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3

4

Example images from 'Tench' class

Figure 1: Loss distribution of the WebVision dataset after one epoch of warmup training with the entire dataset is shown here.

Samples are categorized as ‘clean’ or ‘noisy’ based on CLIPCleaner’s identification. The vertical gray line represents the sample

selection boundary imposed by the ’small-loss’ mechanism (further details in introduction part). We visualize examples in part

1 and part 4. These examples represent samples classified as ’clean’ by ‘small-loss’ but rejected by CLIPCleaner, and vice versa.

Specifically, two samples from the ‘Tench’ class are highlighted in red and green.We can not find the specific source of red

image, but highly-related images can be found with keyword: 1966 Japanese Goldfish Stamp Postage, while the green one

can be originated back to: https://acnl.fandom.com/wiki/Pop-Eyed_Goldfish. The red sample is a tench fish postage stamp,

semantically similar to real tench images, resulting in a lower loss. The green sample, however, is a photo of a black pop-eyed

goldfish, which deviates more from the typical golden tench fish visually.

ABSTRACT

Noisy labels pose a significant challenge for machine learning mod-

els. Existing sample selection methods for Learning with Noisy

Labels (LNL), often based on a strategy like selecting samples with

‘small loss’, can suffer from ‘self-confirmation bias’. This bias arises

because these methods rely on the in-training model, which itself

might be misled by the noisy labels. Furthermore, solely relying on

visual information can introduce biases and challenges like ‘hard

noise’, where noisy labels incorrectly assign samples to semantically

similar categories. This paper proposes addressing these challenges

by leveraging CLIP, a powerful vision-language model, for sample

selection. We introduce CLIPCleaner, which utilizes CLIP’s pre-

trained zero-shot classifier along with a classifier based on CLIP’s

vision encoder and the noisy labels themselves. Our approach en-

ables effective offline sample selection. We also provide theoretical

justifications and empirical evidence to demonstrate the advantages

of CLIP compared to conventional pre-trained models. Compared

to current methods that combine iterative sample selection with

various techniques, CLIPCleaner offers a streamlined approach
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while achieving competitive or superior performance on bench-

mark datasets. Our work highlights the potential of large-scale

vision-language models for tackling LNL problems.

CCS CONCEPTS

•Computingmethodologies→ Supervised learning; Computer
vision representations; Learning under covariate shift.

KEYWORDS

Sample selection, Noisy Labels, CLIP

1 INTRODUCTION

Over the past two decades, deep neural networks have demon-

strated exceptional success in various vision tasks, attributed to the

existence of high-precision, large-scale datasets such as ImageNet-

1K. However, collecting high-quality labels for such datasets is

generally time-consuming and labor-intensive. To mitigate the cost,

an alternative is automatic labeling (e.g. “webly-labeled” dataset by

web-crawling the images and labels). While reducing the cost of

manual labeling, it inevitably leads to low-quality noisy labels.

To address the problem of label noise, a variety of methods

have been proposed. Some methods, aim to develop robust loss

functions [8, 11, 29, 41, 43, 54, 60, 64] or noise transition matrix [12,

15, 26, 34, 48, 53]. However, in practice, these methods are often

sub-optimal dealing with high noise ratio and complicated noise.

More recently, methods based on sample selection [19–21, 32, 33,

39, 42, 45, 58] to filter out samples with noisy labels become perhaps

the dominant paradigm. For example, the most common sample

selection strategy is the ‘small-loss’ mechanism motivated by the

https://www.google.com/search?q=1966+Japanese+Goldfish+Stamp+Postage
https://acnl.fandom.com/wiki/Pop-Eyed_Goldfish
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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memorization effect, that is, the model tends to fit clean samples

earlier than noisy samples in the training process thus resulting

in relatively smaller losses for the clean ones. Following this, most

of methods focus primarily on improving sample selection mecha-

nisms, including different variants of ‘small-loss’ strategy [1, 23, 49],

and utilizing kNN [2, 7, 31] or graph models [46, 47] based on sam-

ples’ feature space for sample selection. However, these methods are

inherently affected by the label noise as they still rely on the current

in-training model, leading to the infamous self-confirmation bias.

Some methods [13, 56] attempt to alleviate self-confirmation bias

through model co-training, but this approach noticeably introduces

additional computational overhead. Moreover, these methods solely

rely on the visual information within the images, which can readily

lead to biased sample selection outcomes, as exemplified in cases of

‘hard noise’ - noisy sample exhibits a highly visual similarity with

its incorrectly labeled class, as illustrated in fig. 1.

To address the aforementioned issues, this paper proposes utiliz-

ing popular vision-language model - CLIP [35], for sample selection.

Like any pre-trained models, CLIP is unaffected by the label noise

in the collected dataset thus avoiding ‘self-confirmation’ bias. More

importantly, CLIP’s distinctive language modality and zero-shot

classifier allow us to compensate for the biases that may arise from

solely relying on visual information for sample selection. For in-

stance, this allows us to identify ‘hard noise’ (fig. 1) that is difficult

to distinguish using only the vision modality.

To the best of our knowledge, we are the first to employ a

large-scale vision-language model, particularly leveraging

its language modality, for sample selection. Specifically, we

simultaneously utilize CLIP’s zero-shot classifier and an easily-

inducible classifier based on noisy labels and CLIP’s vision encoder.

We name this methodCLIPCleaner and theoretically and empirically

demonstrate its effectiveness and unique advantages. To ensure the

efficiency of the method and facilitate seamless comparison with

existing methods, unlike common transfer learning techniques

such as model fine-tuning [9], knowledge distillation [44], and

prompt-based learning [3, 62], CLIPCleaner does not involve

training/fine-tuning the CLIP model. Furthermore, to evaluate

the performance of CLIPCleaner on existing datasets, we intro-

duce a minimal semi-supervised learning method tailored

for noisy datasets, namely MixFix. In detail, we gradually intro-

duce ignored clean samples and re-label noisy samples to expand

the initial clean subset selected by CLIPCleaner.
By leveraging CLIPCleaner and MixFix we establish a sim-

ple two-step framework for LNL: initiating with sample selec-

tion using CLIPCleaner and then perform semi-supervised learning

solely using MixFix. Compared to existing methods involving it-

erations of sample selection and model training, our approach

features a simpler structure and aligns better with end-to-

end training logic when the noise information in the dataset is

unknown. Moreover, CLIPCleaner can serve as a plug-in mod-

ule for existing methods, which further shows great potential

of CLIP in learning with noisy labels. Despite its simplicity, our

method achieves competitive and superior performance on

various datasets, including CIFAR10/CIFAR100 with synthetic

noise (symmetric, asymmetric, and instance-dependent), as well

as real-world noisy datasets like Red Mini-ImageNet, WebVision,

Clothing1M, and ANIMAL-10N.

2 RELATEDWORKS

Sample selection for noisy dataset. Most of the recent sample selec-

tion methods do so, by relying on the in-training model, for example

the per-sample losses [1, 13, 18, 23] or model predictions [30, 38, 55].

A few works focus on further improving the sample selection qual-

ity by modelling the loss with markov process [49] or dynamically

select samples with multiple metrics [63]. In addition to selecting

samples based on the model classifier, some works also try to uti-

lize the feature representations for sample selection. Wu et al. [46]

and Wu et al. [47] try to build a kNN graph and identify clean

samples through connected sub-graphs, while Feng et al. [7] and

Ortego et al. [31] propose to utilize a simpler kNN in feature space

to alleviate the effect of noisy labels. Some recent methods involv-

ing contrastive learning also identify clean sample pairs based on

neighborhood relationships in the feature space [25] or fit Gaussian

distributions to model the clean distribution [16]. However, these

methods remain unstable and prone to self-confirmation bias, espe-

cially in strong noise scenarios, due to its intrinsic reliance on the

in-training model based on noisy dataset.

Utilization of auxiliary model. To alleviate self-confirmation bias,

the utilization of an auxiliary noise-free model is reasonable and

straightforward. Related to us, some methods also try to use pre-

trained noise-free models for learning with noisy labels. Cheng et al.

[6], Zheltonozhskii et al. [61] propose to utilize self-supervised pre-

training since it can learn good representations in the label-free case.

Bahri et al. [2] utilize the pre-logit space of the pretrained model

along with the kNN classifier for sample selection. Zhu et al. [65]

follow the same idea and also involve CLIP, but they only utilize its

vision encoder as a common pretrained encoder without utilizing

the language encoder. We emphasize that language modality is

critical as a supplementary modality.

3 METHOD

In section 3.1, we cast the learning with noisy labels problem in a

formulation that covers mainstream sample selection methods. We

also provide essential details about the CLIP model. In section 3.2,

we elaborate our sample selection method, namely CLIPCleaner.
In section 3.3, we introduce our semi-supervised learning method,

namely MixFix. In section 3.4 , we theoretically analyze the unique

advantage of using CLIP for sample selection over common pre-

trained models. In section 3.5, we provide further discussions on

the topics of sample selection and the use of the CLIP model for

LNL.

3.1 Preliminary

Sample selection with noisy labels. Given a dataset of training sam-

ples (𝒙𝑖 , 𝑦𝑖 )𝑁𝑖=1 i.i.d sampled from a noisy joint distribution 𝑃 (𝒙, 𝑦)
with support as sup(𝑃) = {𝒙 ∈ R𝐶×𝐻×𝑊 , 𝑦 ∈ {1, ..., 𝐾}} where 𝐾
denotes the number of semantic classes, the goal of our method is

to learn a classifier 𝑓 that can accurately predict the true labels𝑦 for

new, unseen examples. Let us denote the clean joint distribution as

𝑃𝑡𝑟𝑢𝑒 (𝒙, 𝑦). Most sample selection methods aim to approximate and

optimize the unbiased empirical risk of 𝑓 on the clean joint distribu-

tion 𝑃𝑡𝑟𝑢𝑒 (𝒙, 𝑦) with samples from noisy joint distribution 𝑃 (𝒙, 𝑦):
𝑅𝑡𝑟𝑢𝑒 (𝑓 ) = 1

𝑁

∑𝑁
𝑖=1𝑤𝑖𝐿(𝒙𝑖 , 𝑦𝑖 ; 𝑓 ), where𝑤𝑖 are the sample weights.
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Particularly, with optimal weights (𝑤𝑖 = 𝑃
𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 )/𝑃 (𝑦𝑖 |𝒙𝑖 )) we

can achieve risk-consistent learning
1
. However, since 𝑃𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 )

and 𝑃 (𝑦𝑖 |𝒙𝑖 ) are typically both unknown for 𝒙𝑖 , the objective of
sample selection methods often revolves around estimating these

two to subsequently estimate the optimal weights. In general, the

noisy label𝑦𝑖 can serve as a confident proxy of the noisy distribution

𝑃 (𝑦𝑖 |𝒙𝑖 ), making our focus on utilizing an additional auxiliary clas-

sifier 𝑃 (𝑦𝑖 |𝒙𝑖 ) to estimate 𝑃𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 ). In addition, it is commonly

accepted to restrict the weights as binary since for most classifi-

cation datasets, 𝑃𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 ) tends to be highly centered around

only one class. As a result, the optimal weight 𝑤𝑖 usually leans

towards either 0 or 1 for most samples. Here, we propose a concise

form sufficient to comprehensively represent most existing sample

selection methods:

�̃�𝑖 = G(𝑃 (𝑦𝑖 |𝒙𝑖 ), 𝑦𝑖 ) ∈ {0, 1}, (1)

where G denotes a specific sample selection mechanism, such as

the ‘small loss’ strategy, to further refining the estimation.

CLIP. We briefly introduce the CLIP model [35], which is cur-

rently one of the most prevalent vision-language models. CLIP aims

to learn from a dataset of image-text pairs, denoted as (𝒙′
𝑖
, 𝒛𝑖 )𝑀𝑖=1 (we

use 𝑥 ′ here for the CLIP training images to discriminate from above

in-question dataset), which is i.i.d. sampled from a hidden joint

distribution 𝑄 (𝒙, 𝒛) with support as sup(𝑄) = {𝒙 ∈ R𝐶×𝐻×𝑊 , 𝒛 ∈
R𝑑 }. We have below as CLIP training loss:

𝐿(𝒙′𝑖 , 𝒛𝑖 ;𝑔, ℎ) =
1

2

( − log

exp(𝑔(𝒙′
𝑖
)𝑇ℎ(𝒛𝑖 ))∑𝑀

𝑗=1 exp(𝑔(𝒙′𝑖 )𝑇ℎ(𝒛 𝑗 ))

− log

exp(𝑔(𝒙′
𝑖
)𝑇ℎ(𝒛𝑖 ))∑𝑀

𝑗=1 exp(𝑔(𝒙′𝑗 )𝑇ℎ(𝒛𝑖 ))
) .

(2)

Here, 𝑔 and ℎ denote the vision and language encoder, respectively.

Intuitively, the CLIP model tries to maximize the correspondence

between relatedrelated image-text pairs.

3.2 CLIPCleaner: sample selection with

vision-language models

In this section, we propose a new sample selection method based

on CLIP, namely CLIPCleaner. According to eq. (1), our method (ac-

tually nearly all sample selection methods) is divided into two main

steps: 1. estimate 𝑃 (𝑦𝑖 |𝒙𝑖 ); 2. calculate weight �̃�𝑖 with specific G. To
enable the analysis between text 𝒛, image 𝒛 and label 𝑦, we consis-

tent the notations for CLIP’s training dataset and the in-question

noisy dataset. Specifically, we extend the in-question noisy dataset

to be i.i.d sampled from 𝑃 (𝒙, 𝑦, 𝒛) (actually from its marginaliza-

tion), where sup(𝑃) = {𝒙 ∈ R𝐶×𝐻×𝑊 , 𝑦 ∈ [0, 1, . . . , 𝐾], 𝒛 ∈ R𝑑 };
similarly, we extend the sampling distribution of CLIP’s training

dataset to 𝑄 (𝒙, 𝑦, 𝒛). Here we assume sup(𝑃) ⊂ sup(𝑄).

3.2.1 Estimate 𝑃 (𝑦𝑖 |𝒙𝑖 ). We consider two options for estimation:

directly utilizing CLIP’s zero-shot classifier, or, ignoring CLIP’s

language modality and treating its vision encoder as a regular pre-

trained model and training a new classifier atop it with in-question

noisy dataset.

1
Please refer to Supplementary E for details. We omit the variables for brevity, e.g,

𝑃 (𝑦 = 𝑦𝑖 |𝒙 = 𝒙𝑖 ) as 𝑃 (𝑦𝑖 |𝒙𝑖 ) .

Option 1: Estimate 𝑃 (𝑦𝑖 |𝒙𝑖 ) with CLIP zero-shot classifier. Firstly,
we assume the causal mechanism for 𝑃 and𝑄 as: 𝒙 → 𝒛 → 𝑦 where

𝒛 denotes the description text and 𝑦 denotes the semantic label thus

we have 𝑦 ⊥ 𝒙 | 𝒛. Roughly speaking, we assume that the semantic

label 𝑦𝑖 can be independently generated based on a decent image

description 𝒛𝑖 alone for each image 𝒙𝑖 . We thus have:

𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (𝑦𝑖 |𝒙𝑖 ) =
∫

𝑄 (𝑦𝑖 |𝒛𝑖 )𝑄 (𝒛𝑖 |𝒙𝑖 )𝑑𝑧

∝
∫

𝑄 (𝑦𝑖 |𝒛𝑖 )𝑄 (𝒛𝑖 , 𝒙𝑖 )𝑑𝑧.
(3)

Thus, we can estimate 𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (𝑦𝑖 |𝒙𝑖 ) with above integral by sam-

pling 𝒛𝑖 as long as 𝑄 (𝒛𝑖 , 𝒙𝑖 ) and 𝑄 (𝑦𝑖 |𝒛𝑖 ) is known. Specifically,
according to eq. (2), we show that𝑄 (𝒛𝑖 , 𝒙𝑖 ) can be estimated by the

output similarity (exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛𝑖 ))) of the CLIP model (see Sup-

plementary E). However, 𝑄 (𝑦𝑖 |𝒛𝑖 ) remains unknown and cannot

be learned during the CLIP training process. Most current studies

customarily design a single prompt as follows: ‘A photo of class
name of 𝑦𝑖.’, implicitly assuming that:

𝑄 (𝑦𝑖 |𝒛 = ‘A photo of class name of 𝑦𝑖.’) ≈ 1.

Here, single prompt actually corresponds to sampling a single 𝑧.

Obviously, it is plausible that with more high-quality samplings of

𝒛𝑖 instead of only utilizing one single prompt the estimation would

be better. In this work, we propose below template to generate

multiple prompts {P𝑗 }𝐽𝑗=1 using class-specific features
2
:

P𝑗 =‘A photo of {class name of 𝑦𝑖}, which is/has
{class-specific feature 𝑗 of class 𝑦𝑖}.’

Then we can simplify eq. (3) with above prompts as below:

𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (𝑦𝑖 |𝒙𝑖 ) ∝∼
∑𝐽

𝑗=1
�̃� (𝒛 = P𝑗 , 𝒙𝑖 ). (4)

Option 2: Estimate 𝑃 (𝑦𝑖 |𝒙𝑖 ) with CLIP vision encoder and noisy
dataset. By treating the CLIP model as an ordinary large-scale pre-

trained model, we can also leverage its vision encoder 𝑔 solely

along with the in-question noisy dataset (𝒙𝑖 , 𝑦𝑖 )𝑁𝑖=1 to train a new

classifier 𝑓 ′ (to discriminate it with the original classifier 𝑓 in sec-

tion 3.1) for estimation. With the common cross-entropy loss, it is

straightforward that the normalized prediction logits serve as an

estimate of 𝑃 (𝑦 |𝒙):
𝑃𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝑦𝑖 |𝒙𝑖 ) = softmax(𝑓 ′ (𝑔(𝒙𝑖 )))𝑦𝑖 . (5)

By default, we train a LogisticRegression classifier as 𝑓 ′ with fixed

extracted features and noisy dataset. Empirically, we also consider

non-parametric kNN in ablations Section 4.2.

3.2.2 Calculate weight𝑤𝑖 . With 𝑃 (𝑦𝑖 |𝒙𝑖 ) estimated above, we can

estimate weight 𝑤𝑖 for each sample with any applicable sample

selection mechanism G. In this work, we consider two simple and

popular mechanisms, named G𝑙𝑜𝑠𝑠 and G𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 . For G𝑙𝑜𝑠𝑠 ,

we firstly model the per-sample cross-entropy losses ({− log 𝑃 (𝑦 =

𝑦𝑖 |𝒙𝑖 )}𝑁𝑖=1) with GMM and then select samples by thresholding its

probability belonging to the smaller component. Due to the possible

class imbalances and the various semantic diversity of different

classes, slightly different than the common approach utilizing a

single GMM, we model the losses of samples from each class by a

2
Please refer to Supplementary B for more details about how to generate prompts.
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separate GMMmodel. Please refer to Supplementary D for specific

comparisons on seperate GMM and single GMM.

G𝑙𝑜𝑠𝑠 = 1(P(− log 𝑃 (𝑦 = 𝑦𝑖 |𝒙𝑖 ) ∈ GMM𝑠𝑚𝑎𝑙𝑙 ) ≥ 𝜃𝑙𝑜𝑠𝑠 ) .
For G𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 , we calculate a consistency measure (defined as

the ratio of the probability of noisy label class to the highest class

probability) and select samples with high consistency:

G𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 1(𝑃 (𝑦 = 𝑦𝑖 |𝒙𝑖 )/max

𝑘
𝑃 (𝑦 = 𝑘 |𝒙𝑖 ) ≥ 𝜃𝑐𝑜𝑛𝑠 ).

3.3 MixFix: Efficient semi-supervised training

by absorbing and relabelling

To evaluate our method on widely-acknowledged benchmarks, we

propose a simple semi-supervised learningmethod for noisy dataset

— namely MixFix. Please note, the notations employed in this sec-

tion are defined independently. Specifically, we denote the selected

subset and non-selected subset as (X𝑐 ,Y𝑐 ) and (X𝑛,Y𝑛). Motivated

by pseudo-labelling [22] and FixMatch [37], we then inspect each

sample’s current prediction 𝒑𝑖 in non-selected subset with:

(𝑤𝑖 , 𝑦𝑖 ) =


(0, 𝑦𝑖 ), if 𝑝𝑚 < 𝜃𝑟 and 𝑝𝑚 < 𝜃 ′𝑟 *Drop*

(1, 𝑦𝑖 ), if 𝑝𝑚 > 𝜃𝑟 and 𝑦𝑖 = 𝑦𝑚 *Absorb*

(1, 𝑦𝑚), if 𝑝𝑚 > 𝜃 ′𝑟 and 𝑦𝑖 ≠ 𝑦𝑚 *Relabel*

(6)

Here we denote as 𝑝𝑚 ≜ max𝑙 𝒑𝑖 (𝑙) and 𝑦𝑚 ≜ argmax𝑙 𝒑𝑖 (𝑙).
Intuitively, we ‘absorb’ ignored clean samples (𝑦𝑖 = 𝑦𝑚) and ‘relabel’

noisy samples (𝑦𝑖 ≠ 𝑦𝑚) with different thresholds in non-selected

subset, and progressively append it to initial selected subset to

form a dynamic larger training set. Different from existing semi-

supervised learning techniques, we typically set 𝜃𝑟 ≤ 𝜃 ′𝑟 . This helps
us make full use of noisy labels to differentiate the ‘absorb’ and

‘relabel’ process. To further counter the class imbalance in this new

training set, the minority class is over-sampled. Then, we apply a

common cross-entropy loss for training with this expanded and

class-balanced training set, along with Mixup interpolation [57].

The detailed process is presented in Algorithm 1.

Please note, with selected subset only, CLIPCleaner can also be

utilized along with existing methods - see Supplementary C for

more results. The rationale behind formulating the MixFix method,

tailored explicitly for noisy datasets, stems from our belief that in

scenarios where noise information remains unknown, an end-to-

end learning approach is not only more efficient but also stands

out as an intuitive and primary choice. This is in contrast to the

common style of iterative sample selection and model training.

Algorithm 1: MixFix.

Input :Selected subset (X𝑐 ,Y𝑐 ), non-selected subset

(X𝑛,Y𝑛), 𝜃𝑟 , 𝜃
′
𝑟 , max epochs 𝑇

while 𝑖 < 𝑇 do

Generate (X𝑖
𝑟 , Y𝑖

𝑟 ) with eq. (6) ;

Generate (X𝑖
𝑡 , Y𝑖

𝑡 ) with (X𝑖
𝑟 , Y𝑖

𝑟 ) and (X𝑐 , Y𝑐 ) ;
Minority over-sampling with (X𝑖

𝑡 , Y𝑖
𝑡 ) ;

Model training with (X𝑖
𝑡 , Y𝑖

𝑡 ) andMixup.

end

3.4 Theoretical justification of CLIPCleaner
Considering above proposed two options for CLIPCleaner, an imme-

diate question is: how does the zero-shot classifier (eq. (4)) compare

to the trained classifier (eq. (5)) in estimating 𝑃 (𝑦 |𝑥). If the latter
demonstrates comparable or even superior performance to the for-

mer, there may be little incentive to employ the CLIP model for

sample selection. Rather, pursuing further enhancements to existing

large-scale visual-only pre-trained models may yield greater po-

tential. To this end, we conduct a theoretical analysis and compare

the distances between the estimated 𝑃 (𝑦𝑖 |𝒙𝑖 ) and true 𝑃𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 )
of the two options. Specifically, following previous notations, we

have below theorems:

Theorem 3.1 (Estimation with zero-shot classifier). Let
G,H be the hypothesis space of vision encoder 𝑔 and language en-
coder ℎ. Let us denote the rademacher complexity as ℜ(G ◦ H) of
the combined CLIP model. Supposing the range of 𝐿 from eq. (2) as
[0, 𝑙𝑐𝑙𝑖𝑝∞ ] for all (𝒙, 𝒛) in sup(𝑄). Then, for any 𝛿 > 0, with probability
at least 1 − 𝛿 we have the following holds:

𝑑 (𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (𝑦𝑖 |𝒙𝑖 ), 𝑃𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 )) ≤ 𝜀𝑑𝑜𝑚𝑎𝑖𝑛

+Δ( 𝜆1ℜ(G ◦ H) + 𝜆2𝑙𝑐𝑙𝑖𝑝∞

√︂
log 1/𝛿
𝑀

+ 𝜆3𝜀𝑛)

with 𝜆1, 𝜆2, 𝜆3 > 0. Here, 𝜀𝑑𝑜𝑚𝑎𝑖𝑛 denotes the bias term induced by
the domain gap between 𝑄 and 𝑃𝑡𝑟𝑢𝑒 , and Δ ≥ 1 denotes the bias
coefficient induced in designing prompts and sampling in eq. (3).

Theorem 3.2 (Estimation with trained classifier ). Let F
be the hypothesis space of trained classifier 𝑓 ′. Let us denote the
rademacher complexity as ℜ(F ) of the trained classifier. Supposing
the range of 𝐿 for training 𝑓 ′ as [0, 𝑙𝑛𝑜𝑖𝑠𝑦∞ ] for all (𝒙, 𝑦) in sup(𝑃).
Then, for any 𝛿 > 0, with probability at least 1 − 𝛿 we have the
following holds:

𝑑 (𝑃𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝑦𝑖 |𝒙𝑖 ), 𝑃𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 )) ≤ 𝜀𝑛𝑜𝑖𝑠𝑒

+ 𝜆1ℜ(F ) + 𝜆2𝑙𝑛𝑜𝑖𝑠𝑦∞

√︂
log 1/𝛿
𝑁

with 𝜆1, 𝜆2 > 0. Here, 𝜀𝑛𝑜𝑖𝑠𝑒 denotes the difference term induced by
the distribution difference between 𝑃 and 𝑃𝑡𝑟𝑢𝑒 .

Please refer to Supplementary F for full derivation. With the-

orem 3.1 and theorem 3.2, ignoring the uncontrollable and com-

mon optimization bound error terms (marked in gray), we confirm

that the zero-shot classifier estimation is highly related to domain

gap and prompts quality while the trained classifier estimation is

affected by the noise of in-question dataset, which is intuitively

consistent with our expectation. We also empirically verify that the

higher the noise ratio, the greater the performance advantage of

zero-shot classifier over the trained classifier (section 4.2). More

importantly, 𝜀𝑛𝑜𝑖𝑠𝑒 is always inevitable while Δ can be easily im-

proved with better prompt engineering and 𝜀𝑑𝑜𝑚𝑎𝑖𝑛 can be also

reduced by training CLIP with more abundant dataset and thus

minimizing the domain gap.

3.5 Additional discussion

To be greedy or conservative? For all sample selection methods,

an inevitable challenge is how to balance the precision and recall of
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sample selection. In this paper, we introduce two different classifiers

for estimation and two distinct sample selection strategies. The-

oretical analysis and subsequent experiments indicate that these

different classifiers and selection strategies exhibit their own pref-

erences. In this study, we adopt a conservative sample selection

strategy by taking the intersection of different sample selection

outcomes, prioritizing the precision of sample selection. Compared

to more greedy sample selection strategies, we lean towards rely-

ing on the semi-supervised learning strategy - MixFix to gradually

introduce more samples into training. This can avoid magnifying

the influence of noisy samples due to excessively greedy sample

selection, but it also has obvious weaknesses, that some ‘hard’ clean

samples will inevitably be missed. We leave the exploration of the

optimal sample selection strategy to future work.

To fully explore CLIP?. The utilization of the CLIP model for

learning with noisy labels remains an area that requires further

investigation. To ensure a fair comparison with existing work, we

adopt standard sample selection paradigm, refraining from training

or fine-tuning the CLIP model [3, 62]. In fact, the current prominent

research directions related to CLIP involve fine-tuning the model,

specifically through prompt-based learning. However, as expected,

recent work (CoOp) has indicated that direct fine-tuning CLIP

with noisy datasets can yield poorer performance compared to the

initial zero-shot classifier. Therefore, in addition to sample selection,

incorporating established techniques for LNL into prompt-based

learning with CLIP may also offer promising directions.

4 EXPERIMENTS

4.1 Experiment details

4.1.1 Dataset details. CIFAR10 and CIFAR100 datasets comprise

50,000 images. Following established conventions, we assess our

method’s performance with two types of artificial noise:“symmetric

noise," wherein labels are randomly flipped across all samples using

a uniform distribution, and “asymmetric noise," wherein labels of

visually similar categories, such as Horse ↔ Deer and Dog ↔ Cat,

are randomly interchanged. Moreover, we conduct experiments

with various noise levels: 20%, 50%, 80% and 90% symmetric noise,

as well as 40% asymmetric noise, adhering to the settings in Di-

videMix ([23]). For instance-dependent noise, we utilize the label

noise file provided by [4].

RedMini-ImageNet dataset [17] is a real-world dataset contain-

ing a total of 100 categories. It is an extension of the Mini-Imagenet

dataset, where noise is introduced at varying ratios. Specifically,

noisy images and their respective labels are obtained by crawling

the internet, and these noisy images replace the original images

in the Mini-ImageNet dataset, with different noise ratios. To en-

sure a fair comparison with previous studies [10, 52], the images

are resized from their original size of 84×84 pixels to 32×32 pixels.

Moreover, in accordance with the existing literature [10, 52], we

utilize noise ratios of 20%, 40%, 60%, and 80%.

WebVision [27] is an extensive dataset comprising 1,000 classes

of images obtained through web crawling. In line with previous

studies [18, 23, 31], we evaluate ourmethods using the top 50 classes

from the Google Subset of WebVision. The estimated noise ratio

for this subset is approximately 20%.

ANIMAL-10N [38] is a recently introduced real-world noisy

dataset comprises 10 classes of animals. The dataset has undergone

manual labeling, with an estimated label noise ratio of around 8%.

Similar to the CIFAR datasets, ANIMAL-10N consists of 50,000

training images and 10,000 test images.

Clothing1M [50] is a large-scale dataset containing 14 classes

of clothing images, obtained by crawling online shopping websites.

It consists of a substantial collection of 1 million noisy images. The

estimated noise ratio for this dataset is approximately 38.5%.

4.1.2 Implementation details. We use CLIP model with VIT-B/32

backbone in all experiments except for specific ablations. In all

experiments, our default approach is CLIPCleaner + MixFix (Ours).

By default, we train the network with a SGD optimizer with a

momentum of 0.9 in all experiments.

For CIFAR10 and CIFAR100, we use a PresActResNet-18 [14]

as the backbone in all experiments following previous works. For

CIFAR10, we set 𝜃𝑙𝑜𝑠𝑠 = 0.5, 𝜃𝑐𝑜𝑛𝑠 = 0.8 for CLIPCleaner and 𝜃𝑟 =

0.8, 𝜃 ′𝑟 = 0.9 forMixFix; For CIFAR10, we set 𝜃𝑙𝑜𝑠𝑠 = 0.5, 𝜃𝑐𝑜𝑛𝑠 = 0.8

for CLIPCleaner and 𝜃𝑟 = 0.7, 𝜃 ′𝑟 = 0.8 for MixFix. We train both

networks with for 300 epochs with a weight decay of 5e-4. The

initial learning rate is 0.02 and is controlled by a cosine annealing

scheduler. The batchsize is fixed as 128.

For Red Mini-ImageNet, we also use a PresActResNet-18 [14]

as the backbone following previous works [10, 52]. For CLIPCleaner,
we set 𝜃𝑙𝑜𝑠𝑠 = 0.5, 𝜃𝑐𝑜𝑛𝑠 = 0.8. ForMixFix, we set 𝜃𝑟 = 0.8, 𝜃 ′𝑟 = 0.95.

We train the network for 300 epochs with a weight decay of 5e-4.

The initial learning rate is 0.02 and reduced by a factor of 10 after

200 and 250 epochs. The batchsize is fixed as 64.

ForWebVision, we use a InceptionResNetv2 as the backbone

following [23]. For CLIPCleaner, we set 𝜃𝑙𝑜𝑠𝑠 = 0.5, 𝜃𝑐𝑜𝑛𝑠 = 1. For

MixFix, we set 𝜃𝑟 = 0.7, 𝜃 ′𝑟 = 1.0. We train the network for 150

epochs with a weight decay of 1e-4. The initial learning rate is 0.01

and reduced by a factor of 10 after 80 and 120 epochs. The batchsize

is fixed as 32.

For Clothing1M, we use a ResNet50 as the backbone follow-

ing [23] with ImageNet pretrained weights. For CLIPCleaner, we
set 𝜃𝑙𝑜𝑠𝑠 = 0, 𝜃𝑐𝑜𝑛𝑠 = 0.5. For MixFix, we set 𝜃𝑟 = 0.7, 𝜃 ′𝑟 = 1.0. We

train the network for 150 epochs with a weight decay of 1e-3. The

initial learning rate is 0.002 and reduced by a factor of 10 after 50

and 100 epochs. The batchsize is fixed as 32.

For ANIMAL-10N, we use a VGG-19 [36] as the backbone with

batch-normalization following [38]. For CLIPCleaner, we set 𝜃𝑙𝑜𝑠𝑠 =
0.5, 𝜃𝑐𝑜𝑛𝑠 = 0.8. For MixFix, we set 𝜃𝑟 = 0.7, 𝜃 ′𝑟 = 0.99. We train the

network with SGD optimizer for 300 epochs with a momentum of

0.9 and weight decay of 5e-4. The initial learning rate is 0.02 and

reduced by a factor of 10 after 150 and 250 epochs. The batchsize is

fixed as 128.

4.2 Ablations study

Hyper-parameters w.r.t MixFix. In this section, we ablate on the

only two hyperparameters of our semi-supervised training strat-

egy MixFix: the ‘absorb’ threshold 𝜃𝑟 and the ‘relabel’ threshold

𝜃 ′𝑟 . Owing to the precision-recall dilemma when doing sample se-

lection, here we also need to weigh the precision and recall when

introducing additional training samples. In table 1 we demonstrate

that under different noise ratios, a too high or too low threshold
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Table 1: Ablations on MixFix with synthetic

CIFAR100 noisy dataset. The top-3 results are
bolded.

𝜃𝑟 𝜃 ′𝑟
Noise ratio

20% 50% 80% 90%

0.7 76.46 74.69 69.50 62.91

0.7 0.8 76.63 75.23 69.72 63.11

0.9 77.06 75.17 67.76 59.17

0.7 75.49 74.30 67.95 63.29

0.8 76.36 74.90 68.86 63.420.8

0.9 76.66 74.50 67.37 58.09

0.7 74.53 73.49 68.74 62.22

0.8 75.98 74.25 68.94 62.810.9

0.9 75.78 74.23 67.17 59.38

𝜃'r

𝜃r

𝜃'r

𝜃r

𝜃'r

𝜃r

𝜃'r

𝜃r

Figure 2: 𝑁𝑡𝑟𝑎𝑖𝑛 denotes number of training samples, 𝑁𝑐𝑙𝑒𝑎𝑛 denotes number

of clean training samples and 𝑁𝑎𝑙𝑙 denotes number of clean training samples.

Table 2: Testing accuracy (%) with CLIP zero-shot classifier

Model CIFAR10 CIFAR100 Red Mini-ImageNet WebVision Clothing1M ANIMAL-10N

CLIP zero-shot 89.97 63.72 78.12 73.36 39.73 76.12

SOTA 92.68 67.7 49.55 80.9 74.84 84.6

Ours 95.15 71.17 54.21 81.56 74.87 88.14

leads to performance degradation, and 𝜃𝑟 < 𝜃 ′𝑟 leads to better per-

formance than setting same value for both thresholds. In fig. 2,

we further reveal the inherent mechanism. Especially, after reduc-

ing the ‘absorb’ threshold 𝜃 ′𝑟 , the proportion of training samples

increases and the accuracy of training samples decreases.

Analyzing CLIP Zero-shot classification as a baseline. In this sec-

tion, we consider utilizing CLIP’s zero-shot classifier directly on the

clean test set, following a procedure that we describe in Section 3.2.

In table 2, we present the zero-shot classification results on six com-

mon benchmarks and compare them with current SOTA results as

well as our own method. It’s worth noting that CLIP is utilized with

the VIT-B/32 architecture here, while our method and the SOTA

methods adopt simpler structures, such as PreResNet-18 for the

CIFAR dataset. Therefore, this comparison is indeed ‘over stringent’.

Even though, we observe that, when compared to directly utiliz-

ing CLIP’s zero-shot classifier, our method delivers significantly

improvements on most datasets and outperforms the SOTA LNL

methods on all datasets. We also consider other vision-language

models other than CLIP in Supplementary A.

Analyzing sample selection w.r.t different classifiers and different
mechanisms. In section 3.4, we theoretically conclude that the per-

formance of the zero-shot classifier is influenced by the quality of

utilized prompts and the domain gap between CLIP training dataset

and the in-question noisy dataset, while the performance of the

easily-inducible classifier trained based on CLIP’s vision encoder

and the in-question noisy dataset is influenced by the noise of the

in-question dataset. To validate this, we empirically test with two

datasets with controllable noise ratios, that is, the CIFAR10/100

dataset with synthetic noise and the Red Mini-ImageNet dataset

with real-world noise.

In fig. 3, we show the sample selection performance and find

that: i) As the noise ratio increases, regardless of the dataset, noise

types, CLIP backbones or empirical variants of the trained classifier

in option 2 (LogisticRegression VS kNN ), the zero-shot classifier

(option 1) gradually outperforms the trained classifier. This further

validates our theoretical findings in section 3.4; ii) Additionally,

we notice that when comparing two different modes for obtaining

the training classifier, the LogisticRegression classifier empirically

exhibits superior performance to the kNN classifier. Therefore, we

choose the LogisticRegression classifier as our default choice for

trained classifier; iii) Furthermore, we find that different sample

selection mechanisms (G𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 VS G𝑙𝑜𝑠𝑠 ) show distinct advan-

tages and disadvantages on different datasets. Given that noise

information is typically unknown in real-world scenarios, as ana-

lyzed in section 3.5, we default to a conservative sample selection

strategy, which involves utilizing both sample selection strategies

and choosing their intersection as final selected subset.
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Figure 3: Comparisons of various sample selection methods w.r.t different dataset/noise type/noise ratio. Here, we show the

ROC AUC score of binary identification of clean samples.

Table 3: Testing accuracy (%) on on CIFAR-10 and CIFAR-100 with synthetic noise.

Dataset CIFAR10 CIFAR100

Noise type Symmetric Assymetric Symmetric

Noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

CE 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1

Co-teaching+ [56] 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7

F-correction [34] 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2

PENCIL [55] 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3

LossModelling [1] 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3

DivideMix [23] 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5

ELR+ [28] 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4

MOIT [31] 93.1 90.0 79.0 69.6 92.0 73.0 64.6 46.5 36.0

SelCL+ [25] 95.5 93.9 89.2 81.9 93.4 76.5 72.4 59.6 48.8

TCL [16] 95.0 93.9 92.5 89.4 92.6 78.0 73.3 65.0 54.5

Ours 95.92±0.15 95.67±0.28 95.04±0.37 94.23±0.54 94.89±0.16 78.20±0.45 75.23±0.29 69.72±0.61 63.11±0.89

4.3 Results on synthetic noisy dataset

In this section, we firstly evaluate our method on the CIFAR datasets

with synthetic symmetric/asymmetric noise. In table 3, We can see

that our method gets competitive and better performance in all

experiment settings, especially when the noise ratio is high (63.11%

testing accuracy with 90% symmetric noise on CIFAR100 dataset).

Also, we would like to emphasize that we keep hyper-parameters

fixed for all experiments here as we believe the method robustness

in a noise agnostic scenario is critical.

To further validate the performance of our method in handling

the ‘hard noise’, we also conduct experiments on instance-dependent

noise in table 5. Different from symmetric or asymmetric noise,

instance-dependent noise assumes that semantic-similar samples

are more prone to get mislabelled, aligning better with our earlier

definition of ‘hard noise’. Besides, here we here excludeMixFix and

employ the selected samples for training with cross-entropy loss

solely. This exclusion serves to provide an additional proof of the

superior sample selection performance of CLIPCleaner.
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Table 4: Testing accuracy (%) on Clothing1M.

CE

F-correction

[34]

RRL

[24]

C2D

[61]

DivideMix

[23]

ELR+

[28]

SSR+

[7]

TCL

[16]

Ours Ours (Co-training) CLIPCleaner + DivideMix

69.21 69.84 74.30 74.84 74.76 74.81 74.83 74.80 73.41±0.65 74.01±0.47 74.87±0.44

Table 5: Testing accuracy (%) on CIFAR10 with instance-

dependent noise.

Method

Noise ratio

10% 20% 30% 40%

CE 91.25 86.34 80.87 75.68

F-correction [34] 91.06 86.35 78.87 71.12

Co-teaching [13] 91.22 87.28 84.33 78.72

GCE [60] 90.97 86.44 81.54 76.71

DAC [40] 90.94 86.16 80.88 74.80

DMI [51] 91.26 86.57 81.98 77.81

SEAL [4] 91.32 87.79 85.30 82.98

CE* 90.76 86.08 80.64 75.27

CLIPCleaner + CE 92.33±0.37 91.06±0.37 89.71±0.37 88.26±0.37

4.4 Results on real-world noisy datasets

Finally, in table 6, table 7, and table 8 we show results on the

ANIMAL-10N, Red Mini-ImageNet and WebVision datasets, respec-

tively. In summary, our proposed method demonstrates substantial

improvements compared to the current state-of-the-art approaches

on both large-scale web-crawled datasets and small-scale human-

annotated noisy datasets.

Table 6: Testing accuracy (%) on on WebVision.

Methods

WebVision ILSVRC2012

Top1 Top5 Top1 Top5

Co-teaching [13] 63.5 85.20 61.48 84.70

DivideMix [23] 77.32 91.64 75.20 90.84

ELR+ [28] 77.78 91.68 70.29 89.76

NGC [47] 79.16 91.84 74.44 91.04

FaMUS [52] 79.4 92.8 77.0 92.8

RRL [24] 76.3 91.5 73.3 91.2

SelCL+ [25] 79.9 92.6 76.8 93.0

SSR+ [7] 80.9 92.8 75.8 91.8

TCL [16] 79.1 92.3 75.4 92.4

Ours 81.56±0.29 93.26±0.65 77.80±0.25 92.08±0.44

We note, that the proposed CLIPCleaner can also be used in

combination with other schemes. In table 4 we show results on the

Clothing1M dataset both with our default setting (CLIPCleaner +
MixFix) and with it incorporated to two additional schemes: first

incorporating our method with co-training, and second replacing

MixFix with DivideMix [23]. We observe that we obtain results

that are superior to the current state-of-the-art. Meanwhile, we

would like to note that the majority of existing methods have small

differences on the Clothing1M dataset despite the fact that they

have large performance differences on other datasets. This suggests

that additional training techniques may have a greater impact than

Table 7: Testing accuracy (%) on on Red Mini-ImageNet.

Method

Noise ratio

20% 40% 60% 80%

CE 47.36 42.70 37.30 29.76

Mixup [57] 49.10 46.40 40.58 33.58

DivideMix [23] 50.96 46.72 43.14 34.50

MentorMix [17] 51.02 47.14 43.80 33.46

FaMUS [52] 51.42 48.06 45.10 35.50

InstanceGM [10] 58.38 52.24 47.96 39.62

Ours 61.44±0.45 58.42±0.66 53.18±0.47 43.82±0.87

Table 8: Testing accuracy (%) on ANIMAL-10N.

Method Accuracy

CE 79.4

SELFIE [38] 81.8

PLC [59] 83.4

NCT [5] 84.1

InstanceGM [10] 84.6

SSR+ [7] 88.5

Ours 88.85±0.61

sample selection methods on this specific dataset, possibly due to

the fact that the Clothing1M dataset is more fine-grained than other

datasets. For such fine-grained noisy datasets, sample selection may

not be the optimal strategy, as suggested in Section 3.1, where the

basis of sample selection methods relies on highly concentrated

conditional probabilities for the samples (eq. (1)).

5 CONCLUSION

To mitigate the issues of ‘self-confirmation bias’ and compensate

for visual-only modality in current mainstream sample selection

methods, in this paper we propose a method utilizing the large-

scale vision-language model CLIP for sample selection, called CLIP-
Cleaner. We substantiate its effectiveness through both theoreti-

cally and empirically. Furthermore, we introduce a straightforward

semi-supervised learning method tailored for noisy datasets, called

MixFix, without the need for intricate off-the-shelf techniques. We

emphasize that the exploration of utilizing vision-language models

for noisy datasets, such as the potential of existing prompt learning

techniques, remains an open direction. Additionally, the possibil-

ity of a large domain gap between the CLIP model and the target

dataset can influence results, indicating a need for more refined

vision-language models. Lastly, our experiments suggest that sam-

ple selection methods may not be optimal for fine-grained noisy

datasets, which presents itself also as one of our future research

directions.
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