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A SAMPLE SELECTIONWITH OTHER VISION-LANGUAGE MODELS

Here, we compare CLIP with another vision-language model - ALIGN [3]. Specifically, we compare their performance
on sample selection based on the CIFAR10 dataset with instance-dependent noise [2]. In table 1, we can see ALIGN
behaves similarly well as CLIP concerning precision with even higher recall. This demonstrates that our proposed idea
of using vision-language models for sample selection is widely effective.

Table 1. Precision-Recall of sample selection results on CIFAR10 with instance-dependent noise with CLIP and ALIGN.

Noise ratio 0.1 0.2 0.3 0.4

Precision Recall Precision Recall Precision Recall Precision Recall
CLIP 99.73 70.75 99.53 75.07 99.25 77.77 99.03 79.23
ALIGN 99.47 72.47 99.13 78.64 99.01 81.22 98.74 84.53

B PROMPTS GENERATION AND FURTHER ANALYSIS

How multiple prompts with class-specific features are generated? Regarding the generation multiple prompts based
on class-specific features, motivated by recent work [5], we first generate multiple features for each class by asking
ChatGPT about each category’s characteristics. We use below question for ChatGPT 3.5:

For CLIP model, the prompts matter a lot. can you give me some discriminative features of some

classes? Please list it in nested python as each class has multiple descriptions. Please ensure

it is formatted as ‘which has ...’ or ‘which is ...’ or ‘which ...’. For example, [‘Cat’, ‘Lynx’,

‘Wolf’, ‘Coyote’, ‘jaguar’, ‘Cheetah’, ‘Chimpanzee’, ‘Orangutan’, ‘Hamster’, ‘Guinea pig’].

We then generate multiple prompts with template in Section 3.2. We will include our generated class-specific
prompts along with the code upon acceptance.

Comparison of class-specific prompts with other prompt style. To experimentally validate the superiority of our prompt
style based on class-specific features, we conduct a comparative analysis of its zero-shot classification performance
against alternative prompt styles. Specifically, we consider three empirical variants including ours:

(1) Single prompt: ‘A photo of {class name of 𝑦𝑖}.’;
(2) Multiple prompts with different templates: ‘A good photo of {class name of 𝑦𝑖}.’/‘An old picture of

{class name of 𝑦𝑖}.’ .etc;
(3) Multiple promptswith class-specific features: ‘A photo of {class name of 𝑦𝑖}, which is/has {class-specific

feature 𝑗 of class 𝑦𝑖}.’ with features such as the color, shape, etc.

In table 2, we present zero-shot classification results on six noisy datasets using the three prompt styles mentioned
above and different backbones for CLIP model (VIT-B/32 and VIT-L/14@336px). We observe that, in most cases, the
effectiveness of our prompting style is at its best, especially when employing a larger-scale CLIP backbone (VIT-
L/14@336px). This aligns with our theoretical analysis.
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Table 2. Zero-shot classification with different prompt styles.

Model Prompt technique CIFAR10 CIFAR100 Red Mini-ImageNet WebVision Clothing1M ANIMAL-10N

CLIP (ViT-B/32)
1 88.29 61.62 74.40 72.40 39.80 75.08
2 89.73 63.65 75.14 68.12 39.68 75.70
3 87.97 63.72 78.12 73.36 37.73 74.62

CLIP (ViT-L/14@336px)
1 94.78 74.36 80.20 45.13 85.18 85.12
2 95.17 74.96 79.88 47.26 85.78 87.00
3 95.19 76.78 81.96 48.15 85.36 87.98

C UTILIZING CLIPCLEANER WITH OTHER METHODS

Current mainstream methods for learning with noisy labels usually involve an iterative process consists of sample
selection and model training. Normally, these methods require a warm-up stage, i.e., training with whole dataset for
some epochs to learn an usable model before the iteration process. Here, we consider to utilize the selected samples
by CLIPCleaner for the warmup stage to validate if it can also bring improvement for existing methods. In table 3, we
validate that CLIPCleaner brings steady improvement over original DivideMix [4].

Table 3. Testing accuracy (%) of CLIPCleaner utilized along with DivideMix.

Dataset CIFAR10 CIFAR100

Noise type Symmetric Assymetric Symmetric

Noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

Cross-Entropy 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
Co-teaching+ [12] 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
F-correction [7] 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2
PENCIL [11] 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3
LossModelling [1] 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3
DivideMix [4] 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
DivideMix + CLIPCleaner 96.3 (0.2↑) 95.7 (1.1↑) 94.3 (1.1↑) 88.7 (12.7↑) 94.2 (0.8↑) 78.1 (0.8↑) 75.2 (0.6↑) 71.3 (9.1↑) 46.6 (15.1↑)

D PER-CLASS SEPERATE GMM VSWHOLE SINGLE GMM

In this section, we compare the differences between using seperate GMM for each class and a single GMM for all classes
in sample selection. We conduct experiments on the CIFAR10 dataset with instance-dependent noise. As shown in
table 4, we observe that the seperate GMM yields a higher recall while maintaining competitive precision in sample
selection. In table 5, we find and validate that the seperate GMM allows us to obtain a more balanced subset, thereby
mitigating class imbalance issues and partially explaining why we achieve a better recall above.

Table 4. Precision and recall of sample selection on CIFAR10 dataset with instance-dependent noise with Separate and Single GMM.

Noise ratio 0.1 0.2 0.3 0.4

Precision Recall Precision Recall Precision Recall Precision Recall
Separate GMM 99.73 70.75 99.53 75.09 99.25 77.77 99.04 79.26
Single GMM 99.77 68.90 99.61 71.88 99.43 73.68 99.29 72.67
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Table 5. Max-Min number of selected samples from each class.

Noise ratio 0.1 0.2 0.3 0.4

Max Min Max Min Max Min Max Min

Separate GMM 4061 2228 3938 2148 3656 1851 3312 1440
Single GMM 4188 1720 4038 1757 3682 1455 3403 947

E FULL DERIVATION IN SECTION 3.1 AND SECTION 3.2

In this section, we first provide the full derivation of the weighted empirical risk and the solution of optimal weight. We
then briefly explain the relation of output similarity in CLIP model and the joint probability.

Weighted empirical risk minimization in sample selection. For better clarification, we here repeat the problem formula-
tion in Section 3.1. Given a dataset of training samples (𝒙𝑖 , 𝑦𝑖 )𝑁𝑖=1 i.i.d sampled from a hidden joint distribution 𝑃 (𝒙, 𝑦)
with 𝑠𝑢𝑝𝑝 (𝑃) = {𝒙 ∈ 𝑅𝐶×𝐻×𝑊 , 𝑦 ∈ {1, ..., 𝐾}} and 𝐾 denotes the number of semantic classes, the goal of supervised
learning is to learn a model 𝑓 that can accurately predict the true labels 𝑦 for new, unseen examples. Mathematically,
we often optimize the empirical risk with samples i.i.d sampled from noisy distribution 𝑃 (𝒙, 𝑦):

𝑅𝑃 (𝑓 ) = 1
𝑁

𝑁∑︁
𝑖=1

𝐿(𝒙𝑖 , 𝑦𝑖 ; 𝑓 )

Here 𝐿 can be any applicable classification-calibrated surrogate loss to 0-1 loss, normally we use Cross-Entropy loss:

𝐿(𝒙𝑖 , 𝑦𝑖 ; 𝑓 ) = − log
exp(𝑓 (𝒙𝑖 )𝑦𝑖 )∑𝐾
𝑗=1 exp(𝑓 (𝒙𝑖 ) 𝑗 )

.

Owing to the ERM principle, we can uniformly minimize w.r.t the expected risk by minimizing above empirical risk:

𝑅𝑃 (𝑓 ) = 𝐸𝑃 (𝒙,𝑦)𝐿(𝒙, 𝑦; 𝑓 )

However, in this work we focus on learning with noisy labels, that is to say, there exist discrepancy between the
noisy training distribution 𝑃 (𝒙, 𝑦) and clean unknown distribution 𝑃𝑡𝑟𝑢𝑒 (𝒙, 𝑦). In this condition, for the same specific
model 𝑓 , we have the expected risk on real distribution as:

𝑅𝑡𝑟𝑢𝑒 (𝑓 ) ≜ 𝑅𝑃
𝑡𝑟𝑢𝑒

(𝑓 ) = 𝐸𝑃𝑡𝑟𝑢𝑒 (𝒙,𝑦)𝐿(𝒙, 𝑦; 𝑓 )

To bridge the distribution discrepancy, we can easily find that:

𝑅𝑡𝑟𝑢𝑒 (𝑓 ) = 𝐸𝑃𝑡𝑟𝑢𝑒 (𝒙,𝑦)𝐿(𝒙, 𝑦; 𝑓 ) = 𝐸𝑃 (𝒙,𝑦)
𝑃𝑡𝑟𝑢𝑒 (𝒙, 𝑦)
𝑃 (𝒙, 𝑦) 𝐿(𝒙, 𝑦; 𝑓 ) .

Further, we assume 𝑃𝑡𝑟𝑢𝑒 (𝒙,𝑦)
𝑃 (𝒙,𝑦) =

𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙 )𝑃𝑡𝑟𝑢𝑒 (𝒙 )
𝑃 (𝑦 |𝒙 )𝑃 (𝒙 ) =

𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙 )
𝑃 (𝑦 |𝒙 ) as label noise normally does not affect the sample

itself (𝑃 (𝒙) = 𝑃𝑡𝑟𝑢𝑒 (𝒙)). We then get the corresponding weighted empirical risk with noisy labels,

𝑅𝑡𝑟𝑢𝑒 (𝑓 ) = 1
𝑁

𝑁∑︁
𝑖=1

𝑃𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 )
𝑃 (𝑦𝑖 |𝒙𝑖 )

𝐿(𝒙𝑖 , 𝑦𝑖 ; 𝑓 )

with which we can ensure a risk-consistent classifier w.r.t clean distribution learned with even noisy labels.
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More than sample selection? Other than sample selection, another applicable direction is the so-called risk-consistent
methods, for example, to estimate the noise transition matrix by assuming 𝑃𝑡𝑟𝑢𝑒 (𝑦𝑡𝑟𝑢𝑒 |𝒙) = 𝑇 (𝑦𝑡𝑟𝑢𝑒 |𝑦)𝑃 (𝑦 |𝒙). A
common assumption here is to assume the noise transition is instance-independent and label-dependent only
thus to alleviate it from 𝑇 (𝑦𝑡𝑟𝑢𝑒 |𝑦, 𝒙) to 𝑇 (𝑦𝑡𝑟𝑢𝑒 |𝑦). Please refer to related paper [9, 10] for more details. Though
theoretically consistent, these methods often achieves relative sub-optimal performance, since noise modes in
real-world datasets are extremely complex, and current noise models cannot accurately simulate them.

Relation of joint probability𝑄 (𝒙𝑖 , 𝒛𝑖 ) and the CLIP similarity exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛𝑖 )). The zero-shot classification paradigm
in eq. (4) is widely applied, however without clear theoretical explanation. In this work, we bridge the CLIP model with
zero-shot classification by eq. (3). Please note we mark the equations from the main paper are colored by blue. We here
explain the probabilistic relation of the learned similarity value (exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛𝑖 ))) and the joint probability 𝑄 (𝒙𝑖 , 𝒛𝑖 ).
Specifically, we can easily write the empirical risk with CLIP loss function in eq. (2) as:

𝑅𝑄 (𝑔, ℎ) = 1
2

𝑀∑︁
𝑖=1

(− log
exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛𝑖 ))∑𝑀
𝑗=1 exp(𝑔(𝒙 𝑗 )𝑇ℎ(𝒛𝑖 ))

− log
exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛𝑖 ))∑𝑀
𝑗=1 exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛 𝑗 ))

)

= −1
2
log

𝑀∏
𝑖=1

exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛𝑖 ))∑𝑀
𝑗=1 exp(𝑔(𝒙 𝑗 )𝑇ℎ(𝒛𝑖 ))

exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛𝑖 ))∑𝑀
𝑗=1 exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛 𝑗 ))

For the specific i.i.d sampled dataset, based on MLE principle we have the negative log-likelihood as:

L(𝑔, ℎ; (𝒙𝑖 , 𝒛𝑖 )𝑀𝑖=1) = − log
𝑀∏
𝑖=1

𝑄𝑔,ℎ (𝒙𝑖 |𝒛𝑖 , 𝒙 ∈ {𝒙 𝑗 }𝑀𝑗=1;𝑔, ℎ)𝑄𝑔,ℎ (𝒛𝑖 |𝒙𝑖 , 𝒛 ∈ {𝒛 𝑗 }𝑀𝑗=1;𝑔, ℎ)

= − log
𝑀∏
𝑖=1

𝑄𝑔,ℎ (𝒙𝑖 , 𝒛𝑖 )∑𝑀
𝑗=1𝑄𝑔,ℎ (𝒙 𝑗 , 𝒛𝑖 )

𝑄𝑔,ℎ (𝒙𝑖 , 𝒛𝑖 )∑𝑀
𝑗=1𝑄𝑔,ℎ (𝒙𝑖 , 𝒛 𝑗 )

Comparing 𝑅𝑄 (𝑔, ℎ) with L(𝑔, ℎ; (𝒙𝑖 , 𝒛𝑖 )𝑀𝑖=1), we have: exp(𝑔(𝒙𝑖 )𝑇ℎ(𝒛 𝑗 )) ∝ 𝑄𝑔,ℎ (𝒙𝑖 , 𝒛 𝑗 ), where latter serves as an
estimation of 𝑄 (𝒙𝑖 , 𝒛 𝑗 ) after training.

F DERIVATION OF THEOREM 1 AND THEOREM 2

In this section, we provide full derivation of Theorem 1 and Theorem 2 in Section 3.4. To start with, we first state the
essential generalization error bound based on Rademacher complexity (ℜ):

Lemma F.1 (Rademacher generalization error bound [6]). Supposing we have 𝑁 i.i.d samples {𝒙𝑖 }𝑁𝑖=1 from

distribution 𝑃 (𝒙). Let F be the hypothesis space of model 𝑓 and 𝐿 be any classification-calibrated surrogate loss function of

0-1 loss ranging from [𝑎, 𝑏]. Then, for any 𝛿 > 0, with probability at least 1 − 𝛿 we have the following holds for all 𝑓 ∈ F :

𝑅(𝑓 ) ≤ 𝑅(𝑓 ) + 2ℜ(F ) + (𝑏 − 𝑎)
√︂

log(1/𝛿)
2𝑁

Here, 𝑅𝑃 (𝑓 ) = 𝐸𝑃 (𝒙 )𝐿(𝒙; 𝑓 ) denotes the expected risk with 𝑓 and 𝑅𝑃 (𝑓 ) = 1
𝑁

∑𝑁
𝑖=1 𝐿(𝒙𝑖 ; 𝑓 ) denotes the empirical one.

Please do not confuse the notations here with other notations.

F.1 Derivation of Theorem 1

Let us recall the formulation of CLIP model. CLIP aims to learn from a dataset of image-text pairs, denoted as (𝒙𝑖 , 𝒛𝑖 )𝑀𝑖=1,
which is i.i.d. sampled from a hidden joint distribution 𝑄 (𝒙, 𝒛) with sup(𝑄) = {𝒙 ∈ R𝐶×𝐻×𝑊 , 𝒛 ∈ R𝑑 }. As the dataset
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for training CLIP is often also considered ‘noisy’ 1. Here, we denote the clean joint distribution for CLIP training dataset
as 𝑄 ′ (𝒙, 𝒛) and the corresponding clean dataset as (𝒙𝑖 , 𝒛′𝑖 )

𝑀
𝑖=1.

According to eq. (3) in main paper, to measure the distance between 𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (𝑦 |𝒙) with 𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙), we then divide
it into two parts, i.e, the distance between 𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (𝑦 |𝒙) and 𝑄 ′ (𝑦 |𝒙) (Model error) and the distance between 𝑄 ′ (𝑦 |𝒙)
and 𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙) (Domain gap).

On the one hand, we simply define the domain gap as 𝜀𝑑𝑜𝑚𝑎𝑖𝑛 here, which represents how different the true prediction
distribution (𝑄 ′ (𝑦 |𝒙)) of CLIP training dataset is than the true prediction distribution (𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙)) of out targeted
classification problem. This is technically irreducible but can be improved by making the CLIP training dataset more
abundant and reduce its domain gap with the targeted classification dataset.

On the other hand, the model error is further divided into two parts:

(1) the distance between 𝑄𝑔,ℎ (𝒛 |𝒙) and 𝑄 ′ (𝒛 |𝒙) (CLIP generalization error);
(2) the error induced by eq. (4) when estimating 𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (𝑦 |𝒙) based on 𝑄 ′ (𝒙, 𝒛) (Prompt sampling and designing).

Intuitively, the first part represents how good our CLIP model learn and generalize, and the second part represents how
much extra bias we introduce when we try to approximate the integral with sampling (eq. (4)).

CLIP generalization error. Following main paper’s notations, let us recall here the empirical risk on i.i.d sampled
dataset from the noisy CLIP distribution 𝑄 as 𝑅𝑄 (𝑓 ):

𝑅𝑄 (𝑔, ℎ) = 1
𝑀

𝑀∑︁
𝑖=1

𝐿𝑐𝑙𝑖𝑝 (𝒙𝑖 , 𝒛𝑖 ;𝑔, ℎ),

and the corresponding empirical risk w.r.t clean dataset as:

𝑅𝑄
′
(𝑔, ℎ) = 1

𝑀

𝑀∑︁
𝑖=1

𝐿𝑐𝑙𝑖𝑝 (𝒙𝑖 , 𝒛′𝑖 ;𝑔, ℎ),

while the expected risk on the unknown clean CLIP distribution 𝑄 ′ as 𝑅𝑄
′ (𝑔, ℎ), as:

𝑅𝑄
′
(𝑔, ℎ) = 𝐸𝑄 ′𝐿𝑐𝑙𝑖𝑝 (𝒙, 𝒛;𝑔, ℎ)

Below we present how to bound the CLIP generalization error. We denote (𝑔, ℎ̂) = argmin𝑔∈G,ℎ∈H 𝑅𝑄 (𝑔, ℎ) as the
empirical optimal model w.r.t i.i.d sampled dataset from 𝑄 , (𝑔∗, ℎ∗) = argmin𝑔∈G,ℎ∈H 𝑅𝑄

′ (𝑔, ℎ) as the best-achievable
model w.r.t clean distribution 𝑄 ′ and (𝑔𝑏𝑎𝑦𝑒𝑠 , ℎ𝑏𝑎𝑦𝑒𝑠 ) = argmin𝑔,ℎ 𝑅𝑄

′ (𝑔, ℎ) as the Bayes optimal model w.r.t clean
distribution 𝑄 ′. We can decompose the excess risk of our learned empirical optimal model 𝑓 over the Bayes optimal
model 𝑓𝑏𝑎𝑦𝑒𝑠 as:

𝑅𝑄
′
(𝑔, ℎ̂) − 𝑅𝑄

′
(𝑔𝑏𝑎𝑦𝑒𝑠 , ℎ𝑏𝑎𝑦𝑒𝑠 ) = 𝑅𝑄

′
(𝑔, ℎ̂) − 𝑅𝑄

′
(𝑔∗, ℎ∗)︸                        ︷︷                        ︸

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

+ 𝑅𝑄
′
(𝑔∗, ℎ∗) − 𝑅𝑄

′
(𝑔𝑏𝑎𝑦𝑒𝑠 , ℎ𝑏𝑎𝑦𝑒𝑠 )︸                                       ︷︷                                       ︸

𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

= 𝑅𝑄
′
(𝑔, ℎ̂) − 𝑅𝑄

′
(𝑔∗, ℎ∗) + B𝑎𝑝𝑝𝑟𝑜𝑥

≈ 𝑅𝑄
′
(𝑔, ℎ̂) − 𝑅𝑄

′
(𝑔∗, ℎ∗)

(1)

1The image description sometimes can be random due to the data collection process [3, 8]. We here also consider this into consideration. Please note
this is different with our interested label noise in this work.
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Exact analysis of approximation error is often intractable, we thus abbreviate it as B𝑎𝑝𝑝𝑟𝑜𝑥 and omit it in subsequent
analysis. For estimation error, we have:

𝑅𝑄
′
(𝑔, ℎ̂) − 𝑅𝑄

′
(𝑔∗, ℎ∗) = 𝑅𝑄

′
(𝑔, ℎ̂) − 𝑅𝑄 (𝑔, ℎ̂) + 𝑅𝑄 (𝑔, ℎ̂)

− 𝑅𝑄 (𝑔∗, ℎ∗) + 𝑅𝑄 (𝑔∗, ℎ∗) − 𝑅𝑄
′
(𝑔∗, ℎ∗)

𝑅̂𝑄 (𝑔,ℎ̂)−𝑅̂𝑄 (𝑔∗,ℎ∗ )≤0
======================⇒

≤ 𝑅𝑄
′
(𝑔, ℎ̂) − 𝑅𝑄 (𝑔, ℎ̂) + 𝑅𝑄 (𝑔∗, ℎ∗) − 𝑅𝑄

′
(𝑔∗, ℎ∗)

≤ 2sup𝑔∈G,ℎ∈H |𝑅𝑄
′
(𝑔, ℎ) − 𝑅𝑄 (𝑔, ℎ) |

(2)

Supposing the range of 𝐿𝑐𝑙𝑖𝑝 as [0, 𝑙𝑐𝑙𝑖𝑝∞ ] for all (𝒙, 𝒛) in sup(𝑄) with 𝑔, ℎ ∈ G,H and 𝐿𝑐𝑙𝑖𝑝 is 𝜆-Lipschitz continuous
w.r.t 𝒛𝑖 , according to Lemma F.1 and triangle inequality, we have:

|𝑅𝑄
′
(𝑔, ℎ) − 𝑅𝑄 (𝑔, ℎ) | ≤

𝐿𝑒𝑚𝑚𝑎 𝐹 .1︷                       ︸︸                       ︷
|𝑅𝑄

′
(𝑔, ℎ) − 𝑅𝑄

′
(𝑔, ℎ) | +

𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠︷                      ︸︸                      ︷
|𝑅𝑄

′
(𝑔, ℎ) − 𝑅𝑄 (𝑔, ℎ) |

≤ 2ℜ(G ◦ H) + 𝑙𝑐𝑙𝑖𝑝∞

√︂
log(1/𝛿)

2𝑀
+ 𝜆 1

𝑀

𝑀∑︁
𝑖=1

∥𝒛𝑖 − 𝒛′𝑖 ∥2

≤ 2ℜ(G ◦ H) + 𝑙𝑐𝑙𝑖𝑝∞

√︂
log(1/𝛿)

2𝑀
+ 𝜀𝑛

(3)

Here, we rewrite 𝜆 1
𝑀

∑𝑀
𝑖=1∥𝒛𝑖 − 𝒛′

𝑖
∥2 as 𝜀𝑛 which is the error term induced by language noise (𝒛𝑖 ≠ 𝒛′

𝑖
). With eq. (1) and

eq. (3), we have:

𝑅𝑄
′
(𝑔, ℎ̂) − 𝑅𝑄

′
(𝑔𝑏𝑎𝑦𝑒𝑠 , ℎ𝑏𝑎𝑦𝑒𝑠 ) ≤ 2(2ℜ(G ◦ H) + 𝑙𝑐𝑙𝑖𝑝∞

√︂
log(1/𝛿)

2𝑀
+ 𝜀𝑛) (4)

To further connect the generalization error bound above and the distance of estimated probability 𝑄𝑔,ℎ (𝒛 |𝒙) and
𝑄 ′ (𝒛 |𝒙), we have:

𝑅𝑄
′
(𝑔, ℎ) = 𝐸𝑄 ′𝐿𝑐𝑙𝑖𝑝 (𝒙, 𝒛;𝑔, ℎ)

= −1
2

∫
𝑄 ′ (𝒙)

∫
𝑄 ′ (𝒛 |𝒙) log𝑄𝑔,ℎ (𝒛 |𝒙)𝑑𝒛𝑑𝒙

− 1
2

∫
𝑄 ′ (𝒛)

∫
𝑄 ′ (𝒙 |𝒛) log𝑄𝑔,ℎ (𝒙 |𝒛)𝑑𝒙𝑑𝒛

=
1
2

∫
𝑄 ′ (𝒙)𝐷𝐾𝐿 (𝑄 ′ (𝒛 |𝒙), 𝑄𝑔,ℎ (𝒛 |𝒙))𝑑𝒙

− 1
2

∫
𝑄 ′ (𝒙)

∫
𝑄 ′ (𝒛 |𝒙) log𝑄 ′ (𝒛 |𝒙)𝑑𝒛𝑑𝒙

− 1
2

∫
𝑄 ′ (𝒛)

∫
𝑄 ′ (𝒙 |𝒛) log𝑄𝑔,ℎ (𝒙 |𝒛)𝑑𝒙𝑑𝒛

≥ 1
2

∫
𝑄 ′ (𝒙)𝐷𝐾𝐿 (𝑄 ′ (𝒛 |𝒙), 𝑄𝑔,ℎ (𝒛 |𝒙))𝑑𝒙

≥ 𝑑 (𝑄𝑔,ℎ (𝒛 |𝒙), 𝑄′ (𝒛 |𝒙))

(5)

Specifically, we have (𝑔𝑏𝑎𝑦𝑒𝑠 , ℎ𝑏𝑎𝑦𝑒𝑠 ) = argmin𝑅𝑄 (𝑔, ℎ) when and only when 𝑄𝑔,ℎ (𝒛 |𝒙) = 𝑄 ′ (𝒛 |𝒙). Intuitively, when
and only when the learned model is Bayes optimal, we have a zero distance between the estimated probability and the
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ground-truth probability. According to eq. (4), we thus have:

𝑅𝑄
′
(𝑔, ℎ̂) − 𝑅𝑄

′
(𝑔𝑏𝑎𝑦𝑒𝑠 , ℎ𝑏𝑎𝑦𝑒𝑠 ) ≤ 2(2ℜ(G ◦ H) + 𝑙𝑐𝑙𝑖𝑝∞

√︂
log(1/𝛿)

2𝑀
+ 𝜀𝑛) =⇒

𝑑 (𝑄
𝑔,ℎ̂

(𝒛 |𝒙), 𝑄′ (𝒛 |𝒙)) ≤ 𝑅𝑄
′
(𝑔𝑏𝑎𝑦𝑒𝑠 , ℎ𝑏𝑎𝑦𝑒𝑠 )

+ 2(2ℜ(G ◦ H) + 𝑙𝑐𝑙𝑖𝑝∞

√︂
log(1/𝛿)

2𝑀
+ 𝜀𝑛)

≤ 2(2ℜ(G ◦ H) + 𝑙𝑐𝑙𝑖𝑝∞

√︂
log(1/𝛿)

2𝑀
+ 𝜀𝑛)

(6)

Prompt sampling and designing. We then take step two into consideration. According to eq. (3), with 𝑄
𝑔,ℎ̂

(𝒛 |𝒙) we
can estimate 𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (𝑦 |𝒙). To quantify the additional error of the sampling process (eq. (4)), we denote as Δ a error
coefficient which represents how much extra error been induced. Let us recall the domain gap (𝜀𝑑𝑜𝑚𝑎𝑖𝑛) before, we
thus have Theorem 1 below:

Theorem F.2 (Estimation with zero-shot classifier). Let G,H be the hypothesis space of vision encoder 𝑔 and

language encoder ℎ. Let us denote the rademacher complexity as ℜ(G ◦ H) of the combined CLIP model. Supposing the

range of 𝐿 from eq. (2) as [0, 𝑙𝑐𝑙𝑖𝑝∞ ] for all (𝒙, 𝒛) in sup(𝑄) with 𝑔, ℎ ∈ G,H . Then, for any 𝛿 > 0, with probability at least

1 − 𝛿 we have the following holds:

𝑑 (𝑃𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡 (𝑦𝑖 |𝒙𝑖 ), 𝑃𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 )) ≤ 𝜀𝑑𝑜𝑚𝑎𝑖𝑛 + Δ( 𝜆1ℜ(G ◦ H) + 𝜆2𝑙𝑐𝑙𝑖𝑝∞

√︂
log 1/𝛿
𝑀

+ 𝜆3𝜀𝑛)

with 𝜆1, 𝜆2, 𝜆3 > 0. Here, 𝜀𝑑𝑜𝑚𝑎𝑖𝑛 denotes the bias term induced by the domain gap between 𝑄 and 𝑃𝑡𝑟𝑢𝑒 , and Δ ≥ 1
denotes the bias coefficient induced in designing prompts and sampling in ??.

F.2 Derivation of Theorem 2

The derivation of Theorem 2 follows a similar but rather simpler process. Specifically, with 𝑄,𝑄 ′, 𝒛𝑖 , 𝒛′𝑖 , 𝑀 replaced by
𝑃, 𝑃 ′, 𝑦𝑖 , 𝑦′𝑖 , 𝑁 , similar to eq. (4), we have:

𝑅𝑡𝑟𝑢𝑒 (𝑓 ) − 𝑅𝑡𝑟𝑢𝑒 (𝑓𝑏𝑎𝑦𝑒𝑠 ) ≤ 2(2ℜ(F ) + 𝑙𝑛𝑜𝑖𝑠𝑦∞

√︂
log(1/𝛿)

2𝑁
+ 𝜀𝑛𝑜𝑖𝑠𝑒 ) (7)

To similarly connect the generalization error bound above and the distance of estimated probability 𝑃𝑓 (𝑦 |𝒙) and
𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙), with 𝐿𝑛𝑜𝑖𝑠𝑦 as the cross-entropy loss, we have:

𝑅𝑡𝑟𝑢𝑒 (𝑓 ) = 𝐸𝑃𝑡𝑟𝑢𝑒𝐿𝑛𝑜𝑖𝑠𝑦 (𝒙, 𝑦; 𝑓 )

= −
∫

𝑃𝑡𝑟𝑢𝑒 (𝒙)
∫

𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙) log 𝑃𝑓 (𝑦 |𝒙)𝑑𝑦𝑑𝒙

=

∫
𝑃𝑡𝑟𝑢𝑒 (𝒙)𝐷𝐾𝐿 (𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙), 𝑃𝑓 (𝑦 |𝒙))𝑑𝒙

−
∫

𝑃𝑡𝑟𝑢𝑒 (𝒙)
∫

𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙) log 𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙)𝑑𝑦𝑑𝒙

≥
∫

𝑃𝑡𝑟𝑢𝑒 (𝒙)𝐷𝐾𝐿 (𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙), 𝑃𝑓 (𝑦 |𝒙))𝑑𝒙

≥ 2𝑑 (𝑃𝑓 (𝑦 |𝒙), 𝑃𝑡𝑟𝑢𝑒 (𝑦 |𝒙))

(8)

Similarly, we then have Theorem 2:
Manuscript submitted to ACM
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Theorem F.3 (Estimation with trained classifier ). Let F be the hypothesis space of trained classifier 𝑓 ′. Let us

denote the rademacher complexity as ℜ(F ) of the trained classifier. Supposing the range of 𝐿 for training 𝑓 ′ as [0, 𝑙𝑛𝑜𝑖𝑠𝑦∞ ]
for all (𝒙, 𝑦) in sup(𝑃) with 𝑓 ′ ∈ F . Then, for any 𝛿 > 0, with probability at least 1 − 𝛿 we have the following holds:

𝑑 (𝑃𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝑦𝑖 |𝒙𝑖 ), 𝑃𝑡𝑟𝑢𝑒 (𝑦𝑖 |𝒙𝑖 )) ≤ 𝜀𝑛𝑜𝑖𝑠𝑒 + 𝜆1ℜ(F ) + 𝜆2𝑙𝑛𝑜𝑖𝑠𝑦∞

√︂
log 1/𝛿
𝑁

with 𝜆1, 𝜆2 > 0. Here, 𝜀𝑛𝑜𝑖𝑠𝑒 denotes the difference term induced by the distribution difference between 𝑃 and 𝑃𝑡𝑟𝑢𝑒 .
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