
Appendix

In this Appendix, we provide more details and examples for our proposed NRETM models. A.1
provides the case study for three evaluation tasks. A.2 provides the definitions of six predicates used
in this paper. A.3 provides implementation details of our models.

5.1 Case Study

In this case study, we select representative examples from our T5 baseline and NRETM models. The
Logic expression is the actual predicate logic constraints that we use in the model. The Input
expression is the actual string that we feed into the T5 model simply because T5 vocabulary does not
include ∧, ∨, and ¬.

Table 8: Generated examples of the T5 and NRETM model for the story generation task.

Task 1: Story Generation

Input expression: Order(hated, stupid) & Order(stupid, insulting) & Order(insulting, punched)
Logic expression: Order(hated, stupid) ∧ Order(stupid, insulting) ∧ Order(insulting, punched)

T5: I had a crush on a man. I told him I was stupid. He hated me for insulting me. I
punched him in the face. He told me i was stupid.

NRETM: I had a crush on a guy. He was very rude. He hated me because i thought he was stupid
and insulting me. I punched him in the face. He slapped me.

Input expression: InSen(walking around, 2) & InSen(school yard, 2)
Logic expression: InSen(walking around, y2) ∧ InSen(school yard, y2)

T5: I went to the park today. I was walking around the school yard. I saw a squirrel in the
yard. I saw a squirrel in the yard. I took a picture of the squirrel.

NRETM: Sam was playing in the yard. He was walking around in the school yard. He saw a
squirrel in the yard. He ran into the squirrel. Sam was able to retrieve the squirrel.

Input expression: InSen(waitressing job, 3) & (Len(3, 16) || StopWordCount(3, 8)) & (not
InSen(tenacity, 3)) & InSen(talent agent, 4)

Logic expression: InSen(waitressing job, y3) ∧ (Len(y3,16) ∨ StopWordCount(y3,8)) ∧ (¬
InSen(tenacity, y3)) ∧ InSen(talent agent, y4)

T5: Sarah had a crush on a girl named Sarah. Sarah s crush was Sarah’s boyfriend. Sarah’s
boyfriend had a waitressing job and Sarah had a crush on Sarah . Sarah s boyfriend
was a talent agent. Sarah’s crush was sarah’s boyfriend.

NRETM: Sarah wanted to be a chef. but she didn’t have the money to make a living. She applied
for a waitressing job but she did n’t get a job at all . Sarah was approached by a talent
agent. Sarah was hired and now she is a chef.

Input expression: InSen(longest grocery trip, 1) & Len(1, 12) & InSen(line forever, 4) & Len(4, 9)
Logic expression: InSen(longest grocery trip, y1) ∧ Len(y1, 12) ∧ InSen(line forever, y4) ∧ Len(y4, 9)

T5: Sam was on the longest grocery trip of his life. He was so hungry he couldn’t wait to
get to the store. When he got to the store he had to wait in line forever. Sam had to wait
in line forever for his next grocery trip.

NRETM: I was on the longest grocery trip I ever went on. I had to wait in line for a long time.
When I got there the line was long. I had to wait in line forever again. I was so glad I
finally got to the store

Input expression: InSen(could buy one, 2) & (Len(2, 13) || StopWordCount(2, 6)) & InSen(would
work, 4) & (Len(4, 10) || StopWordCount(4, 7))

Logic expression: InSen(could buy one, y2) ∧ (Len(y2, 13) ∨ StopWordCount(y2, 6)) ∧ InSen(would
work, y4) ∧ (Len(y4, 10) ∨ StopWordCount(y4, 7))

T5: I needed a new computer. I asked my mom if I could buy one. She said yes. I asked her
if it would work for me. She said yes

NRETM: I needed a new computer. I went to the store to see if I could buy one. I went to the
store to buy a computer. I found a computer that would work for me. I bought the
computer and was very happy.

Table 8 shows selected examples in Controllable ROCStories Generation task. This task is to show the
controllability of our proposed NRETM model. Sentences in red are the ones being controlled. In the
first story, the T5 baseline model produces a short sentence and misses the order of storyline "stupid"
which should appear after generating the storyline "hated". While our NRETM model successfully

14

completes all storylines in order. In the second story, the NRETM model controls the story generation
in a more coherent way than the T5 baseline model. Although both baseline and NRETM model
successful incorporate all given storylines, the T5 baseline model inconsistently generates “school
yard” just after generating the “park”. On the contrary, in the story generated by the NRETM model,
Sam consistently stays in the “yard”. In the third story, the length and stop word control force
the NRETM model to generate sentences with more details, while the T5 baseline simply repeats
information from previous sentences. The NRETM model successfully generates eight stop words
in the third sentence, whereas the baseline model only generates six stop words (highlighted via
underline). In addition, the generated story from the NRETM model has more rational plots than the
one from the T5 model. In the fourth story, the length of the first and fourth sentences are controlled
to be 12 and 9. The outputs of NRETM model successfully obey these control constraints while the
baseline model generates 11 and 13 tokens for the first and fourth sentences. In the last story, the
second sentence generated by the NRETM model successfully generates six stop words (highlighted
via underline). For this task, we are more concerned about the expression rate of predicate logic
control constraints than the quality of the generated story. In addition to the case study, we have
shown more quantitative analysis, and please refer to Sec. A.4 for details.

Table 9: Generated Example of the T5 and NRETM model in the Commonsense Generation task.

Task 2: Commonsense Generation

Input expression: Copy(stone) & Copy(explain) & Copy(knife) & Copy(sharpen)
Logic expression: Copy(stone) ∧ Copy(explain) ∧Copy(knife) ∧Copy(sharpen)

T5: a man is sharpening a knife on a stone
NRETM: a man explains how to sharpen a knife on a stone

Input expression: Copy(stand) & Copy(map) & Copy(report) & Copy(front) & Copy(weather)
Logic expression: Copy(stand) ∧ Copy(map) ∧ Copy(report) ∧ Copy(front) ∧ Copy(weather)

T5: map showing where the weather is standing at the front
NRETM: a man stands in front of a map reporting the weather

Input expression: Copy(put) & Copy(lipstick) & Copy(talk) & Copy(lip)
Logic expression: Copy(put) ∧ Copy(lipstick) ∧ Copy(talk) ∧ Copy(lip)

T5: a woman puts lipstick on and talks about it
NRETM: a woman is talking and putting lipstick on her lips

Input expression: Copy(iron) & Copy(straighten) & Copy(demonstrate) & Copy(hair)
Logic expression: Copy(iron) ∧ Copy(straighten) ∧ Copy(demonstrate) ∧ Copy(hair)

T5: a woman straightens her hair with an iron and shows how to do it
NRETM: a woman is demonstrating how to straighten her hair with an iron

Input expression: Copy(bride) & Copy(stand) & Copy(bridesmaid) & Copy(groomsman) &
Copy(groom)

Logic expression: Copy(bride) ∧ Copy(stand) ∧ Copy(bridesmaid) ∧ Copy(groomsman) ∧
Copy(groom)

T5: bride standing with her bridesmaids and groomsmen
NRETM: the bridesmaids and groomsmen stand in front of the bride and groom

Input expression: Copy(kitchen) & Copy(watermelon) & Copy(knife) & Copy(cut)
Logic expression: Copy(kitchen) ∧ Copy(watermelon) ∧ Copy(knife) ∧ Copy(cut)

T5: a knife cutting a watermelon in a kitchen
NRETM: a man cutting a watermelon with a knife in the kitchen

Table 9 shows selected examples from our T5 baseline and NRETM models in the Commonsense
Generation task. Concepts that are missed in the baseline model outputs are in red. Words in blue are
the key difference between the output of baseline and NRETM model. Note that we omit the synonyms
for simplicity. Full Examples for this task can be found in Sec. A.3. Although the baseline model
can correctly complete many Copy operations, it fails when the input combination is not commonly
seen. For example, “explain” and “knife” in the first example. The baseline model also generates
meaningless sentence when the inputs are complicated concepts combination in the second example.
In addition, the baseline model cannot handle the case where some input concepts share the same
prefix, such as “groom” and “groomsman” in the forth example. The baseline model seems to merge
these morphological similar input concepts into a single concept and only mentions one of them in
the outputs. Whereas the NRETM model successfully completes all of Copy operations.

15

Table 10 shows selected examples from our T5 baseline and NRETM models in document-level machine
translation. In the first case, the mT5 baseline model produces duplicated sentences (“what happens
when co2 emissions go up”, in red). As a consequence, it fails to translate a few important chunks
in the source sentences (see in Blue). This may due to the fact that the mT5 baseline model cannot
handle long input documents well. While our NRETM model translates all source sentences into fluent
English. Sentences in Green are missed by the baseline model but successfully translated by the
NRETM model with the help of the predicate translateOnce. In the second case, the baseline model
skips the important word “exchange” (see underline in the Input expression) in its translated text
(highlighted in red). The NRETM model accurately translates this sentence (highlighted in blue). This
shows that the NRETM model is more focused on the current sentence than the T5 baseline model.

Table 10: Generated Example of the mT5 and NRETM model for document-level machine translation.

Task 3: Document-level Machine Translation

Input expression: 当前二氧化碳巨大的排放量将导致温度上升，温度的升高将引起一系列非常严
重的后果，比如对天气的直接影响，或对生态系统的间接影响，生态系统无法
应对剧烈变化的结果就是生态系统的全面崩溃。二氧化碳排放增加和温度升高
究竟成怎样的关系，两者间的正反馈效应为何？这中间有一些不确定因素，但
不多。至于全球变暖的具体负面影响有多严重，这无法完全确定，但肯定极其
严重。translateOnce(1) & translateOnce(2) & translateOnce(3)

mT5: what happens when co2 emissions go up – what happens when co2 emissions go up – is
that the system collapses. what’s the positive feedback between co2 emissions and
temperature rising, and what’s the negative feedback between co2 emissions and
temperature rising?there’s some uncertainty about how severe it is, but it’s certainly
severe.

NRETM: what’s going to happen when co2 emissions go up will cause temperatures to rise with a
range of very severe consequences, such that, either directly or indirectly, ecosystems
will collapse. there’s some uncertainty about how this relationship, the positive
feedback, between co2 emissions and temperature rise will work. how severe it will be,
it’s not entirely clear.

Input expression: 我是跟着50个去往贾拉拉巴德战役的反叛者乘着卡车一起来的，当时我19岁，
是一位住在佛罗里达州杰克逊维尔的素食主义者兼冲浪爱好者。我用我的黑色
匡威的低邦鞋换了一双棕色的皮拖鞋，并且对着我看不太清的政府的坦克发了
一枚火箭。这是我第一次到阿富汗。translateOnce(1) & translateOnce(2) &
translateOnce(3)

mT5: I was riding a truck with 50 rebels who had gone to Jalabard to fight the Taliban, and I
was 19 years old, a vegetarian and surfer in Jacksonville, Florida. I took my black shoe
boots and a brown leather shoe, and I threw a rocket at a government tank that I couldn’t
see. This was my first trip to Afghanistan.

NRETM: I was accompanied by 50 counter-insurgents on a truck heading to Jamalabad, Florida,
when I was 19 years old, a vegetarian and surfers living in Jacksonville, Florida. I
exchange brown leather sandals with my black jackets, and I fired a rocket at the tanks
of the government that I didn’t see. This was my first time in Afghanistan

16

5.2 Definition of Predicates

Figure 3 to 8 show the six kinds of predicates, including InSen, Order, Copy, TranslatedOnce,
Len and StopWordCount, used in our framework. The code in figures is the pseudo code of the
logical operator (i.e., executable programs), in which y refers to y:t, y_i is yi, state is the default
state status q̂kit and i_val is the additional intermediate values q̄kit . In our experiments, all of these
logical operators are implemented using the Python programming language, and their source codes
are not directly visible to the neural text generators. They only communicate with the neural text
generators using the state flags. All predicates have State S1, indicating unfinished status and State
S3, indicating finished status. As discussed in Sec 2.4, State S2 is an optional predicate-specific state.
We will introduce the definition and role of State S2 for each of the above predicate if it exists in the
captions.

Figure 3: The definition of predicate InSen. The State S2 starts when the text generators start to
generate kth sentence. This informs the model that it is possible to mention xi in the outputs.

Figure 4: The definition of predicate Order. The State S2 starts when the previous element x_a has
already been mentioned in the outputs. This informs the model to mention x_b next.

Figure 5: The definition of predicate Copy. There is no State S2 in the definition of Copy because
there is no “partial copy” status.

17

Figure 6: The definition of predicate TranslatedOnce. The State S2 starts when ith sentence is being
translated. This informs the model should pay attention to which source sentence.

Figure 7: The definition of predicate Len. The State S2 starts when the text generator starts to
generate ith sentence. We also explicitly inform the model of how many tokens are remaining for the
current sentence. So they have State S2 with additional information i_val.

Figure 8: The definition of predicate StopWordCount. The State S2 starts when the text generator
starts to generate ith sentence. We also explicitly inform the model of how many stop words are
remaining for the current sentence. So they have State S2 with additional information i_val.

18

5.3 Implementation Details For Each Evaluation Task

In this section, we will introduce the implementation details of all our evaluation tasks. In our
experiments, we use three different pre-trained language model, T5-base, T5-Large and MBart-Large.
We use the implementation of huggingface transformers 4. We modify their decoder models to
integrate our state matrix and use their provided model weights in our experiment. We only additional
introduce the State Matrix Encoder. It is a one-layer transformer encoder. Its hidden size equals to
the dimension of each head in the pre-trained transformer-based langauge models. The size of its
FFN layer is 256. The number of its heads is 4.

Controllable ROCStories Generation We first use RAKE algorithm (implemented by https:
//github.com/csurfer/rake-nltk) to extract storyline (i.e., key words and phrases) from the
ground-truth stories. In the ROCStories dataset, each story has 5 sentences. For extracted storylines,
we can easily find their original sentence index and ordering. We can also extract total length and stop
word counts from each sentence in the ground-truth stories. We use these information to construct the
training rules. For rules with only logic ∧, we simply use these extracted ground-truth information as
the predicate logic constraint. For rules with logic ∨, we create all cases with equal proportion in
the training data. For example, for clause Len(yi, li) ∨ StopWordCount(yi, si), we create 33% of
the training data only satisfy Len(yi, li), 33% of the training only satisfy StopWordCount(yi, si)
and the remaining training data satisfy both of them. We can assign fake value for li or si for the
above data argumentation. To improve the generalization of our pre-trained model, we freeze the
parameters in the Self-Attention module and Feed-Forward Layers in each layer of the T5 decoder.
This parameters freezing technology is applied to both T5 baseline models and the NRETM models in
all of our experiments. We use constant learning rate 5e−5 and batch size 32 for this experiment.

Commonsense Generation In the Commonsense Generation task, we first use NLTK toolkit to
expand each input concept with all of its possible inflected forms, including plurals and different
tenses. We further search the mention position of each input concept, including all of its inflected
forms, on its corresponding ground-truth references. We use the same model and training setup in the
Controllable ROCStories Generation task. We use constant learning rate 5e−5 and batch size 48 for
this experiment.

Document-level Machine Translation In the document-level Machine Translation, we split each
documents into 2 - 4 trucks. Following the fine-tune setup in the original MBart paper, we use
learning rate 3e−5. But we use batch size 8 and total training step 80k for our experiment.

4https://github.com/huggingface/transformers

19

https://github.com/csurfer/rake-nltk
https://github.com/csurfer/rake-nltk
https://github.com/huggingface/transformers

