller ρ via lookup in the library: (π, ρ) = L[l̂t].195

Learning Waypoint Policies: Given the keypoint [ût, v̂t] predicted by the grounding module and196

skill label l̂t, we need to learn a waypoint policy π to perform the skill. KITE learns π for each skill197

from demonstrations of keypoints {κ1, . . . , κK} . The waypoint policy π takes a point cloud Pt and198

keypoint [ût, v̂t] as input, and aims to output K waypoints {κ1, . . . , κK} to execute the chosen skill.199

In KITE we align both 3D point cloud and a 2D keypoint representations by “annotating” Pt with the200

keypoint. We do this by first taking the depth image Dt from the same view as It, and deprojecting201

all nearby pixels within a radius R: KR = {[u, v] ∈ It, ∥[u, v]− [ût, v̂t]∥ < R} to their associated202

3D points PR = {(x, y, z) = deproject(u, v), ∀(u, v) ∈ KR}. This yields a set of “candidate”203

points to consider for interaction. In the bowl grasping example, PR would be points on the bottom204

of the bowl. Next, we augment the point cloud Pt with a 1-channel mask Mt ∈ RN×1 (Fig. 2).205

For any point (x, y, z) ∈ Pt, the mask channel label is 1 if (x, y, z) ∈ PR (i.e., the point is in close206

proximity to the deprojected keypoint) and 0 otherwise.207

Given the pointcloud and keypoint mask, KITE predicts all K waypoints relative to individual points208

in the point cloud. For each point, we classify which of the K waypoints it is nearest to, along209

with the offset to the desired 7-DoF end-effector pose (position and quaternion) for each of the K210

waypoints. To do so, we adapt the PointNet++ [50] architecture, and define Qπ : (Pt,Mt) → Pπ211

where Pπ ∈ RN×d and d = K × (1 + 3 + 4). Continuing the example of grasping a bowl, the212

predicted pose offsets for each point on the bottom of the bowl (ungraspable) should lead to the213

bowl rim (graspable). See Appendix A for more details about the actor. We supervise Qπ using the214
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following per-point loss:215

Lskill = λclsCE(k̂, k) + λori(1− ⟨q̂k̂, qk⟩) + λposL1([x̂k̂, ŷk̂, ẑk̂], [xk, yk, zk]) (2)

The first term corresponds to the 1-hot cross-entropy classification loss between the predicted216

waypoint index k̂ and the true nearest waypoint index k. The remaining terms supervise the predicted217

gripper orientation and position using waypoint κk for only the points that have classification label k,218

so as to only penalize points that matter (are in close proximity) to the κk.219

Action Module Inference: At test time, given a point cloud Pt with associated keypoint mask220

Mt, we use Qπ to obtain P̂π. By taking the highest likelihood point for each of the K indices221

(representing the points nearest each of the K waypoints). Then, we index the predicted end-effector222

poses in P̂π by these K indices, resulting in K waypoints {κ̂1, . . . , κ̂K}. Finally, we obtain the final223

trajectory to carry out the skill with using the skill-specific controller: τ = ρ({κ̂1, . . . , κ̂K}).224

In summary, KITE’s full pipeline first grounds a language command it in an observation ot via225

Qground to infer keypoints (Section 3.3), infers the skill label lt (Section 3.4), maps the label to a226

skill and controller (π, ρ) = L[lt], then and executes π and ρ, and finally replans.227

4 Experiments228

In this section, we aim to answer the following questions: (Q1) How well does KITE handle scene229

semantic instructions? (Q2) How well does KITE handle precise object-semantic instructions? (Q3)230

Does KITE’s scene and object semantic awareness generalize to unseen object instances? and (Q4)231

Can KITE’s primitives capture precise and dexterous motions beyond pick and place? We first outline232

KITE’s key implementation details and the baseline methods we benchmark against. Finally, we233

analyze KITE’s comparative and overall performance across three real-world environments which234

stress test scene and object-aware semantic manipulation (Section 4.1).235

Implementation Details: Across all evaluation environments, we specify a library of skills and236

collect 50 kinesthetic demonstrations per-skill. In order to improve precision of the grounding module,237

and because keypoint supervision is easy to obtain compared to kinesthetic teaching, we supplement238

the grounding dataset obtained from kinesthetic data collection by manually labeling a small amount239

of images with paired language instructions (0.75:1 supplemental to original samples ratio). We240

implement the grounding module according to the architecture from [10] and each waypoint policy241

in the acting module as a PointNet++ backbone [50] with a point cloud resolution of 20K points. See242

Appendix A for more details.243

Baselines: We benchmark KITE’s performance against two state-of-the-art instruction-following244

frameworks. The first is PerAct [11], which trains a PerceiverIO [51] transformer backbone to245

predict waypoint poses end-to-end conditioned on a voxelized scene representation and language. In246

comparing against PerAct, we hope to understand whether KITE’s use of keypoint-parameterized247

skills can offer better precision over end-to-end actions. To understand the value of keypoint-based248

grounding over frozen representations obtained from VLMs, we compare to RobotMoo [9], which249

extends a library of language-conditioned skills to additionally condition on segmentation masks250

from an open-vocabulary object detector. Since exact models and data were not released, we use a251

state-of-the-art VLM and our set of learn skills for RobotMoo. See Appendix A.3 for more details.252

4.1 Real-World Evaluation253

We explore three real-world manipulation environments that provide a rich testbed to explore KITE’s254

sensitivity to scene and object semantics. Task variations are detailed in Appendix B.1. Across all255

experimental trials, we use a Franka Emika 7DoF robot and 3 Realsense D435 RGB-D cameras.256

Tabletop Instruction-Following: We train a library of four skills: {pick, place, open, close}257

to reorganize a tabletop environment with 15 different household objects and an articulated storage258

organizer with three pull-out drawers (see Figure 1, Appendix B.1). While we do not test on259

completely unseen objects, we randomly vary the positions of objects on the table and the degree of260

clutter by adding distractor objects to the scene.261

Table 1 compares KITE against PerAct and RobotMoo in this setting. We evaluate all approaches262

with 12 trials of instruction-following across three tiers of difficulty, ranging from a few objects on263
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the table and fairly straightforward language instructions (Tier 1), a visually cluttered table (Tier 2),264

and a cluttered table with more ambiguous instructions (Tier 3). See Appendix B.1 for examples of265

the objects considered and variations across tiers.266

Figure 3: Semantic Grasping Experimental Setup:
We evaluate KITE on semantic grasping across rigid
tools, deformable objects, and articulated items. We
show 17 of the 20 objects tested along with ground-
truth semantic labels for different features. The top row
includes objects seen during grounding module training,
and the bottom consists of unseen object instances.

We first evaluate individual actions (open,267

close, pick), finding KITE to be the most ro-268

bust and repeatable. KITE’s use of precise key-269

point grounding enables scene semantic aware-270

ness (Q1) over different objects (pick, place)271

and object semantic understanding (Q2) by dis-272

tinguishing amongst different drawer handles273

with the open and close skills. PerAct’s disad-274

vantage is its discrete visual space, where any275

slight 1-off voxel predictions can make it diffi-276

cult to grasp objects or cabinet handles. Due to277

the weak classification objectives it is trained278

on, its most common failure mode is misclassi-279

fied gripper opening/closing actions. These fail-280

ures are alleviated by the parameterized skills281

used in KITE and RobotMoo. Unsurprisingly,282

RobotMoo does well at grasping different ob-283

jects referenced in language, as VLMs trained284

on internet-scale data have strong object priors.285

Still, RobotMoo struggles with object semantics like the distinction amongst top, middle, or bottom286

drawers when opening or closing. We find that KITE is also the most competitive framework for287

long-horizon sequential reasoning (last two columns in Table 1), and the most common failures still288

include grasping the wrong object or with slightly misaligned gripper poses. RobotMoo’s inability to289

reason over multiple cabinet handles for opening and closing impedes its long-horizon performance,290

whereas PerAct’s compounding precision errors render long horizon tasks especially difficult.291

open close pick pick→place open→pick→
place→close

Tier 1
KITE 1 0.92 0.83 0.75 0.75
RobotMoo 0.33 0.41 0.75 0.41 0.08
PerAct 0.08 0.5 0.33 0.08 N/A

Tier 2 KITE 1 0.83 0.76 0.66 0.42
RobotMoo 0.36 0.36 0.55 0.36 0.09

Tier 3 KITE 0.75 0.83 0.58 0.66 0.58
RobotMoo 0.33 0.42 0.5 0.42 0.0

Table 1: Tabletop Instruction Following Results: Across 12 trials per method per tier, KITE outperforms
both RobotMoo and PerAct for individual actions (open, close, pick) and chaining together up to four actions
in sequence. We test all approaches on Tier 1 (fewer objects, straightforward language), Tier 2 (more objects,
straightforward language), and Tier 3 (more objects, more free-form language). KITE’s use of parameterized
skills gives it an edge with precision over PerAct, which is highly susceptible to one-off voxel predictions. This
makes skills like opening and picking especially hard, and renders the approach virtually ineffective for higher
complexity tiers (2 and 3). RobotMoo is the most competitive approach to KITE, but its main pitfall is a lack of
object semantic awareness such as distinguishing amongst different-level cabinet handles.

Semantic Grasping: Aside from recognizing and manipulating different objects, we explore in292

greater detail whether KITE can perform object-semantic manipulation (Q2). We evaluate KITE293

on the task of semantic grasping, with instructions of the form “Pick up the X by the Y” (i.e.294

‘stuffed bear’ and ‘ear’; ‘marker’ and ‘cap’; ‘shoe’ and ‘laces’) (examples in Fig. 1). For these trials,295

we train Qground on a subset of rigid tools, deformable items, and articulated items (Fig. 3) and296

retain the keypoint-conditioned pick skill from Section 4.1. We summarize the findings in Table 2297

with 26 trials per category of items, noting that KITE can achieve precise semantic grasping with298

generalization to unseen object instances (Q2, Q3). We omit a comparison to PerAct as its difficulties299
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with pick-and-place in the tabletop environment are only exacerbated in the semantic grasping setting300

where specific intra-object features matter. In the trials summarized in Table 2, KITE outperforms301

RobotMoo, suggesting the utility of keypoints to pinpoint specific object parts compared to coarse302

segmentation masks or bounding boxes output by VLMs. We also observe that the majority of KITE’s303

failures in this setting are due to misinterpretations with symmetry (i.e. grasping the left instead of304

right handle of the pliers), rather than a completely erroneous keypoint as is common in RobotMoo.305

We posit that this could be alleviated with more diverse data of object semantic variations.306

Rigid Tools Deformable Objects Articulated Items Failures
A B C

Seen Instances KITE 0.77 0.77 0.70 5 3 3
Unseen Instances KITE 0.70 0.54 0.70 4 5 4
All RobotMoo 0.23 0.35 0.19 2 36 7

Table 2: Semantic Grasping Results: Across 20 total objects, 3 diverse object categories, and 26 trials per
method per category, KITE achieves the highest rate of pick success for various object semantic features (Fig. 3),
and with the least severity of failures. We categorize failure modes as follows, with (A) denoting a symmetry
error (picking the left instead of right handle), (B) representing a grounding error with an erroneous keypoint
prediction, and (C) indicating a manipulation failure (wrong inferred orientation or slip during grasping).

reorient mug pour cup refill keurig load pod

KITE 8/12 9/12 8/12 9/12

Table 3: Coffee-Making Results: KITE handles fine-grained manipulation
across 4 skills requiring highly precise manipulation.

Coffee-Making: Finally, we307

seek to answer whether KITE308

can execute fine-grained be-309

haviors from instructions (Q4)310

by studying a coffee-making311

scenario with four skills: {reorient mug, pour cup, refill keurig, load pod} (examples in312

Fig. 1). We evaluate on the same object instances seen in training, but subject to spatial variations313

and language variations (i.e. ‘Place the blue/red/green/brown pod in the machine’, ‘Pour the red/grey314

pitcher into the mug/Keurig refill area,‘Place the cup/mug that’s sideways right-side-up.’). Even for315

these very fine-grained motions, KITE is able to follow instructions with 67-75% success (Table 3).316

The main failures reside with low-level control errors rather than grounding, such as partial coffee317

pod insertion, misaligned mugs and pitchers during pouring, or slippage during mug reorientation.318

This suggests that the individual skills could benefit from scaling up demonstration collection, while319

retaining the existing grounding modules.320

5 Discussion321

Summary In this work, we present KITE a framework for semantic manipulation that identifies 2D322

task-relevant keypoints and extrapolates 6-DoF actions accordingly. By leveraging 2D keypoints323

to precisely localize semantic concepts, KITE is adept at recognizing semantic labels both across324

different object instances and on different regions within the same object. KITE does action-planning325

by drawing from a library of parameterized skills. Empirically, we find that KITE surpasses existing326

language-based manipulation frameworks along the axes of scene semantic awareness and object327

semantic awareness. We also find that KITE can be trained from orders of magnitude less data and328

with large precision gains over end-to-end approaches, while exhibiting an ability to generalize and329

operate over extended horizons. Finally, we show that KITE offers a flexible interface for instruction-330

following, including tabletop rearrangement, fine-grained grasping, and dexterous manipulation.331

Limitations and Future Work One limiting factor of KITE is its reliance on building a library332

of skills. However, we show that a relatively small library of keypoint-parameterized skills is333

expressive enough to accomplish many standard manipulation tasks with object variations over an334

extended horizon. Additionally, KITE requires less than 50 demonstrations per new skill, meaning335

that adding new skills is fairly straightforward. We also note that KITE’s grounding module is336

trained from scratch. As VLMs continually improve and in the future may be able to pinpoint337

keypoints in images, it would be interesting to replace or enhance KITE’s grounding module with338

these models. Additionally, we acknowledge that KITE currently executes skills in an open-loop339

manner as parameterized by waypoints. In, the future, we are excited to extend KITE’s skills with340

closed-loop feedback and extend the complexity of these skills to even more dexterous settings.341
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KITE: Keypoints + Instructions To Execution482

Supplementary Material483

In this section, we outline additional details regarding the implementation of KITE, the real-world484

environments studied, and qualitative results of all methods. Please refer to our website to see the485

task diversity we evaluate on and for additional results and videos of KITE performing real-world486

semantic manipulation.487

A Implementation Details488

A.1 KITE489

As discussed in Section 3.4, KITE trains a PointNet++ model to output all K relative waypoints and a490

one-hot waypoint index for each point in the point cloud. The auxiliary one-hot classification output491

layer classifies which waypoint each point in the point cloud is most relevant for manipuation (nearest492

to). In practice, many skills like pick or place can be parameterized by just K = 1 waypoint (where493

to grasp, where to place). In this case, the 1-hot classification output is reduced to binary classification494

of which points are near the graspable object or target location, respectively. For more general skills495

parameterized by K waypoints, we can supervise the K-th end-effector pose predictions per-point by496

taking the loss of the predicted and ground truth gripper pose for that point compared to ground truth.497

This loss is provided in the main text in Eq. (2).498

Figure 4: KITE Grounding Predictions: KITE’s grounding model is able to accurately predict keypoints
for both scene semantic instructions (e.g., “grab the lemon” and “put the green pod in”) and object semantic
instructions (e.g., “shut the top drawer” and “take a peek at the 2nd shelf”.

To artificially scale the data KITE’s grounding module is trained on, we apply various random499

colorspace and affine transformations to the dataset collected with all skills to 8X the overall data500

size before training. We train the grounding module and each skill policy using the Adam optimizer501

with learning rate 0.0001, which takes 3 hours and 1 hour on an NVIDIA GeForce GTX 1070 GPU,502

respectively.503
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A.2 PerAct504

For each evaluation environment, we consolidate each of the skill datasets used to train KITE into505

one multi-task dataset with which to train PerAct. The input to PerAct is a 753 voxel grid (although506

the original PerAct implementation used a 1003 voxel resolution, we adjust our workspace bounds507

accordingly to retain the same voxel resolution). We represent waypoints as 1-hot encodings in this508

voxel grid, end-effector orientations as a discrete prediction over 5 bins each for yaw, pitch, and roll,509

and the gripper open/closed state as a binary indicator variable as in [11]. For each environment, we510

train PerAct for 7200 iterations.511

Figure 5: PerAct Predictions: We visualize PerAct predictions on the task of opening a cabinet with multiple
drawers. Although PerAct exhibits some reasonable predictions (last column), it struggles with localizing the
correct handle (1st, 3rd columns). Even when localizing the correct handle (2nd column), the slight imprecision
of the predict vs. ground truth action can lead to downstream manipulation failure.

A.3 RobotMoo512

We note that the original implementation of RobotMoo leveraged the RT-1 [13] skill learning513

framework. This set of skills were trained with months of data collection, amassing thousands of514

trajectories for 16 object categories, and RobotMoo further extended these policies to 90 diverse object515

categories. As this is not reproducible in our setting, we implement RobotMoo by using KITE’s516

library of skills, but conditioning them on VLM predictions instead of our keypoints. Specifically,517

while the original RobotMoo implementation used OwLViT, we use the more recent state-of-the-art518

open vocabulary object detectors Grounding DINO [8] and Segment Anything [52] in conjunction to519

obtain segmentation masks for objects referenced in an input instruction. We take the center pixel520

coordinate of these segmentation masks as input to our acting module rather the output of Qground.521

Figure 6: RobotMoo Predictions: We visualize the predictions for RobotMoo’s perception stack on tabletop
instruction following images. Although RobotMoo exhibits decent scene awareness and an ability to localize
different object instances, it struggles with object semantics. Specifically, RobotMoo struggles to localize all the
different drawers in the scene, let alone distinguish amongst the top vs. middle vs. bottom handles.

B Real-World Experimental Details522

B.1 Task Variations523

For each real environment used in evaluation, we stress-test all methods across task variations ranging524

from diversity in the input language instructions to amount of clutter and distractor objects. We525

summarize each axis of variation for long-horizon tabletop instruction following (Table 4), semantic526

grasping (Table 5), and coffee-making (Table 6) below.527

B.2 Primitive Instantiations528

In this section, we describe the instantiation of our library of skills for each real-world environment:529
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Tier Skill Variations
Language Scene

1

open ‘Open the [top/middle/bottom] cabinet’ randomized position of cabinet
close ‘Close the [top/middle/bottom] drawer’ randomized position of cabinet
pick ‘Pick up the [lemon/screwdriver/lego/bowl/expo marker] randomized object positions
place ‘Put the [...] [away, in the [...] drawer, in the bowl]’ randomized object positions

1

open ‘Open the [top/middle/bottom] cabinet’ randomized position +
distractor objects (clothes strewn)

close ‘Close the [top/middle/bottom] drawer’ randomized position +
distractor objects (clothes strewn)

pick ‘Pick up the [lemon/screwdriver/lego/bowl/expo marker, randomized position + scene clutter
eggplant, carrot, corn, lime, scissors,

ketchup, coffee pod]
place ‘Put the [...] [away, in the [...] drawer, in the bowl]’ randomized object positions

+ scene clutter

3

open ‘Yank open the top drawer’ randomized position +
‘Give the 2nd drawer a tug’ distractor objects (clothes strewn)

‘Take a peek at the 3rd drawer pls’
‘Can you check the top drawer?’

close ‘Close it’ distractor objects (clothes strewn)
‘Give it a push’

‘Let’s shut the drawer’
‘Go ahead and close the top drawer’

‘Close any open drawer’
‘The one 3rd from the bottom needs to be shut’

pick ‘Grab me the [...]’ randomized object positions
‘Do me a favor and get me the [...]’ + scene clutter

‘Can you pass me the [...]?’
‘Get the [...]’

‘Locate the [...]’
‘Could you hand me the [...] please’

place ‘Grab the [...] and put it [...]’ randomized object positions
‘Take the [...] and place it [...]’ + scene clutter
‘Pick up the [...] and put it [...]’
‘Fetch the [...] and drop it [...]’

‘Plop the [...] into the bowl’

Table 4: Tabletop Instruction Following Environment Variations

Category Object Language Variations
Rigid Tools hammer middle, end, tooltip, hammerhead, metal, wooden handle, center, tip

T-tool left side, left T, right side, right T, bottom handle, top handle

Deformable Objects shoe heel, toe, back, front, shoelaces, laces, lace-up area
stuffed animal head, nose, ear, tail, belly, foot, arm, leg, tummy, elephant trunk

Articulated Items

pliers joint, left handle, right handle, top handle, bottom handle
clamp joint, left handle, right handle, top handle, bottom handle

scissors joint, left hole, right hole, smaller hold, bigger hold, larger hold
marker + twist-off cap cap, expo label, center, label, end

Table 5: Semantic Grasping Environment Variations

Tabletop Instruction Following: We parameterize each skill in the tabletop manipulation setting530

via a single waypoint κ = (x, y, z, ψ, θ, ϕ) specifying the primary point of interaction.531

• open: With its gripper open, the robot approaches 5cm. away from a closed drawer handle532

at position (x, y, z) with orientation ψ, θ, ϕ). Next, the robot moves to (x, y, z) in the same533

orientation and closes the gripper to grasp the cabinet handle. Finally, it executes a linear534

pull, keeping the orientation fixed, for 5cm before releasing the handle.535

• close: The robot approaches 5cm. away from an opened drawer handle at position (x, y, z)536

with orientation ψ, θ, ϕ), then executes a linear push towards (x, y, z) close the drawer.537

• pick: The robot approaches the object located at (x, y, z), closes its gripper, and lifts 5cm.538

• place: While holding an object grasped with the pick primitive, the robot moves 5cm539

above the desired place location (x, y, z) with orientation (ψ, θ, ϕ) and opens the gripper to540

its maximum width, releasing the object.541

Coffee-Making In the coffee-masking tasks, we implement a library of 4 skills which test KITE’s542

ability to handle precise or dynamic movements. Since pour cup, refill keurig, and load pod543
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all involve grasping, we finetune the pick skill from tabletop instruction-following with 50 demon-544

strations across pitchers and coffee pods, respectively. Then, we can parameterize each skill with a545

single waypoint κ = (x, y, z, ψ, θ, ϕ) as follows:546

• reorient mug: The robot attempts to grasp a mug, initially oriented sideways, with pose κ547

before resetting to a canonical upright (untilted) end-effector pose.548

• pour cup / refill keurig: After grasping a pitcher, the robot moves to position (x, y, z)549

denoting the position of the vessel to be poured into (cup or refill compartment of Keurig).550

Starting from an untilted end-effector pose, the robot gradually rotates at a constant velocity551

to (ψ, θ, ϕ), denoting the final pour orientation.552

• load pod: After grasping a coffee pod with the pick primitive, the robot moves 2 cm.553

above (x, y, z), the sensed position of the K-cup slot with orientation (ψ, θ, ϕ). Next, the554

robot releases its grasp to drop the pod into the compartment. As this task requires high555

precision, it is often the case that after releasing the pod, it is not completely inserted or556

properly aligned. Thus, the load pod primitive moves downward an additional 2cm in557

attempt to push the pod into place. We note that we do not evaluate this skill with real558

liquids for safety reasons, but measure success in terms of visual alignment between the559

pitcher and vessel.560

Skill Language Scene

reorient mug

‘Flip the mug right-side up’ randomized mug position, roll (−π/2, π/2)
‘Put the mug upright’

‘Grab the mug and put it it right-side-up’
‘Can you place the mug right side up?’

‘Get the mug that’s laying flat
and flip it upright’

pour cup

‘Fill up the mug that’s right-side up’ randomized pitcher (red / gray)
‘Pour me a glass’ + cups (compostable, Dixie, mug)

‘Pour the red pitcher into the mug’
‘Grab the silver-handle pitcher and fill

up the brown cup’
‘Refill the Dixie cup with the red pitcher’

refill keurig
‘Refill the espresso machine’ randomized pitcher (red / gray)

‘Grab the red/silver pitcher and + randomized Keurig pose
‘fill up the water compartment’

load pod

‘Load the blue K-cup’ randomized coffee pod (red/blue/green/brown)
‘Can you put the red pod in?’ + randomized Keurig

‘Insert the green pod’
‘Start a brew with the brown pod’

Table 6: Coffee-Making Variations

B.3 LLM Prompting561

Skill Label Inference: In this section, we briefly outline how KITE retrieves the skill label lt562

for input instruction it via LLMs. Below, we provide a sample prompt which we feed as input to563

text-davinci-003 to obtain lt in tabletop instruction following setting.564

Listing 1: LLM Prompting for Skill Label Inference
565

1 i_t = input("Enter instruction:")566

2 """567

3 Input: "Pick up the lemon"568

4 Output: ["pick"]569

5570

6 Input: "Put the screwdriver away"571

7 Output: ["pick", place "]572

8573

9 Input: "Pls grab me the screwdriver and put it away"574

10 Output: ["pick", "place "]575

11576

12 Input: "Grab the green bowl"577

13 Output: [" grasp "]578

14579

15 Input: "Put the lemon in the bowl"580

16 Output: ["pick", "place "]581

17582
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18 Input: "Open the top drawer"583

19 Output: ["open"]584

20585

21 Input: "Pls shut the drawer"586

22 Output: [" close "]587

23588

24 Input: "put the expo marker away"589

25 Output: ["pick", "place "]590

26591

27 Input: "put the Blue lego in the cabinet"592

28 Output: ["pick", "place "]593

29594

30 Input: ’%s’595

31 Output:596

32 """%i_t597598
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