
A Proofs

A.1 Proof of Lemma 1

We begin by restating the result of Lemma 3.1.
Lemma. Let ` : W ⇥ Z ! [0, 1] be a bounded loss function, then for all t > 0, w 2 W , and

z
n 2 Z ,

Eu⇠U [exp (t · (loo-cv(w, zn, u)))]  exp

✓
t
2
c
2
n

8

◆
, cn =

n

n� 1
. (24)

Proof: To show this, we use tools from [30]. Let ` 2 [0, 1]n and t > 0. For u 2 [n], we define:

f(`, u) =
1

n� 1

X

i 6=u

`i � `u. (25)

If we obtain a bound on Eu⇠U [exp(t · f(`, u))] for every ` 2 [0, 1]n, then we also obtain a bound on
Eu⇠U [exp (t · (loo-cv(w, zn, u)))] for all zn 2 Zn

, w 2 W . Now,

Eu⇠U [exp(t · f(`, u))] = 1

n
exp

t

n� 1

nX

i=1

`i

!
nX

j=1

exp (�c`j) =:
1

n
g(`). (26)

where c := tcn = t(1 + 1
n�1). Since the maximum of g must be at a stationary point, then

@g(`)

@`j
=

t

n� 1
exp

t

n� 1

nX

i=1

`i

!
nX

i=1

e
�c`i � ne

�c`j

!
, (27)

Setting (27) to 0, then the right-hand side expression of (27) must be 0. This implies that `j is either
at the extremities or we must have a value of ln(b)/c, where

b =
1

n

nX

i=1

e
�c`i . (28)

Let m be the number of `j that are 0, and k the number of `j that are 1. Solving for b using (28), we
get that

b =
m+ ke

�c

m+ k
. (29)

We find that b depends on ` only through the number of 0s and 1s in `. Writing g(`) with respect to
m, k and b, we obtain

g(`) = n exp

✓
t

n� 1
k +

m+ k

n
ln(b)

◆
, (30)

Hence, finding the maximum of g(`) is equivalent to finding the solution for the following optimization
problem.

max
m,k�0

t

n� 1
k +

m+ k

n
ln(b) (31)

s.t. m+ k  n.

Since m and k are bounded non-negative integers, we can find the solution of the above maximization
through a brute-force search. However, we can relax the constraints of (31), and allow m, k to take
non-integer values over [0, n]. Using the method of Lagrange multipliers, we have that:

min
��0

max
m,k�0

L(m, k,�) = min
��0

max
m,k�0

✓
t

n� 1
k +

m+ k

n
ln(b)� �(m+ k � n)

◆
. (32)

The partial derivative of (32) with respect to m and k are given by:

rmL =
k(1� e

�c)

n(m+ ke�c)
+

ln(b)

n
� �, (33)

rkL =
t

n� 1
� m(1� e

�c)

n(m+ ke�c)
+

ln(b)

n
� �. (34)

13

Setting the partial derivatives of (33) and (34) to 0 yields

m =
1� e

�c � ce
�c

c� 1 + e�c
k (35)

m+ k =

✓
c(1� e

�c)

c� 1 + e�c
� 1

◆
k. (36)

Substituting these expressions in (32), we see that we now need to find

max
k�0

t

n� 1
k

✓
1 +

(1� e
�c)

c� 1 + e�c
ln

✓
1� e

�c

c

◆◆

s.t. k  c� 1 + e
�c

c(1� e�c)
n.

Since 1 + (1�e
�c)

c�1+e�c ln
⇣

1�e
�c

c

⌘
> 0 for all c > 0, this expression is maximized by the largest value

k can take. Hence, the we obtain our maximum for

k
⇤ =

✓
�1 +

c

c(1� e�c)

◆
n,

m
⇤ = n� k,

b
⇤ =

1� e
�c

c
.

Plugging into our expression, we have

g(`)  n exp

✓
�1 +

c

1� e�c
+ log

✓
1� e

�c

c

◆◆
, (37)

Recalling that Eu⇠U [exp(t · f(`, u))] = 1/ng(`), we obtain

Eu⇠U [exp(t · f(`, u))]  exp

✓
�1 +

c

1� e�c
+ log

✓
1� e

�c

c

◆◆
(38)

Using the Taylor expansion of the exponent in the right-hand side of (38), we have that:

�1 +
c

1� e�c
+ log

✓
1� e

�c

c

◆
 c

2

8
. (39)

Finally, we obtain

Eu⇠U [exp (t · (loo-cv(w, zn, u)))]  Eu⇠U [exp(t · f(`, u))] (40)

 exp(
c
2

8
). (41)

Recalling that c = tcn, we obtain the desired result.

A.2 Proof of Theorem 3.1

We begin restating the Theorem.
Theorem. Let A : Zn�1 ! W be a training algorithm. Let ` : W ⇥ Z ! [0, 1] be a bounded loss

function, then

gen(A)  cnp
2
Ezn⇠Pn

p
loo-CMI(A, zn), (42)

We state a series of lemmas and definitions that are essential for the proof.
Lemma A.1. Let z

n 2 Zn
, and let w 2 W , then

Eu⇠U [loo-cv(zn, w, u)] = 0. (43)

14

Proof. We have that:

n · Eu⇠U [loo-cv(zn, w, u)] =
nX

u=1

0

@ 1

n� 1

X

i 6=u

`(w, zi)� `(w, zu)

1

A , (44)

=
1

n� 1

nX

u=1

X

i 6=u

`(w, zi)�
nX

u=1

`(w, zu), (45)

=
1

n� 1

nX

i=1

(n� 1)`(w, zi)�
nX

u=1

`(w, zu), (46)

= 0. (47)

Lemma A.2. Let A : Zn�1 ! W be a training algorithm, then

gen(A) =
��EA,zn⇠Pn,u⇠U

⇥
loo-cv(zn,A(zn�1

�u
), u)

⇤�� (48)

Proof.

gen(A) =
���EA,zn�1⇠Pn�1

h
L(A(zn�1))� bL(A(zn�1), zn�1)

i��� , (49)

=
���EA,zn�1⇠Pn�1

h
Ez0⇠P

⇥
L(A(zn�1), z0)

⇤
� bL(A(zn�1), zn�1)

i��� , (50)

=
���EA,zn⇠Pn,u⇠U

h
L(A(zn�1

�u
), zu)� bL(A(zn�1

�u
), zn�1

�u
)
i��� , (51)

=
��EA,zn⇠Pn,u⇠U

⇥
loo-cv(zn, u,A(zn�1

�u
)))
⇤�� . (52)

Definition A.1. We say that a random variable X ⇠ PX is �
2�subgaussian if:

Ex⇠PX [texp(x� Ex⇠Px [x])]  exp

✓
t
2
�
2

2

◆
. (53)

Lemma A.3 (Lemma 1, [31]). Let A,B be arbitrary random variables. Let A
0
, B

0
be independent

copies of A,B such that PA0,B0 = PA0PB0 . Suppose f(A0
, B

0) is �
2
-subgaussian, then

|EA,B [g(A,B)� EA0,B0 [g(A0
, B

0)]]| 
p
2�2I(A;B). (54)

Now, fix Z
n = z

n, and let A = A(zn�1
�U

) and B = U , and let

f(A,B) = loo-cv(zn, A,B). (55)

Using Lemma A.1, EA0,B0f(A0
, B

0) = 0. Moreover, we use f(A0
, B

0) is �
2-subgaussian with

�
2 = c

2
n
/4 using Lemma 3.1. This gives us that:

��EA,u⇠U
⇥
loo-cv(zn,A(zn�1

�u
), u)

⇤�� 
r

c2
n

2
I(W ;U | zn), (56)

where W = A(zn�1
�U

). Taking the expectation over zn on both sides, we get that:

Ezn⇠Pn

��EA,u⇠U
⇥
loo-cv(A(zn�1

�u
), zn, u)

⇤��  Ezn⇠Pn

r
c2
n

2
I(W ;U | zn). (57)

Since g(·) = |·| is a convex function, then

gen(A) =
��EA,zn⇠Pnu⇠U

⇥
loo-cv(A(zn�1

�u
), zn, u)

⇤�� (58)

 Ezn⇠Pn

��EA,u⇠U
⇥
loo-cv(A(zn�1

�u
), zn, u)

⇤�� (59)

 cnp
2
Ezn⇠Pn

p
I(W ;U | zn). (60)

15

A.3 Proof of Theorem 3.2

We begin by restating the Theorem.
Theorem. Let ` : R⇥ Y ! [0, 1] be a bounded loss function. Let U be a uniform random variable

over [n], then

gen(h)  cnp
2
Ezn⇠Pn

p
floo-CMI(h, zn), (61)

This proof is nearly identical to the proof of Theorem 3.1. Here, we use the prediction function
instead of the weights. We use the alternate definition of the loss ` : R⇥ Y ! [0, 1]. Let g 2 Rn

be a set of prediction, then we also use an alternate definition of the leave-one-out cross validation
where

loo-cv(zn, g, u) =
1

n� 1

X

i 6=u

`(gi, yi)� `(gu, yu). (62)

Lemma A.4. Let z
n 2 Zn

, and let g 2 Rn
, then

Eu⇠U [loo-cv(zn, g, u)] = 0. (63)

Lemma A.5. Let h : Zn�1 ⇥ X ! R be a training algorithm, then

gen(A) =
��Eh,zn⇠Pn,u⇠U

⇥
loo-cv(zn, h(zn�1

�u
, x

n), u)
⇤�� . (64)

Now, we use Lemma A.3 with A = h(zn�1
�u

, x
n), B = U , and

f(A,B) = loo-cv(zn, A,B). (65)

The proof then follows in the exact same way as it did for Theorem 3.1, and we get the desired result:

gen(h)  cnp
2
Ezn⇠Pn

q
I(h(zn�1

�U
, xn);U | zn). (66)

A.4 Proof of Theorem 4.1

We begin by restating the Theorem.
Theorem. Let A be a parametric algorithm with prediction function h. Let U,Z

n
,W be defined as

before. Let U
0

be an identical independent copy of U , then

loo-CMI(A, z
n)  �Eu⇠U

⇥
lnEu0⇠U

⇥
exp

�
�KL(pW | zn,u k pW | zn,u0)

�⇤⇤
, (67)

floo-CMI(h, zn)  �Eu⇠U

h
lnEu0⇠U

h
exp

⇣
�KL(p

h(zn�1
�u ,x) k p

h(zn�1
�u0 ,x)

)
⌘ii

. (68)

We begin by proving a more general result. Let W ⇠ PW , U ⇠ PU be arbitrary random variables.
Suppose w 2 W and u 2 U . Let q(u0) be any probability distribution over U , then we define

�(q(u0), u) =

Z

W
p(w|u)

Z

U
q(u0) ln

✓
p(w|u)q(u0)

p(w|u0)p(u0)

◆
du0dw. (69)

We begin with the following lemma.
Lemma A.6.

I(W ;U)  Eu⇠PU [�(q, u)] . (70)

Proof. We note that

�(q, u) =

Z

W
p(w|u)

Z

U
q(u0) ln

✓
p(w|u)q(u0)

p(w|u0)p(u0)

◆
du0dw (71)

= �
Z

W
p(w|u)

Z

U
q(u0) ln

✓
p(w|u0)p(u0)

p(w|u)q(u0)

◆
du0dw. (72)

= �
Z

W
p(w|u)Eu0⇠qU


ln

✓
p(w|u0)p(u0)

p(w|u)q(u0)

◆�
dw. (73)

� �
Z

W
p(w|u) ln

✓
Eu0⇠qU


p(w|u0)p(u0)

p(w|u)q(u0)

�◆
dw, (74)

16

where the last inequality follows from the concavity of ln and Jensen’s inequality. Continuing from
(74), we obtain

�(q, u) � �
Z

W
p(w|u) ln

✓
Eu0⇠PU


p(w|u0)p(u0)

p(w|u)q(u0)

�◆
dw (75)

= �
Z

W
p(w|u) ln

✓Z

U
q(u0)

p(w|u0)p(u0)

p(w|u)q(u0)
du0
◆
dw (76)

= �
Z

W
p(w|u) ln

✓Z

U

p(w|u0)p(u0)

p(w|u) du0
◆
dw (77)

= �
Z

W
p(w|u) ln

✓
p(w)

p(w|u)

◆
dw (78)

= KL(p(w|u) k p(w)). (79)

Since I(W ;U) = Eu⇠PU [KL (p(w|u)kkp(w))], we obtain the result of the lemma.

To find a tight bound, we minimize �(q(u0), u) with respect to the probability distribution q(u0).
Since �(q(u0

, u) is an upper bound to KL (p(w|u)kkp(w)) for any q(u0), the infimum of � with
respect to q(u0) is still an upper bound. Since we are trying to find the infimum with respect to a
probability distribution, the Lagrangian is given by

�̃(q(u0)) =

Z

W
p(w|u)

Z

U
q(u0) ln

✓
p(w|u)q(u0)

p(w|u0)p(u0)

◆
du0dw + �

✓Z

U
q(u0)du0 � 1

◆
. (80)

We "differentiate" with respect to q(u0), and obtain

@�̃(q(u0))

@q(u0)
=

Z

W
p(w|u) ln

✓
p(w|u)q(u0)

p(w|u0)p(u0)

◆
dw + 1 + �. (81)

Setting (81) to 0, and solving for q(u0) for every u
0 2 U , we obtain

q
⇤(u0) =

p(u0)e�KL(p(w|u)kkp(w|u0))

R
U p(û)e�KL(p(w|u)kkp(w|û))dû

(82)

To find the expression for �(q⇤(u0), u), note that:

KL(q⇤(u0) k p(u0)) = � ln

✓Z

U
p(u0)e�KL(p(w|u) k p(w|u0))du0

◆
�
Z

U
q
⇤(u0)KL(p(w|u) k p(w|u0))du0

.

(83)
Plugging in the above into �(q⇤(u0), u), we obtain

�(q⇤(u0), u) =

Z

U
q
⇤(u0)KL(p(w|u) k p(w|u0))du0 +KL(q⇤(u0) k p(u0)) (84)

= � ln

✓Z

U
p(u0)e�KL(p(w|u) k p(w|u0))du0

◆
(85)

= � lnEu0⇠PU

h
e
�KL(p(w|u) k p(w|u0))

i
(86)

Finally, taking the expectation with respect to U and using Lemma A.6, we obtain that

I(W ;U)  �Eu⇠PU

⇥
� lnEu0⇠PU

⇥
KL(pW | u) k pW | u0)

⇤⇤
. (87)

We apply the above to I(W ;U |zn) and I(h(zn�1
�i

, x
n), U | zn) to obtain the expressions of Theorem

4.1.

A.5 Proof of Theorem 4.2

We begin a restatement of the theorem and the following lemma:
Theorem. Let A : Zn�1 ! W be a deterministic algorithm, and let ` : W ⇥ Z ! R+ be the loss

that a set of weights incur on a sample. If `(w, ·) is L-Lipschitz in the weights, then if A has ✏-weight

stability relative to a positive semi-definite ⌃, then gen(A) 
q

4cn✏L
p
tr(⌃).

17

Lemma A.7. Let A : Zn�1 ! W be a deterministic algorithm Let the loss ` : W ⇥ Z ! R+ be

L-Lipschitz in the weights. Let ⌃ be a positive definite matrix, then

gen(A)  gen(A⌃) + 2L
p
tr(⌃). (88)

Proof. We have that:

gen(A) =
���EA,zn⇠Pn

h
L(A(zn))� bL(A(zn), zn)

i��� . (89)

=

�����EA,zn⇠Pn,z02P

"
`(A(zn), z0)� 1

n

nX

i=1

`(A(zn), zi)

#����� . (90)

=

�����EA,zn⇠Pn,z02P

"
`(A⌃(z

n), z0) + �
0 � 1

n

nX

i=1

(`(A⌃(z
n), zi) + �i)

#����� , (91)



�����EA,zn⇠Pn,z02P

"
`(A⌃(z

n), z0)� 1

n

nX

i=1

(`(A(zn), zi))

#�����+ |�0|+ 1

n

nX

i=1

|�i| , (92)

 gen(A⌃) + EA,zn⇠Pn,z02P

"
|�0|+ 1

n

nX

i=1

|�i|
#
, (93)

where �
0 = `(A(zn), z0) � `(A⌃(zn), z0) and �i = `(A(zn), zi) � `(A⌃(zn), zi). Recalling that

A⌃(zn) = A(zn) +N where N ⇠ N (0,⌃), we have that |�0|  L kNk (also for |�i|). This gives
us that:

gen(A)  gen(A⌃) + EA,zn⇠Pn,z02P

"
|�0|+ 1

n

nX

i=1

|�i|
#
, (94)

= gen(A⌃) + 2L kNk , (95)

 gen(A⌃) + 2L
p

tr(⌃), (96)

where the last inequality follows from the fact that for N ⇠ N (0,⌃), E[kNk]  tr(⌃).

Now, suppose A has ✏-weight stability relative to ⌃, and let ↵ > 0, then using (10) and (18), we have

gen(A↵2⌃) 
cn✏

2↵
. (97)

Hence, for all ↵ > 0, we have that:

gen(A)  cn✏

2↵
+ 2L↵

p
tr(⌃). (98)

Finding the minimum of the above with respect to ↵, we obtain:

gen(A)  2

r
cn✏

2
· 2L

p
tr(⌃), (99)

=
q

4cn✏L
p
tr(⌃). (100)

A.6 Proof of Theorem 4.3

We begin with a restatement of the theorem, and the following lemma where proof is identical to the
lemma used in Section A.5.
Theorem. Let h : Zn ⇥ X ! Rd

be a deterministic prediction function. Assume that h has �-train

stability and �1-test stability. Assume the loss function ` : R⇥ Y is L-Lipschitz continuity in the first

coordinate, then gen(A) 
q
4cnL

p
nd(n�2 + 2�2

1).

Lemma A.8. Let h : Zn�1 ⇥ X ! R ⇢ Rd
be a deterministic prediction function. Let the loss

` : R⇥ Y ! R+ be L-Lipschitz in the predictions. Let �
2

be a positive definite matrix, then

gen(h)  gen(h�) + 2L�
p
nd. (101)

18

Figure 4: floo-CMI bound and dataset size. For Caltech256.

Now, for a prediction function h with �-train stability and �1-test stability, we have that

gen(h�) 
cn

p
(n� 2)�2 + 2�2

1

2�
 cn

p
n�2 + 2�2

1

2�
. (102)

Hence, we have that

gen(h)  cn

p
n�2 + 2�2

1

2�
+ 2L�

p
nd. (103)

Optimizing the right-hand-side of the above over �, we obtain the desired result:

gen(h) 
r
4cnL

q
nd(n�1 + 2�2

1). (104)

A.7 Proof of Lemma 4.1

We restate the lemma.

Lemma. Let the gradient update rule be �-bounded. Suppose we run SGD for T steps, and we use

the same starting value for the weights, then gen(A�2I) 
q

c2nT
2�

�2 .

Definition A.2 (Definition 2.4, [14]). An update step G is said to �-bounded if for all w 2 W ,

kG(w)� wk  p
�. (105)

Lemma A.9 (Lemma 2.5, [14]). Let G1, . . . , GT and G
0
1, . . . , G

0
T

be two arbitrary sequences of

updates. Let w0 = w
0
0 (same initial weights), and let �t = kwt � w

0
t
k where wt and w

0
t

are defined

recursively through wt+1 = Gt(wt) and w
0
t+1 = G

0
t
(w0

t
). If Gt and G

0
t

are �-bounded, then

�t+1  �t + 2
p
�. (106)

Let G1, . . . , GT be the sequence of updates made when SGD is used with the dataset zn�1
�i

, and
let G0

1, . . . , G
0
T

be the sequence of updates made when SGD is used with the dataset zn�1
�j

. If the
previous updates are �-bounded, then Lemma A.9 gives us a bound on kw�i � w�jk if we use T

iteration of SGD, and we obtain the desired result.

B Experimental Details and Additional Experiments

We fine-tune an ImageNet pre-trained ResNet-18 model on MIT67 and Oxford Pets datasets. In
order to compute the information bounds we use the results in corollary 4.1. We compute w�i/h�i

by removing sample i from the training set and re-training from scratch. For all the experiments
we remove 10 samples one at a time across 3 random seeds and use corollary 4.1 to compute the
information bounds. We used 2 NVIDIA 1080Ti GPUs and the experiments take 1-2 days. We also
include the results of fine-tuning on the Caltech256 dataset [10] (with ⇡30000 samples).

19

C Societal Impact and Limitations

C.1 Societal Impact

Our work is of a theoretical nature, and so there is no direct social impact. However applications
of deep neural networks, if not done properly, could have several consequence in society, including
in terms of fairness, ability for misinformation etc. However, theoretical work that attempts to
understand & predict the performance of deep neural networks could give tools to ameliorate these
issues.

C.2 Limitations and Future Work.

There are several open questions that remain from this work, pointing to some of its limitations.
Natural ones include tighter bounds on the generalization gap, obtaining impossibility results in terms
of error performance among several others.

20

