
A Related Works397

In this appendix, we summarize the relevant literature related both to the works focusing on the best398

arm identification problem and rested bandits. The SRB setting was proposed by Heidari et al. (2016)399

for the first time. Their work and subsequently the one by Metelli et al. (2022) analyzed the problem400

from a regret minimization point of view.401

Best Arm Identification in Stochastic Rising Bandits As highlighted in Section 1, the works402

mostly related to ours are the ones by Li et al. (2020) and Cella et al. (2021). They both focus on the403

BAI problem in the rested setting, given a fixed-budget. More specifically, Li et al. (2020) consider404

rising rested bandits in which the reward function of each arm increases as it is pulled. However,405

they limit to deterministic arms and, thus, fail to deal with the intrinsic stochasticity of the real-world406

processes they want to model. Instead, Cella et al. (2021) deal with the problem of identifying the407

arm with the smallest loss in a setting where the losses incurred by selecting an arm decrease over408

time. It is easy to show that such a setting can be transformed straightforwardly in the SRB one.409

However, the authors develop two algorithms whose theoretical guarantees hold under the assumption410

that the expected loss follows a specific known parametric functional form, whose parameters are411

to be estimated. This constitutes a major limitation to the presented work since checking such an412

assumption is not feasible in real-world settings.413

Best Arm Identification The pure exploration and BAI problems have been first introduced414

by Bubeck et al. (2009), while algorithms able to learn in such a setting have been provided by Au-415

dibert et al. (2010). The work by Gabillon et al. (2012) proposes a unified approach to deal with416

stochastic best arm identification problems by having either a fixed budget or fixed confidence. How-417

ever, the stochastic algorithms developed in this line of research only provide theoretical guarantees in418

settings where the expected reward is stationary over the pulls. Abbasi-Yadkori et al. (2018) propose419

a method able to handle both the stochastic and adversarial cases, but they do not make explicit use420

of the properties (e.g., increasing nature) of the expected reward. Finally, (Garivier and Kaufmann,421

2016; Kaufmann et al., 2016; Carpentier and Locatelli, 2016) analyze the problem of BAI from the422

lower bound perspective.423

Rested Bandits Bandit settings in which the evolution of an arm reward depends on the number424

of times the arm has been pulled, such as the one analyzed in our paper, are generally referred to425

as rested. A first general formulation of the rested bandit setting appeared in the work by Tekin426

and Liu (2012) and was further discussed by Mintz et al. (2020) and Seznec et al. (2020). In these427

works, the evolution of the expected reward of each arm is regulated by a Markovian process that is428

assumed to visit the same state multiple times. This is not the case for the rising bandits, where the429

arm expected rewards continuously increase over the time budget. Finally, a specific instance of the430

rested bandits is constituted by the rotting bandits (Levine et al., 2017; Seznec et al., 2019, 2020), in431

which the expected payoff for a given arm decreases with the number of pulls. However, as pointed432

out by Metelli et al. (2022), techniques developed for this setting cannot be directly translated into433

ours, due to the inherently different nature of the problem.434

B Additional Motivating Examples435

In this appendix, we provide two additional motivating examples to better understand and appreciate436

the SRB setting.437

Selection of Athletes for Competitions Consider the role of a professional trainer for a team, having438

several athletes (i.e., our arms) to train in order to increase their performances. The final goal is to439

select a single athlete to represent the team in a competition. The performances of athletes increase440

when the trainer properly follows them. However, a trainer can follow just one athlete at a time.441

The trainer can be modeled as an agent performing best-arm (athlete) identification, and the athletes442

represent the arms that increase their payoffs (i.e., performance) when pulled (i.e., when the trainer443

follows them).444

Online Best Model Selection Suppose we have to choose among a set of algorithms to maximize445

a given index (e.g., accuracy) over a training set. In this setting, we expect that all the algorithms446

progressively increase (on average) the index value and converge to their optimum value with different447

convergence rates. Therefore, we want to identify which candidate algorithm is the most likely to448

reach optimal performances, given the budget, and assign the available resources (e.g., computational449
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power or samples). In summary, this problem reduces to the identification, with the largest probability,450

of the algorithm that converges faster to the optimum. A real-world example of such a scenario is451

provided in Figure 8.452

C Estimators Efficient Update453

In this appendix, we describe how to implement an efficient version (i.e., fully online) of the estimators454

we presented in the main paper. We resort to the update developed by Metelli et al. (2022). This455

update provides a way to achieve an Op1q computational complexity at each step for the update of456

the estimates for the pessimistic estimator µ̂iptq and optimistic estimator µ̌T

i
ptq.457

With a slight abuse of notation, only in this appendix, for the sake of simplicity, we denote with458

xi,n the reward collected at the n
th pull from the arm i and with hi,t “ hpNi,t´1q the window size.459

Differently, from what we use in the paper, here the reward subscript indicates the arm i and the460

number of pulls of that arm n instead of the total number of pulls t we used in the definition of xt.461

More specifically, the pessimistic estimator µ̂i can be written as:462

µ̂iptq “ ai

hi,t

,

where the quantity ai is updated as follows:463

ai –
"
ai ` xi,Ni,t ´ xi,Ni,t´hi,t if hi,t “ hi,t´1

ai ` xi,Ni,t otherwise
,

and ai “ 0 as the algorithm starts.464

Instead, the optimistic estimator µ̌T

i
ptq, is updated using:465

µ̌
T

i
ptq “ 1

hi,t

ˆ
ai ` T pai ´ biq

hi,t

´ ci ´ di

hi,t

˙
.

Where the quantity ai is defined and updated above and bi, ci, and di are updated as follows:466

bi –
"
bi ` xi,Ni,t´hi,t ´ xi,Ni,t´2hi,t if hi,t “ hi,t´1

bi ` xi,Ni,t´2hi,t`1 otherwise
,

ci –
"
ci ` Ni,t ¨ xi,Ni,t ´ pNi,t ´ hi,tq ¨ xi,Ni,t´hi,t if hi,t “ hi,t´1

ci ` Ni,t ¨ xi,Ni,t otherwise
,

di –
"
di ` Ni,t ¨ xi,Ni,t´hi,t ´ pNi,t ´ hi,tq ¨ xi,Ni,t´2hi,t if hi,t “ hi,t´1

di ` pNi,t ´ hi,tq ¨ xi,Ni,t´2hi,t`1 ` bi otherwise
.

Similarly to what is presented above, the quantities are initialized to 0 as the algorithms start.467

D Proofs and Derivations468

In this appendix, we provide all the proofs omitted in the main paper. For the sake of generality,469

we will provide the derivations for a generic choice of the window size of the estimators hi,t which470

depends on the arm i P JKK and on the round t P JT K. When needed, we will particularize the choice471

for the case in which the window size depends on the number of pulls only hi,t “ hpNi,t´1q.472

D.1 Proofs of Section 3473

Lemma D.1. Under Assumption 2.1, for every i P JKK, j, k P N with k † j, it holds that:474

�ipjq § µipjq ´ µipkq
j ´ k

.
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Proof. Using Assumption 2.1, we get:475

�ipjq “ 1

j ´ k

j´1ÿ

l“k

�ipjq § 1

j ´ k

j´1ÿ

l“k

�iplq “ 1

j ´ k

j´1ÿ

l“k

pµipl ` 1q ´ µiplqq “ µipjq ´ µipkq
j ´ k

,

where the first inequality comes from the concavity of the expected reward function (Assumption 2.1),476

and the second equality comes from the definition of increment.477

Lemma D.2. For every arm i P JKK, every round t P JT K, and window width 1 § hi,t § tNi,t´1{2u,478

let us define:479

rµT

i
pNi,tq :“

1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

ˆ
µiplq ` pT ´ lqµiplq ´ µipl ´ hi,tq

hi,t

˙
,

otherwise if hi,t “ 0, we set rµT

i
pNi,tq :“ `8. Then, rµT

i
pNi,tq • µipT q and, if Ni,t´1 • 2, it holds480

that:481

rµT

i
pNi,tq ´ µipT q § 1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1q �ipNi,t´1 ´ 2hi,t ` 1q.

Proof. Following the derivation provided above, we have for every l P J2, . . . , Ni,T´1K:482

µipT q “ µiplq `
T´1ÿ

j“l

�ipjq

§ µiplq ` pT ´ lq �ipl ´ 1q (12)

§ µiplq ` pT ´ lqµiplq ´ µipl ´ hi,tq
hi,t

, (13)

where Equation (12) follows from Assumption 2.1, and Equation (13) is obtained from Lemma D.1.483

By averaging over the most recent 1 § hi,t § tNi,t´1{2u pulls, we get:484

µipT q § 1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

ˆ
µiplq ` pT ´ lqµiplq ´ µipl ´ hi,tq

hi,t

˙
“: rµT

i
pNi,tq.

For the bias bound, when Ni,t´1 • 2, we retrieve:485

rµT

i
pNi,tq ´ µipT q “ 1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

ˆ
µiplq ` pT ´ lqµiplq ´ µipl ´ hi,tq

hi,t

˙
´ µipT q (14)

§ 1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

pT ´ lqµiplq ´ µipl ´ hi,tq
hi,t

“ 1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

pT ´ lq 1

hi,t

l´1ÿ

j“l´hi,t

�jplq

§ 1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

pT ´ lq �ipl ´ hi,tq (15)

§ 1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1q �ipNi,t´1 ´ 2hi,t ` 1q, (16)

where Equation (14) follows from Assumption 2.1 applied as µiplq § µipNi,tq, Equation (15) follows486

from Assumption 2.1 and bounding 1
hi,t

∞
l´1
j“l´hi,t

�jplq § �ipl ´ hi,tq, and Equation (16) is derived487

still from Assumption 2.1, �ipl ´ hi,tq § �ipNi,t´1 ´ 2hi,t ` 1q and computing the summation.488
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Lemma D.3. For every arm i P JKK, every round t P JT K, and window width 1 § h § tNi,t´1{2u,489

let us define:490

µ̌
T

i
pNi,tq :“

1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

ˆ
Xiplq ` pT ´ lqXiplq ´ Xipl ´ hi,tq

hi,t

˙
,

�̌
T

i
pNi,tq “ �pT ´ Ni,t´1 ` hi,t ´ 1q

c
a

h
3
i,t

,

where Xiplq denotes the reward collected from arm i when pulled for the l-th time. Otherwise, if491

hi,t “ 0, we set µ̌T

i
ptq :“ `8 and �̌T

i
ptq :“ `8 . Then, if the window size depends on the number492

of pulls only hi,t “ hpNi,t´1q, it holds that:493

P
`
@t P JT K :

ˇ̌
µ̌
T

i
pNi,tq ´ µ̃

T

i
pNi,tq

ˇ̌
° �̌

T

i
pNi,tq

˘
§ 2T exp

´
´ a

10

¯
.

Proof. Before starting the proof, it is worth noting that under the event thi,t “ 0u, it holds that494

µ̌
T

i
ptq “ µ̃

T

i
ptq “ �̌

T

i
ptq “ `8. Thus, under the convention that 8 ´ 8 “ 0, then 0 ° �̌

T

i
ptq is not495

satisfied. For this reason, we need to perform our analysis under the event thi,t • 1u.496

The first thing to do is to remove the dependence on the number of pulls that, in a generic time instant,497

represents a random variable. So, we can write:498

P
`
@t P JT K :

ˇ̌
µ̌
T

i
pNi,tq ´ µ̃

T

i
pNi,tq

ˇ̌
° �̌

T

i
pNi,tq

˘

§ P
`
Dn P J0, T K s.t. hi,n • 1 : |µ̌T

i
pnq ´ µ̃

T

i
pnq| ° �̌

T

i
pnq

˘

§
ÿ

nPJ0,T K:hi,n•1

P
`
|µ̌T

i
pnq ´ µ̃

T

i
pnq| ° �̌

T

i
pnq

˘
, (17)

where Equation (17) follows form a union bound over the possible values of Ni,t.499

Now that we have a fixed value of n, consider a generic time t in which arm i has been pulled. We500

will observe a reward xt composed by the mean of the process µipNi,tq plus some noise. The noise501

will be equal to ⌘ipNi,tq “ xt ´ µipNi,tq, i.e., as the difference (not known) between the observed502

value for the arm i at time t and its real value at the same time. Let us rewrite the quantity to be503

bounded as follows for every n:504

hi,n

`
µ̌
T

i
pnq ´ µ̃

T

i
pnq

˘

“
nÿ

l“n´hi,n`1

ˆ
⌘iplq ´ pT ´ lq ¨ ⌘iplq ´ ⌘ipl ´ hi,nq

hi,n

˙

“
nÿ

l“n´hi,n`1

ˆ
1 ´ T ´ l

hi,n

˙
¨ ⌘iplq ´

nÿ

l“n´hi,n`1

ˆ
T ´ l

hi,n

˙
¨ ⌘ipl ´ hi,nq.

Here, notice that all the quantities ⌘iplq and ⌘ipl ´ hi,nq are independent since the number of pulls l505

is fully determined by n and hi,n, that now are non-random quantities.506

Now, we apply the Azuma-Hoëffding’s inequality of Lemma C.5 from Metelli et al. (2022) for507

weighted sums of subgaussian martingale difference sequences. To this purpose, we compute the508

sum of the square weights:509

nÿ

l“n´hi,n`1

ˆ
1 ´ T ´ l

hi,n

˙2

`
nÿ

l“n´hi,n`1

ˆ
T ´ l

hi,n

˙2

§ hi,n ¨
ˆ
1 ` T ´ n ` hi,n ´ 1

hi,n

˙2

` hi,n ¨
ˆ
T ´ n ` hi,n ´ 1

hi,n

˙2

§ 5pT ´ n ` hi,n ´ 1q
hi,n

.
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Given the previous argument, we have, for a fixed n:510

P
`
|µ̌T

i
pnq ´ µ̃

T

i
pnq| • �̌

T

i
pnq

˘

§ P

¨

˝

ˇ̌
ˇ̌
ˇ̌

nÿ

l“n´hi,n`1

ˆ
1 ´ T ´ l

hi,n

˙
⌘ipT q ´

nÿ

l“n´hi,n`1

ˆ
T ´ l

hi,n

˙
⌘ipT ´ hi,nq

ˇ̌
ˇ̌
ˇ̌ • hi,n�̌

T

i
ptq

˛

‚

§ 2 exp

¨

˝´ h
2
i,n
�̌
T

i
pnq2

2�2
´

5pT´n`hi,n´1q
hi,n

¯

˛

‚

“ 2 exp
´

´ a

10

¯
.

By replacing the obtained result into Equation (17) we get:511

ÿ

nPJ0,T K:hi,n•1

2 ¨ exp
´

´ a

10

¯
§

tÿ

n“1

2 exp
´

´ a

10

¯
§ 2T exp

´
´ a

10

¯
.

512

Lemma D.4. For every arm i P JKK, every round t P JT K, and window width 1 § hi,t § tNi,t´1{2u,513

let us define:514

µ̄ipNi,tq :“
1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

µiplq,

otherwise, if hi,t “ 0, we set µ̄ipNi,tq :“ `8. Then, µ̄T

i
pNi,tq § µipT q and, if Ni,t´1 • 2, it holds515

that:516

µipT q ´ µ̄ipNi,tq § 1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1q�ipNi,t´1 ´ hi,t ` 1q.

Proof. Following the derivation provided above, we have for every l P t2, . . . , Ni,T´1u:517

µipT q “ µiplq `
T´1ÿ

j“l

�ipjq • µiplq. (18)

Thus, by averaging over the most recent 1 § hi,t § tNi,t´1{2u pulls, we get:518

µipT q “ 1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

˜
µiplq `

T´1ÿ

j“l

�ipjq
¸

“ µ̄ipNi,tq ` 1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

T´1ÿ

j“l

�ipjq

§ µ̄ipNi,tq ` 1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

T´1ÿ

j“l

�ipjq

§ µ̄ipNi,tq ` 1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1q�ipNi,t´1 ´ hi,t ` 1q,

where we used Assumption 2.1.519

16



Lemma D.5. For every arm i P JKK, every round t P JT K, and window width 1 § h § tNi,t´1{2u,520

let us define:521

µ̂
T

i
pNi,tq :“

1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

Xiplq,

�̂
T

i
pNi,tq “ �

c
a

hi,t

,

where Xiplq denotes the reward collected from arm i when pulled for the l-th time. Otherwise, if522

hi,t “ 0, we set µ̂T

i
ptq :“ `8 and �̂T

i
ptq :“ `8 . Then, if the window size depends on the number523

of pulls only hi,t “ hpNi,t´1q, it holds that:524

P
´

@t P JT K : |µ̂ipNi,tq ´ µ̄ipNi,tq| ° �̂ipNi,tq
¯

§ 2T exp
´

´a

2

¯
.

Proof. Before starting the proof, it is worth noting that under the event thi,t “ 0u, it holds that525

µ̂
T

i
ptq “ µ̄

T

i
ptq “ �̂

T

i
ptq “ `8. Thus, under the convention that 8 ´ 8 “ 0, then 0 ° �̂

T

i
ptq is not526

satisfied. For this reason, we need to perform our analysis under the event thi,t • 1u.527

The first thing to do is to remove the dependence on the number of pulls that, in a generic time instant,528

represents a random variable. So, we can write:529

P
´

@t P JT K : |µ̂ipNi,tq ´ µ̄ipNi,tq| ° �̂ipNi,tq
¯

§ P
´

Dn P J0, T K s.t. hi,n • 1 : |µ̂ipnq ´ µ̄ipnq| ° �̂ipnq
¯

§
ÿ

nPJ0,T K:hi,n•1

P
´

|µ̂ipnq ´ µ̄ipnq| ° �̂ipnq
¯
, (19)

where Equation (19) follows form a union bound over the possible values of Ni,t.530

Now that we have a fixed value of n, consider a generic time t in which arm i has been pulled. We531

will observe a reward xt composed by the mean of the process µipNi,tq plus some noise. The noise532

will be equal to ⌘ipNi,tq “ xt ´ µipNi,tq, i.e., as the difference (not known) between the observed533

value for the arm i at time t and its real value at the same time. Let us rewrite the quantity to be534

bounded as follows, for every n:535

hi,n pµ̂ipnq ´ µ̄ipnqq “
nÿ

l“n´hi,n`1

⌘iplq.

Here we can note that all the quantities ⌘iplq and ⌘ipl ´ hi,nq are independent since the number of536

pulls l is fully determined by n and hi,n, that now are non-random quantities.537

Now, we apply the Azuma-Hoëffding’s inequality of Lemma C.5 from Metelli et al. (2022) for sums538

of subgaussian martingale difference sequences. For a fixed n, we have:539

P
´

|µ̂ipnq ´ µ̄ipnq| • �̂ipnq
¯

§ P

¨

˝

ˇ̌
ˇ̌
ˇ̌

nÿ

l“n´hi,n`1

⌘ipT q

ˇ̌
ˇ̌
ˇ̌ • hi,n ¨ �̂T

i
ptq

˛

‚

§ 2 exp

˜
´hi,n�̂

T

i
pnq2

2�2

¸

“ 2 exp
´

´a

2

¯
.
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By replacing the obtained result into Equation (19) we get:540

ÿ

nPJ0,T K:hi,n•1

2 exp
´

´a

2

¯
§

tÿ

n“1

2 exp
´

´a

2

¯
§ 2T exp

´
´a

2

¯
.

541

Lemma 3.1 (Concentration of µ̂i). Under Assumption 2.1, for every a ° 0, simultaneously for every542

arm i P JKK and number of pulls n P J0, T K, with probability at least 1 ´ 2TKe
´a{2 it holds that:543

�̂ipnq ´ ⇣̂ipnq § µ̂ipnq ´ µipnq § �̂ipnq,

where �̂ipnq :“ �

b
a

hpnq and ⇣̂ipnq :“ 1
2 p2T ´ n ` hpnq ´ 1q �ipn ´ hpnq ` 1q.544

Proof. The proof simply combines Lemmas D.4 and D.5 and a union bound over the arms.545

Lemma 3.2 (Concentration of µ̌T

i
). Under Assumption 2.1, for every a ° 0, simultaneously for every546

arm i P JKK and number of pulls n P J0, T K, with probability at least 1 ´ 2TKe
´a{10 it holds that:547

�̌
T

i
pnq § µ̌

T

i
pnq ´ µipnq § �̌

T

i
pnq ` ⇣̌

T

i
pnq,

where �̌
T

i
pnq :“ �¨pT´n`hpnq´1q

b
a

hpnq3 and ⇣̌T
i

pnq :“ 1
2 p2T´n`hpnq´1q �ipn´2hpnq̀ 1q.548

Proof. The proof simply combines Lemmas D.4 and D.3 and a union bound over the arms.549

D.2 Proofs of Section 4550

In this appendix, we provide the proofs we have omitted in the main paper for what concerns the551

theoretical results about R-UCBE. All the lemma below are assuming that the strategy we use for552

selecting the arm is R-UCBE.553

Let us define the good event  corresponding to the scenario in which all (over the rounds and over554

the arms) the bounds BT

i
pnq hold for the projection up to time T of the real reward expected value555

µipnq, formally:556

 :“
 

@i P JKK,@t P JT K : |µ̌T

i
ptq ´ µ̃

T

i
ptq| † �̌

T

i
ptq

(
,

where µ̃
T

i
ptq is the deterministic counterpart of µ̌T

i
ptq considering the expected payoffs µip¨q instead557

of the realizations, formally:558

µ̃
T

i
pNi,tq :“

1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

ˆ
µiplq ` pT ´ lqµiplq ´ µipl ´ hi,tq

hi,t

˙
.

Lemma D.6. Under Assumption 2.1 and assuming that the good event holds, the maximum number559

of pulls Ni,T of a sub-optimal arm (i ‰ i
˚pT q) performed by the R-UCBE is upper bounded by the560

maximum integer yipaq which satisfies the following condition:561

T�iptp1 ´ 2"qyipaquq ` 2T� ¨
c

a

t"yipaqu3 • �ipT q.

Proof. In the following, we will use µ̃
T

i
pNi,t´1q to bound the bias introduced by µ̌

T

i
pNi,t´1q and,562

subsequently, to find a number of pulls such that the algorithm cannot suggest pulling a suboptimal563

arm. Using Lemma D.4, we have that @i P JKK,@t P JT K and when 1 § hi,t § t1{2 ¨ Ni,t´1u with564

Ni,t´1 • 2, it holds that:565

µ̃
T

i
pNi,t´1q ´ µipT q § 1

2
¨ p2T ´ 2Ni,t´1 ` hi,t ´ 1q ¨ �ipNi,t´1 ´ 2hi,t ` 1q. (20)
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Let us assume that, at round t, the R-UCBE algorithm pulls the arm i P JKK such that i ‰ i
˚pT q. From566

now on, to avoid weighing down the notation, we will omit the dependence of the optimal arm i
˚pT q567

on the budget T , simply denoting it as i˚, and the window size will be denoted ad hi,t “ hpNi,t´1q.568

By construction, the algorithm chooses the arm with the largest upper confidence bound B
T

i
pNi,t´1q.569

Thus, we have that BT

i
pNi,t´1q • B

T

i˚ pNi˚,t´1q. Now, we want to identify the minimum number of570

pulls such that this event no longer occurs, assuming that the good event  holds. We have that, if we571

pull such an arm i ‰ i
˚, it holds:572

B
T

i
pNi,t´1q • B

T

i˚ pNi˚,t´1q
B

T

i
pNi,t´1q ´ B

T

i˚ pNi˚,t´1q • 0

�ipT q ` B
T

i
pNi,t´1q ´ B

T

i˚ pNi˚,t´1q • �ipT q.

Using the definition of �ipT q and the definition of the upper confidence bound B
T

i
pNi,t´1q in573

Equation (3) for i and i
˚, we have:574

µi˚ pT q ´ µipT q ` µ̌
T

i
pNi,t´1q ` �̌

T

i
pNi,t´1q ´ µ̌

T

i˚ pNi˚,t´1q ´ �̌
T

i˚ pNi˚,t´1q • �ipT q.

Given Assumption 2.1 we have that µi˚ pT q § µ̃
T

i˚ pNi˚,t´1q, and, therefore, we have:575

µ̃
T

i˚ pNi˚,t´1q ´ µipT q ` µ̌
T

i
pNi,t´1q ` �̌

T

i
pNi,t´1q ´ µ̌

T

i˚ pNi˚,t´1q ´ �̌
T

i˚ pNi˚,t´1q • �ipT q,

and, since under the good event  , it holds that µ̃T

i˚ pNi˚,t´1q ´ µ̌
T

i˚ pNi˚,t´1q ´ �̌
T

i˚ pNi˚,t´1q † 0,576

we have:577

´µipT q ` µ̌
T

i
pNi,t´1q ` �̌

T

i
pNi,t´1q • �ipT q

´µipT q ` �̌
T

i
pNi,t´1q ` µ̃

T

i
pNi,t´1q ` µ̌

T

i
pNi,t´1q ´ µ̃

T

i
pNi,t´1qlooooooooooooooomooooooooooooooon

pDq

• �ipT q,

where we added and subtracted µ̃
T

i
pNi,t´1q in the last equation. Under the good event  , we can578

upper bound |pDq| “ |µ̃T

i
pNi,t´1q ´ µ̌

T

i
pNi,t´1q| † �̌

T

i
pNi,t´1q:579

µ̃
T

i
pNi,t´1q ´ µipT q ` 2�̌T

i
pNi,t´1q • �ipT q.

Using Equation (20), and substituting the definition of �̌T

i
pNi,t´1q provided in Equation (4), we580

have:581

1

2
p2T ´ 2Ni,t´1 ` hi,t ´ 1qlooooooooooooooomooooooooooooooon

§2T

¨�ipNi,t´1 ´ 2hi,t ` 1q`

`2� ¨ pT ´ Ni,t´1 ` hi,t ´ 1qlooooooooooooomooooooooooooon
§T

¨
c

a

h
3
i,t

• �ipT q

T ¨ �iptp1 ´ 2"qNi,tuqloooooooooooomoooooooooooon
pAq

` 2�T
c

a

t"Ni,tu3loooooooomoooooooon
pBq

• �ipT q, (21)

where we used the definition of hi,t :“ t"Ni,tu and the fact that Ni,t´1 “ Ni,t ´ 1 since at time t the582

algorithm pulls the i-th arm.583

This concludes the proof.584

Theorem 4.1. Under Assumption 2.1, let a˚ be the largest positive value of a satisfying:585

T ´
ÿ

i‰i˚pT q
yipaq • 1, (5)
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where for every i P JKK, yipaq is the largest integer for which it holds:586

T�iptp1 ´ 2"qyuqlooooooooomooooooooon
pAq

` 2T�

c
a

t"yu3loooooomoooooon
pBq

• �ipT q. (6)

If a˚ exists, then for every a P r0, a˚s the error probability of R-UCBE is bounded by:587

eT pR-UCBEq § 2TK exp
´

´ a

10

¯
. (7)

Proof. From the definition of the error probability, we have:588

eT pR-UCBEq “ P
´
Î

˚pT q ‰ i
˚pT q

¯
“ P pIT`1 ‰ i

˚pT qq .

Therefore, we need to evaluate the probability that the R-UCBE algorithm would pull a suboptimal589

arm in the T ` 1 round. Given that Assumption 2.1 and that each suboptimal arms have been pulled590

a number of times Ni,T at the end of the time budget T , under the good event  , we are guaranteed591

to recommend the optimal arm if:592

T ´
ÿ

i‰i˚pT q
Ni,T • 1. (22)

If Equation (22) holds, a suboptimal arm can be selected by R-UCBE for the next round T ` 1 only if593

the good event  does not hold eT pR-UCBEq “ P p cq, where we denote with  c the complementary594

of event  . This probability is upper bounded by Lemma D.5 as:595

eT pR-UCBEq “ P p cq § 2TK exp
´

´ a

10

¯
.

We now derive a condition for a in order to make Equation (22) hold. Thanks to Lemma D.6 we596

know that Ni,T § yipaq where yipaq is the maximum integer such that:597

T�iptp1 ´ 2"qyipaquq ` 2T�

c
a

t"yipaqu3 • �ipT q.

From this condition, we observe that yipaq is an increasing function of a. Therefore, we can select a598

in the interval r0, a˚s, where a
˚ is the maximum value of a such that:599

T ´
ÿ

i‰i˚pT q
yipaq • 1. (23)

Note that, we are not guaranteed that such a value of a˚ ° 0 exists. In such a case, we cannot provide600

meaningful guarantees on the error probability of R-UCBE.601

Corollary 4.2. Under Assumptions 2.1 and 2.2, if the time budget T satisfies:602

T •

$
’&

’%

´
c

1
� p1 ´ 2"q´1 pH1,1{�pT qq ` pK ´ 1q

¯ �
�´1

if � P p1, 3{2q
´
c

2
3 p1 ´ 2"q´ 2

3� pH1,2{3pT qq ` pK ´ 1q
¯3

if � P r3{2,`8q
, (8)

there exists a˚ ° 0 defined as:603

a
˚ “

$
’’&

’’%

✏
3

4�2

ˆ´
T

1´1{�´pK´1q
H1,1{�pT q

¯�
´ cp1 ´ 2"q´�

˙2

if � P p1, 3{2q

✏
3

4�2

ˆ´
T

1{3´pK´1q
H1,2{3pT q

¯3{2
´ cp1 ´ 2"q´�

˙2

if � P r3{2,`8q
,
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where H1,⌘pT q :“ ∞
i‰i˚pT q

1
�⌘

i pT q for ⌘ ° 0. Then, for every a P r0, a˚s, the error probability of604

R-UCBE is bounded by:605

eT pR-UCBEq § 2TK exp
´

´ a

10

¯
.

Proof. We recall that Assumption 2.2 states that all the increment functions �ipnq are such that606

�ipnq § cn
´� . We use such a fact to provide an explicit solution for the optimal value of a˚. From607

Theorem 4.1 and using the fact that �ipnq § cn
´� , we have that Equation (6) becomes:608

Tc

tp1 ´ 2"qyu� ` 2tT�a
1
2

t✏yu 3
2

• �ipT q. (24)

Or, more restrictively:609

Tc p1 ´ 2"q´�

py ´ 1q� ` 2T�"´ 3
2 a

1
2

py ´ 1q 3
2

• �ipT q.

Let us solve Equation (24) by analyzing separately the two cases in which one of the two terms in the610

l.h.s. of such equation become prevalent.611

Case 1: � P
“
3
2 ,8

˘
In this branch, we can upper bound the left-side part of the inequality in

Equation (24) by:
Tc p1 ´ 2"q´�

py ´ 1q 3
2

` 2T�"´ 3
2 a

1
2

py ´ 1q 3
2

• �ipT q.

Thus, we can derive:612

yipaq § 1 `
˜
Tc p1 ´ 2"q´� ` 2T�"´ 3

2 a
1
2

�ipT q

¸ 2
3

. (25)

Using the above value in Equation (23), provides:613

T ´
ÿ

i‰i˚pT q
yipaq ° 0

T ´ pK ´ 1q ´
´
Tc p1 ´ 2"q´� ` 2T�"´ 3

2 a
1
2

¯ 2
3

ÿ

i‰i˚pT q

1

�
2
3
i

pT q
° 0

T ´ pK ´ 1q ´
´
Tc p1 ´ 2"q´� ` 2T�"´ 3

2 a
1
2

¯ 2
3
H1,2{3pT q ° 0

a †

ˆ
pT 1{3´T

´2{3pK´1qq 3
2

pH1,2{3pT qq 3
2

´ cp1 ´ 2"q´�
˙2

4�2"´3

a †

ˆ
pT 1{3´pK´1qq 3

2

pH1,2{3pT qq 3
2

´ cp1 ´ 2"q´�
˙2

4�2"´3
,

where the last expression is obtained by observing that T • 1 and for obtaining a more manageable614

expression, under the assumption that pT 1{3´pK´1qq 3
2

pH1,2{3pT qq 3
2

´ cp1 ´ 2"q´� • 0.615

This implies a constraint on the minimum time budget T , which explicit form for the case � P
“
3
2 ,8

˘
616

is provided in Lemma D.7617

Case 2: � P
`
1, 3

2

˘
In this case, we enforce the more restrictive condition:618

Tc p1 ´ 2"q´�

py ´ 1q� ` 2T�"´ 3
2 a

1
2

py ´ 1q� • �ipT q,
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the value for the number of pulls is:619

yipaq § 1 `
˜
Tc p1 ´ 2"q´� ` 2T�"´ 3

2 a
1
2

�ipT q

¸ 1
�

. (26)

and the value for a˚ becomes:620

T ´
ÿ

i‰i˚pT q
Ni,T ° 0

T ´ pK ´ 1q ´
´
Tc p1 ´ 2"q´� ` 2T�"´ 3

2 a
1
2

¯ 1
�

ÿ

i‰i˚pT q

1

�
1
�

i
pT q

° 0

T ´ pK ´ 1q ´
´
Tc p1 ´ 2"q´� ` 2T�"´ 3

2 a
1
2

¯ 1
�
H1,1{�pT q ° 0

a †

´
pT 1´1{�´T

´1{�pK´1qq�
pH1,1{�pT qq� ´ cp1 ´ 2"q´�

¯2

4�2"´3

a †

´
pT 1´1{�´pK´1qq�

pH1,1{�pT qq� ´ cp1 ´ 2"q´�
¯2

4�2"´3
,

where the last expression is obtained by observing that T • 1 and for obtaining a more convenient621

expression, under the assumption that pT 1´1{�´pK´1qq�
pH1,1{�pT qq� ´ cp1 ´ 2"q´� • 0.622

Also here, this implies a constraint on the minimum time budget T for the case � P
`
1, 3

2

˘
, which623

explicit form is provided in Lemma D.7624

Lemma D.7. Under Assumptions 2.1 and 2.2, the minimum time budget T for which the theoretical625

guarantees of R-UCBE hold is:626

T •

$
’&

’%

´
c

1
� p1 ´ 2"q´1 pH1,1{�pT qq ` pK ´ 1q

¯ �
�´1

if � P p1, 3{2q
´
c

2
3 p1 ´ 2"q´ 2

3� pH1,2{3pT qq ` pK ´ 1q
¯3

if � P r3{2,`8q

and H1,⌘pT q :“ ∞
i‰i˚pT q

1
�⌘

i pT q for ⌘ § 1.627

Proof. Given Corollary 4.2, we want to find the values of T such that a value of a P r0, a˚s should628

exist. This implies having a
˚ • 0. Given the value of �, we can derive a lower bound for the time629

budget T .630

Case 1: � P
“
3
2 ,8

˘
:

pT 1{3 ´ pK ´ 1qq 3
2

pH1,2{3pT qq 3
2

´ cp1 ´ 2"q´� • 0.

From this, it follows:

T •
´
c
2{3p1 ´ 2"q´2{3� pH1,2{3pT qq ` pK ´ 1q

¯3
.

Case 2: � P
`
1, 3

2

˘
:

pT 1´1{� ´ pK ´ 1qq�
pH1,1{�pT qq� ´ cp1 ´ 2"q´� • 0.

From this, it follows:

T •
´
c

1
� p1 ´ 2"q´1 pH1,1{�pT qq ` pK ´ 1q

¯ �
�´1

.

631
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D.3 Proofs of Section 5632

In this appendix, we provide the proofs we have omitted in the main paper for what concerns the633

theoretical results about R-SR. We recall that with a slight abuse of notation, as done in Section 5, we634

denote with �piqpT q the i
th gap rearranged in increasing order, i.e., we have �piqpT q § �pjqpT q for635

i † j.636

Lemma D.8. For every arm i P JKK and every round t P JT K, let us define:

µiptq “ 1

hi,t

Ni,t´1ÿ

l“Ni,t´1´hi,t`1

µiplq,

if Ni,t • 2, then µiptq • µiptq, and if hi,t § Ni,t{2, it holds that:637

µipT q ´ µipNi,tq § T�iptNi,t{2uq. (27)

Proof. The proof follows trivially from Lemma D.2.638

Lemma D.9 (Lower Bound for the Time Budget for R-SR). Under Assumptions 2.1 and 2.2, the R-SR
algorithm is s.t. the minimum value for the horizon T ensuring that @j P JK ´ 1K and @i P JKK:

T �ipNj ´ 1q § �pK`1´jqpT q
2

,

is:639

T • c
1

1´� 2
1`�
�´1 logpKq �

�´1 max
iPJ2,KK

"
i

�
�´1�

´ 1
�´1

piq pT q
*
.

Proof. First, using Assumption 2.2, we derive an upper bound on the bias between µipT q and µipNjq640

(r.h.s. of Equation 27), where Nj is a generic time corresponding to the end of a phase of the R-SR641

algorithm:642

T�iptNj{2uq § cT tNj{2u´�
.

Substituting the definition of Nj into the above equation, we get:643

T tNj{2u´� § T ¨
ˆ

1

logpKq ¨ T ´ K

K ` 1 ´ j
´ 1

˙´�
(28)

§ T ¨
ˆ

1

logpKq ¨ T

K ` 1 ´ j
´ 1

˙´�

§ T ¨
ˆ

T

logpKq ¨ pK ` 1 ´ jq

˙´�
. (29)

Requiring that, for a generic Nj , the maximum possible bias is lower than a fraction of the subopti-644

mality gap of arm K ` 1 ´ j:645

cT tNj{2u´� § �pK`1´jqpT q
2

cT

ˆ
T

2logpKq ¨ pK ` 1 ´ jq

˙´�
§ �pK`1´jqpT q

2

T
1´� § �pK`1´jqpT q

c21`� ¨
`
logpKq ¨ pK ` 1 ´ jq

˘�

T •
�

1
1´�

pK`1´jqpT q

c
1

1´� 2
1`�
1´� ¨

`
logpKq ¨ pK ` 1 ´ jq

˘ �
1´�

.
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Requiring that the above condition holds for all the phases j P JK ´ 1K we have:646

T • max
jPJK´1K

$
&

%
�

1
1´�

pK`1´jqpT q

c
1

1´� 2
1`�
1´� ¨

`
logpKq ¨ pK ` 1 ´ jq

˘ �
1´�

,
.

-

• c
1

1´� 2´ 1`�
1´� logpKq´ �

1´� max
jPJK´1K

#ˆ
�pK`1´jqpT q
pK ` 1 ´ jq�

˙ 1
1´�

+

• c
1

1´� 2´ 1`�
1´� logpKq´ �

1´� ¨ max
jPJK´1K

"´
pK ` 1 ´ jq��´1

pK`1´jqpT q
¯ 1

�´1

*

• c
1

1´� 2´ 1`�
1´� logpKq´ �

1´� max
iPJ2,KK

"
i

�
�´1�

´ 1
�´1

piq pT q
*
.

647

Theorem 5.1. Under Assumptions 2.1 and 2.2, if the time budget T satisfies:648

T • 2
�`1
�´1 c

1
�´1 logpKq �

�´1 max
iPJ2,KK

!
i

�
�´1�piqpT q´ 1

�´1

)
, (10)

then, the error probability of R-SR is bounded by:

eT pR-SRq § KpK ´ 1q
2

exp

ˆ
´ "

8�2
¨ T ´ K

logpKqH2pT q

˙
,

where H2pT q :“ maxiPJKK
 
i�piqpT q´2

(
and logpKq “ 1

2 ` ∞
K

i“2
1
i
.649

Proof. The R-SR algorithm makes an error when at the end of a phase j the optimal arm has a650

pessimistic estimator µ̂1pNjq is smallest among the arms, formally:651

eT pR-SRq § P
`
Dj P JK ´ 1K Di P JK ` 1 ´ j,KK : µ̂p1qpNjq † µ̂piqpNjq

˘

§
K´1ÿ

j“1

P
`
Di P JK ` 1 ´ j,KK : µ̂p1qpNjq † µ̂piqpNjq

˘

§
K´1ÿ

j“1

Kÿ

i“K`1´j

P
`
µ̂p1qpNjq § µ̂piqpNjq

˘
,

where we use a union bound over the phases and over the arms still in the available arm set Xj´1 in652

each phase. Let us focus on P
`
µ̂p1qpNjq § µ̂piqpNjq

˘
. We have that the optimal arm has a smaller653

pessimistic estimator than the i
th one when:654

µ̂piqpNjq • µ̂p1qpNjq
µ̂piqpNjq ´ µ̂p1qpNjq • 0

µp1qpT q ´ µ̂p1qpNjq ` µ̂piqpNjq ´ µpiqpT q • �piqpT q (30)
µp1qpT q ´ µp1qpNjqlooooooooooomooooooooooon

§T ¨�p1qpNj´1q

´µ̂p1qpNjq ` µp1qpNjq ` µ̂piqpNjq ´µpiqpT qlooomooon
§´µpiqpNjq

• �piqpT q (31)

´µ̂p1qpNjq ` µp1qpNjq ` µ̂piqpNjq ´ µpiqpNjq • �piqpT q ´ T ¨ �p1qpNj ´ 1q
(32)

where we added ˘�piqpT q to derive Equation (30), and added ˘µp1qpNjq to derive Equation (31),655

we used the results in Lemma D.8 and from the fact that the reward function is increasing. Since we656

are with a time budget T satisfying Theorem D.9, we have that:657

T�p1qpNj ´ 1q § �piqpT q
2

. (33)
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Substituting into Equation (32) the above, we have:

´µ̂p1qpNjq ` µp1qpNjq ` µ̂piqpNjq ´ µpiqpNjq • �piqpT q
2

,

and the error probability becomes:

eT pR-SRq §
K´1ÿ

j“1

Kÿ

i“K`1´j

P
ˆ

´µ̂p1qpNjq ` µp1qpNjq ` µ̂piqpNjq ´ µpiqpNjq • �piqpT q
2

˙
.

For the previous argumentation, we apply the Azuma-Hoëffding’s inequality to the latter probability:658

eT pR-SRq §
K´1ÿ

j“1

Kÿ

i“K`1´j

exp

¨

˚̋´
"Nj

´
�piqpT q

2

¯2

2�2

˛

‹‚

§
K´1ÿ

j“1

j exp

ˆ
´"Nj

8�2
�2

pK`1´jq

˙
.

Now, given that:659

"Nj

8�2
�2

pK`1´jq • "

8�2

T ´ K

logpKqpK ` 1 ´ jq�´2
pK`1´jq

• "

8�2

T ´ K

logpKqH2pT q ,

we finally derive the following:660

eT pR-SRq § KpK ´ 1q
2

exp

ˆ
´ "

8�2

T ´ K

logpKqH2pT q

˙
,

which concludes the proof.661

D.4 Proofs of Section 6662

In this appendix, we provide the proofs of the lower bound on the error probability presented in663

Section 6.664

Theorem 6.1. For every algorithm A, there exists a deterministic SRB satisfying Assumptions 2.1665

and 2.2 such that the optimal arm i
˚pT q cannot be identified for some time budgets T unless:666

T • H1,1{p�´1qpT q “
ÿ

i‰i˚pT q

1

�ipT q 1
�´1

. (11)

Proof. We define for every suboptimal arm i P J2,KK the suboptimality gap reached at T Ñ `8667

as �i P p0, 1{2s. We consider the base instance ⌫ (see Figure 5) in which define the (deterministic)668

reward functions are defined for � ° 1 and n P N as:669

µ1pnq “ 1

2

`
1 ´ n

1´�˘
,

µipnq “ min

$
’’’&

’’’%

ˆ
1

2
`�i

˙ `
1 ´ n

1´�˘

looooooooooooomooooooooooooon
“:µ1

ipnq

,
1

2
´�i

,
///.

///-
i P J2,KK.

25



Clearly, ⌫ fulfills Assumption 2.1 and it is simple to show that also Assumption 2.1 is satisfied.670

Indeed, by first-order Taylor expansion:671

�1pnq “ µ1pn ` 1q ´ µ1pnq § sup
xPrn,n`1s

B
Bxµ1pxq (34)

“ � ´ 1

2
sup

xPrn,n`1s
x

´� “ � ´ 1

2
n

´�
,

672

�ipnq “ µipn ` 1q ´ µipnq § sup
xPrn,n`1s

B
Bxµ

1
i
pxq

“ p� ´ 1q
ˆ
1

2
`�i

˙
sup

xPrn,n`1s
x

´� “ p� ´ 1qn´�

Thus, we simply take c “ � ´ 1 in Assumption 2.1. Let us define n
˚
i

the number of pulls in which673

arm i P J2,KK reaches the stationary behavior:674

ˆ
1

2
`�i

˙ `
1 ´ n

1´�˘
“ 1

2
´�i ùñ n

˚
i

“
ˆ
1{2 `�i

2�i

˙ 1
�´1

.

A sufficient condition on the time budget so that the optimal arm is 1 (i.e., i˚pT q “ 1) is given by675

T • T
˚, where T

˚ is the point in which the curve of the optimal arm intersects that of any of the676

suboptimal arms i P J2,KK:677

1

2
p1 ´ T

1´�q “ 1

2
´�i ùñ T

˚ :“ max
iPJ2,KK

ˆ
1

2�i

˙ 1
�´1

.

Consider now the regime in which T • T
˚. We proceed by contradiction. Suppose that there exists678

an algorithm A that identifies the optimal arm such that on the bandit ⌫ and that the suboptimal arm679

ī P J2,KK has an expected number of pulls satisfying:680

E
µ

rNīpT qs † n
˚̄
i
. (35)

Consider now the alternative bandit ⌫ 1 constructed from ⌫ by keeping all the arms unaltered, except681

for arm ī that is made optimal:682

µ
1̄
i
pnq “

ˆ
1

2
`�ī

˙ `
1 ´ n

1´�˘
,

µ
1
j
pnq “ µjpnq, j P JKKzt̄iu.

Clearly the bandit ⌫ 1 fulfills Assumption 2.1 and, with calculations similar to those in Equation (34),683

we conclude that it satisfies Assumption 2.2 with c “ � ´ 1. A sufficient condition on T for which684

arm ī is optimal in bandit ⌫ 1 is that T • T2 in which the curve of arm ī intersects that of the arms j685

such that �j • �ī:686

ˆ
1

2
`�ī

˙
p1 ´ T

1´�q “ 1

2
´�j ùñ T • max

jPJKK:�j•�ī

ˆ
1{2 `�ī

�ī `�j

˙ 1
�´1

.

Thus, we take:687

T2 :“
ˆ
1{2 `�ī

2�ī

˙ 1
�´1

.

Clearly, for T˚ • T2 since all the suboptimality gaps are at most 1{2. Thus, we continue in the688

regime T • T
˚. Since µ

1̄
i
pnq “ µīpnq if n † n

˚
i

, it follows that under condition (35), algorithm A689

cannot distinguish between the two bandits and, consequently, cannot identify the optimal arm on690
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1{2

µipnq
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ipnq

�1
ipT q

�ipT q

Figure 5: Instances ⌫ and ⌫ 1 of SRB used in Theorem 6.1 and Theorem 6.2.

bandit ⌫ 1. Thus, it must follow, from the contradiction, that:691

E
⌫

rNīpT qs • n
˚̄
i
.

By summing over ī P J2,KK, we obtain:692

T •
ÿ

īPJ2,KK
E
⌫

rNīpT qs •
ÿ

īPJ2,KK
n

˚̄
i

“
ÿ

īPJ2,KK

ˆ
1{2 `�ī

2�ī

˙ 1
�´1

•
ÿ

īPJ2,KK

ˆ
1

4�ī

˙ 1
�´1

“: T :
.

Thus, we have found an interval T P rT˚
, T

:s in which identification cannot be performed. Notice693

that it is simple to enforce that T : ° T
˚ with a sufficiently large number of arms K • 2

1
�´1 .694

To conclude, we need to relate�i with�ipT q and�1
i
pT q. We perform the computation for both the695

instances ⌫ and ⌫ 1, in the regime T • 2
1

�´1T
˚. Let us start with ⌫:696

�ipT q “ 1

2
p1 ´ T

1´�q ´
ˆ
1

2
´�i

˙
“ �i ´ 1

2
T

1´� • �i

2
, i P J2,KK

We move to ⌫ 1:697

�1
1pT q “

ˆ
1

2
`�ī

˙
p1 ´ T

1´�q ´ 1

2
p1 ´ T

1´�q “ �īp1 ´ T
1´�q • �ī

2
,

�1
i
pT q “

ˆ
1

2
`�ī

˙
p1 ´ T

1´�q ´
ˆ
1

2
´�i

˙
• �i ´ 1

2
T

1´� • �i

2
, i P J2,KKzt̄iu.

Thus, a necessary condition for the correct identification of the optimal arm is:698

T •
ÿ

īPJ2,KK

ˆ
1{2 ` 2�īpT q

4�īpT q

˙ 1
�´1

•
ÿ

īPJ2,KK

ˆ
1

8�īpT q

˙ 1
�´1

“ 2´ 1
�´1T

:
.

Similarly, with K • 8
1

�´1 , we can enforce 2´ 1
�´1T

: • 2
1

�´1T
˚.699

Theorem 6.2. For every algorithm A run with a time budget T fulfilling Equation (11), there exists a700

SRB satisfying Assumptions 2.1 and 2.2 such that the error probability is lower bounded by:701

eT pAq • 1

4
exp

ˆ
´ 8T

�2H1,2pT q

˙
, where H1,2pT q :“

ÿ

i‰i˚pT q

1

�2
i
pT q .

Proof. The proof imports the technique from (Kaufmann et al., 2016, Theorem 16 and 17). We702

consider the Gaussian bandit µ with variance �2 equal for all the arms and the expected reward µipnq703

as in the base instance of proof of Theorem 6.1 (see Figure 5). Let us define by convention�1 “ �2.704
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Let A be an algorithm, it is simple to show that there exists an arm ī P JKK, such that:705

E
µ

rNīpT qs § T

H
`
2 �

2
ī

,

where H`
2 “ ∞

K

i“1�
´2
i

. We consider two cases. Suppose that ī “ 1 and we construct the alternative706

Gaussian bandit ⌫ 1 with the same variance �2 and the expected rewards defined as follows:707

µ
1
1pT q “ min

"
1

2

`
1 ´ n

1´�˘
,
1

2
´ 2�1

*
,

µ
1
i
pT q “ µipT q, i P J2,KK.

For T sufficiently large as in Theorem 6.1, while in bandit ⌫ the optimal arm is 1, in bandit ⌫ 1 the708

optimal arm is 2. Instead, suppose that ī ‰ 1 and we construct the alternative Gaussian bandit ⌫ 1709

with the same variance �2 and the expected rewards defined as follows:710

µ
1̄
i
pT q “

ˆ
1

2
`�ī

˙
p1 ´ n

1´�q,

µ
1
i
pT q “ µipT q, i P JKKzt̄iu.

For T sufficiently large as in Theorem 6.1, while in bandit ⌫ the optimal arm is 1, in bandit ⌫ 1 the711

optimal arm is ī. Let us denote with ⌫iptq the distribution of the reward at time t for arm i. By the712

Bretagnolle-Huber’s inequality, we obtain:713

maxteT p⌫q, eT p⌫ 1qu • 1

4
exp

˜
´E

⌫

«
Tÿ

t“1

1tIt “ īuDKLp⌫īptq,⌫ 1̄
i
ptqq

�¸

“ 1

4
exp

˜
´E

⌫

«
Tÿ

t“1

1tIt “ īupµīpNī,tq ´ µ
1̄
i
pNī,tqq2

2�2

�¸

• 1

4
exp

ˆ
´E

⌫
rNīpT qs p2�īq2

2�2

˙
. “ 1

4
exp

ˆ
´ 2T

�2H
`
2

˙

• 1

4
exp

ˆ
´ 2T

�2H
`
2

˙
,

where we observed that for every n P JT K, we have |µīpnq ´ µ
1̄
i
pnq| § 2�ī. To conclude, we relate714

H
`
2 with H1,2pT q. Using an argument analogous to that of the last part of the proof Theorem 6.1 it715

is simple to observe that, for sufficiently large T , we have �i § 2�ipT q, from which we have:716

H
`
2 “

Kÿ

i“1

�´2
i

“ �´2
1 `

Kÿ

i“2

�´2
i

•
Kÿ

i“2

�´2
i

• 1

4

Kÿ

i“2

�ipT q´2 “ 1

4
H1,2pT q.

717

D.5 Auxiliary Lemmas718

Lemma D.10 (Höeffding-Azuma’s inequality for weighted martingales). Let F1 Ä ¨ ¨ ¨ Ä Fn be a719

filtration and X1, . . . , Xn be real random variables such that Xt is Ft-measurable, ErXt|Ft´1s “ 0720

(i.e., a martingale difference sequence), and Erexpp�Xtq|Ft´1s § exp
´
�
2
�
2

2

¯
for any � ° 0 (i.e.,721

�
2-subgaussian). Let ↵1, . . . ,↵n be non-negative real numbers. Then, for every  • 0 it holds that:722

P
˜ˇ̌

ˇ̌
ˇ

nÿ

t“1

↵tXt

ˇ̌
ˇ̌
ˇ ° 

¸
§ 2 exp

ˆ
´ 

2

2�2
∞

n

t“1 ↵
2
i

˙
.
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Proof. For a complete demonstration of this statement, we refer to Lemma C.5 of Metelli et al.723

(2022).724

Lemma D.12. Let � ° 1, then it holds that:725

H1,1{�pT q�{p�´1q • H1,1{p�´1qpT q.

Proof. We prove the equivalent statement, being � ° 1:726

H1,1{p�´1qpT qp�´1q{� § H1,1{�pT q.

Recalling that the function p¨qp�´1q{� is subadditive, being p� ´ 1q{� † 1, we have:727

H1,1{p�´1qpT qp�´1q{� “
¨

˝
ÿ

i‰i˚pT q

1

�ipT q1{p�´1q

˛

‚
p�´1q{�

§
ÿ

i‰i˚pT q

1

�ipT q1{� “ H1,1{�pT q.

728

E Theoretical Analysis of a baseline: RR-SW729

In this appendix, we provide the theoretical analysis for the algorithm Round Robin Sliding730

Window (RR-SW), as it represents the most intuitive baseline for this setting. First, we need to731

formalize the algorithm, whose pseudo-code is provided in Algorithm 3.732

Algorithm 3: RR-SW.
Input :Time budget T , Number of arms K,

Window size "
1 Initialize t – 1
2 Estimate N – T

K

3 for i P JKK do
4 for l P JNK do
5 Pull arm i and observe xt

6 t – t ` 1
7 end
8 Update µ̂ipNq
9 end

10 Recommend pI˚pT q P argmaxiPJKK µ̂ipNq

733

Algorithm The algorithm takes as input the time budget T and the number of arms K. Then, it734

computes the number of pulls N “ T

K
we need to perform for each arm. After having computed735

the number of pulls, RR-SW plays all the arms N times in a round-robin fashion. After the N736

pulls, it estimates µ̂ipNq using the last "N samples (i.e., the ones from p1 ´ "qN to N ). Finally, it737

recommends I˚pT q, corresponding to the one which the highest estimated µ̂ipNq.738

Error probability bound Before presenting the error probability bound for RR-SW, we need to739

introduce �p2qpT q, which represents the minimum suboptimality gap at a given time budget T . It740

is actually the gap between the optimal arm and the first sub-optimal one. Formally: �p2qpT q :“741

mini‰i˚pT q t�ipT qu. Given this quantity, the error probability for the RR-SW algorithm can be742

bounded as follows.743

Theorem E.1. Under Assumptions 2.1 and 2.2, considering a time budget T satisfying:744

T • 2
1

�´1 c
1

�´1 p1 ´ "q´ �
�´1 K

�
�´1 �

´ 1
�´1

p2q pT q, (36)

the error probability of RR-SW is bounded by:

eT pRR-SWq § K exp

ˆ
´ " T

8 K �2
�2

p2qpT q
˙
.
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Some comments are in order. First, it is worth noting how, as expected, by increasing the number of745

samples considered in the estimator, we reduce the error probability eT p¨q at the cost of a more strict746

constraint on the time budget T . This is due to the request that the arms must be already separated at747

the beginning of the window we use to estimate the µ̂ipNq. Second, the error probability scales as an748

(inverse) function only of the smallest suboptimality gap�p2qpT q.749

E.1 Proofs750

Before demonstrating Theorem E.1, we need to introduce the following technical lemma.751

Lemma E.2 (Lower Bound for the Time Budget). Under Assumptions 2.1 and 2.2, the RR-SW
algorithm is s.t. the minimum value for the horizon T ensuring that @i P JKK:

T �ipp1 ´ "qpN ´ 1qq § �p2qpT q
2

,

where N “ T

K
and " P p0, 1q is:752

T • 2
1

�´1 c
1

�´1 p1 ´ "q´ �
�´1 K

�
�´1 �

´ 1
�´1

p2q pT q.

Proof. First of all, we recall that N “ T

K
is the number of times each arm has been pulled, considering753

K arms by running a round-robin procedure until we reach a time budget T . We consider the754

pessimistic estimator described in Section 3. Considering such an estimator and the RR-SW algorithm,755

which runs a round-robin procedure, what we get at the end of the time budget is a sliding-window756

estimator for the value of µipT q, which will include the lasts p1 ´ "q T

K
samples. In this lemma, we757

want to find the minimum value of the time budget T for which, at the first samples we consider, the758

real process of the arms are separated by at least �ipT q
2 . In this estimator, we consider samples in the759

range of rp1 ´ "q T

K
,
T

K
s, so we need to ensure, given Assumption 2.1, that:760

T �ipp1 ´ "qpN ´ 1qq § �p2qpT q
2

. (37)

Given that, for Assumptions 2.1 and 2.2, it holds:761

T �ipp1 ´ "qpN ´ 1qq § T �ipp1 ´ "qNq

“ T �i

ˆ
p1 ´ "q T

K

˙

§ T c

ˆ
p1 ´ "q T

K

˙´�
. (38)

By introducing the term derived in Equation (38) into Equation (37) we obtain:762

T c

ˆ
p1 ´ "q T

K

˙´�
§ �p2qpT q

2
.

This implies that the minimum time budget T which guarantees the initial condition of Equation (38)763

is:764

T • 2
1

�´1 c
1

�´1 p1 ´ "q´ �
�´1 K

�
�´1 �

´ 1
�´1

p2q pT q,

where �p2qpT q is the minimum suboptimality gap (�p2qpT q “ mini‰i˚pT qt�ipT qu).765

Now, we can find the error probability eT pRR-SWq, which will hold for all the time budgets which766

satisfy the condition of Lemma E.2.767

Theorem E.1. Under Assumptions 2.1 and 2.2, considering a time budget T satisfying:768

T • 2
1

�´1 c
1

�´1 p1 ´ "q´ �
�´1 K

�
�´1 �

´ 1
�´1

p2q pT q, (36)
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the error probability of RR-SW is bounded by:

eT pRR-SWq § K exp

ˆ
´ " T

8 K �2
�2

p2qpT q
˙
.

Proof. The RR-SW algorithm makes an error in predicting the best arm when, at the end of the process769

(at T total pulls), the optimal arm has a pessimistic estimator µ̂1pNq that is not the highest among the770

arms (we consider w.l.o.g. that the best arm is the arm 1). Formally:771

eT pRR-SWq “ P pDi P JKK : µ̂1pNq † µ̂ipNqq
§

ÿ

iPJKK
P pµ̂1pNq † µ̂ipNqq .

Let us focus on a single arm i, where we want to upper bound the probability that P pµ̂1pNq † µ̂ipNqq.772

Let us focus on the term inside the probability:773

µ̂ipNq • µ̂1pNq
µ̂ipNq ´ µ̂1pNq • 0

µ1pT q ´ µ̂1pNq ` µ̂ipNq ´ µipT q • �ipT q (39)
µ1pT q ´ µ1pNqloooooooomoooooooon

§T ¨�1pN´1q

´µ̂1pNq ` µ1pNq ` µ̂ipNq ´µipT qloomoon
§´µipNq

• �ipT q (40)

´µ̂1pNq ` µ1pNq ` µ̂ipNq ´ µipNq • �ipT q ´ T ¨ �1pN ´ 1q (41)

where we added ˘�ipT q to derive Equation (39), and added ˘µ1pNq to derive Equation (40), we774

used the results in Lemma D.8 and from the fact that the reward function is increasing. Considering a775

time budget T satisfying Theorem E.2, and �ipT q • �p2qpT q, @i P JKK, we have that:776

T�1pN ´ 1q § �ipT q
2

. (42)

Equation (42) holds since we are considering a time budget T which satisfies a more restrictive777

condition (we are considering a time budget at which this separation already holds for p1 ´ "qN , so778

it also holds now).779

Substituting Equation (42) into Equation (41) the above, we have:

´µ̂1pNq ` µ1pNq ` µ̂ipNq ´ µipNq • �ipT q
2

,

and the error probability becomes:

eT pRR-SWq §
Kÿ

i“1

P
ˆ

´µ̂1pNq ` µ1pNq ` µ̂ipNq ´ µipNq • �ipT q
2

˙
.

For the previous argumentation, we apply the Azuma-Hoëffding’s inequality and the union bound:780

eT pRR-SWq §
Kÿ

i“1

exp

¨

˚̋´
"N

´
�ipT q

2

¯2

2�2

˛

‹‚

§ K exp

ˆ
´ "T

8K�2
�2

p2qpT q
˙
.

781

G Experimental Details782

In this section, we provide all the details about the presented experiments.783
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b c  

Arm 1 37 1 1
Arm 2 10 0.88 1
Arm 3 1 0.78 1
Arm 4 10 0.7 1
Arm 5 20 0.5 1

Table 2: Numerical values of the parameters characterizing the functions for the synthetically
generated setting.

The payoff functions characterizing the arms shown in Figure 2 belong to the family:

F “
"
fpxq “ c

ˆ
1 ´ b

pb1{ ` xq 
˙*

,

where c,  P p0, 1s and b P r0,`8q. Note that, by construction, all the functions laying in F satisfy784

the Assumptions 2.1 and 2.2. In particular, the largest value of � satisfying Assumption 2.2, for785

the setting presented in Section 7, is � “ 1.3. In Table 2, we report the value of the parameters786

characterizing the function employed in the the synthetically generated setting presented in the main787

paper.788

G.1 Parameters Values for the Algorithms789

This section provides a detailed view of the parameter values we employed in the presented experi-790

ments. More specifically, the parameters, which may still depend on the time budget T and on the791

number of arms K, are set as follows:792

• UCB-E: for the exploration parameter a, we used the optimal value, i.e., the one that
minimizes the upper bound of the error probability, as prescribed in Audibert et al. (2010),
formally:

a “ 25pT ´ Kq
36H1

,

where H1 “ ∞
i‰i˚pT q

1
�2

i
;793

• R-UCBE: we used the value prescribed by Corollary 4.2 where we set the value � “ 1.3;794

• ETC and Rest-Sure: we set ⇢ “ 0.8 and U “ 1 as suggested by Cella et al. (2021).795

G.2 Running Time796

The code used for the results provided in this section has been run on an Intel(R) I7 9750H @ 2.6GHz797

CPU with 16 GB of LPDDR4 system memory. The operating system was MacOS 13.1, and the798

experiments were run on Python 3.10. A run of R-UCBE over a time budget of T “ 3200 takes799

« 0.07 seconds (on average), while a run of R-SR takes « 0.06 seconds (on average).800

H Additional Experimental Results801

In this section, we present additional results in terms of empirical error eT of R-UCBE, R-SR, and the802

other baselines presented in Section 7.803

H.1 Challenging scenario804

Here we test the algorithms on a challenging scenario in which we consider K “ 3 arms whose805

increment changes abruptly. The setting is presented in Figure 6a. The results corresponding to806

such a setting are presented in Figure 6b. In this case, the last time the optimal arm does not change807

anymore is T “ 400. Similarly to the synthetic setting presented in the main paper, we have two808

different behaviors for time budgets T † 400 and T ° 400. For short time budgets, the algorithm809
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(b) Results on synthetic setting.

Figure 6: Challenging scenario in which the arm reward increment rate changes abruptly.

providing the best performance is Rest-Sure, and the second best is R-UCBE. Conversely, for time810

budgets T ° 550 R-UCBE provides a correct suggestion in most of the cases providing an error811

eT pR-UCBEq † 0.01. Instead, Rest-Sure is not consistently providing reliable suggestions. This is812

allegedly due to the fact that such an algorithm has been designed to work in less general settings813

than the one we are tackling. Even in this case, the R-SR starts providing a small value for the814

error probability after R-UCBE does, at T « 1000. However, it is still better behaving than the815

other baseline algorithms. Note that Rest-Sure has a peculiar behavior. Indeed, it seems that even816

for large values of the time budget, it does not consistently suggest the optimal arm (i.e., the error817

probability does not go to zero). This is likely due to the nature of the parametric shape enforced by818

the algorithm, which may result in unpredictable behaviors when it does not reflect the nature of the819

real reward functions.820

H.2 Sensitivity Analysis on the Noise Variance821

In what follows, we report the analysis of the robustness of the analyzed algorithms as noise standard822

deviation � changes in the collected samples. The setting we considered is the one described in823

Section 7. The results are provided in Figure 7. Let us focus on the performances of the R-UCBE824

algorithm. For small values of the standard deviation (� † 0.01), we have the same behavior in terms825

of error probability, i.e., a progressive degradation of the performances for time budget T “ 150.826

Indeed, at this time budget, the expected rewards of 3 arms are close to each other, and determining827

the optimal arm is a challenging problem. However, the performances are better or equal to all the828

other algorithms even at this point. Conversely, for values of the standard deviation � • 0.05, the829

performance of R-UCBE starts to degrade, with behavior for � “ 0.5 which is constant w.r.t. the830

chosen time budget with a value of eT pR-UCBEq “ 0.8. This suggests that such an algorithm suffers831

in the case the stochasticity of the problem is significant. Let us focus on R-SR. This algorithm does832

not change its performances w.r.t. changes in terms of �. Indeed, only for � “ 0.5, we have that it833

does not provide an error probability close to zero for time budget T ° 1000. However, excluding834

R-UCBE, we have that the R-SR algorithm is the best/close to the best performing algorithm. This is835

also true in the case of � “ 0.5, in which the R-UCBE fails in providing a reliable recommendation836

for the optimal arm with a large probability.837

H.3 Real-world Experiment on IMDB dataset838

Description We validate our algorithms and the baselines on an AutoML task, namely an online839

best model selection problem with a real-world dataset. We employ the IMDB dataset, made of840

50, 000 reviews of movies (scores from 0 to 10). We preprocessed the data as done by Metelli et al.841

(2022), and run the algorithms for time budgets T P T :“ t500, 1000, . . . , 15000, 20000, 30000u.842

A graphical representation of the reward (in this case, represented by the accuracy) of the different843

models is presented in Figure 8. Since, in this case, we only had a single realization to estimate the844

error probability ēT pAq, we report the success rate RpAq instead, i.e., the ratio between the number845

of times an algorithm provides a correct suggestion and the number of budget values we considered,846

formally defined as RpAq :“ 1
|T |

∞
TPT 1tÎ˚ “ i

˚u (the larger, the better).847
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Figure 7: Empirical error probability for the synthetically generated setting, with different values of
the noise standard deviation �.
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Figure 8: Rewards for the arms of the IMDB experiments.

T

RpUq500 1000 2000 3000 4000 5000 7000 10000 15000 20000 30000

Optimal Arm 5 5 2 2 2 2 2 2 2 2 2

A
lg

or
ith

m
s

R-UCBE (ours) 6 5 2 5 2 2 2 2 2 2 2 9{11
R-SR (ours) 5 5 5 5 5 5 5 5 2 2 2 5{11

RR 5 5 5 5 5 5 5 5 5 5 5 2{11
RR-SW 5 5 5 5 5 5 5 5 5 2 2 4{11
SR 5 5 5 5 5 5 5 5 5 5 2 3{11

UCB-E 5 5 5 5 5 5 5 5 5 5 5 2{11
Prob-1 1 5 2 5 5 5 5 1 5 6 2 3{11
ETC 5 5 5 5 5 5 5 5 5 5 2 3{11

Rest-Sure 6 5 2 2 2 1 0 2 5 0 2 6{11

Table 3: Optimal arm for different time budgets on the IMDB dataset (first row) and corresponding
recommendations provided by the algorithms (second to last row). In the last column, we compute
the corresponding success rate.

Results The results are reported in Table 3. The algorithm with the largest success rate RpUq is the848

R-UCBE, while R-SR provides the third best success rate. Moreover, Rest-Sure, the only algorithm849

providing a success rate larger than R-SR, has issues with large time budgets since for T • 5000 is850

able to provide only 2 correct guesses of the optimal arm over 6 attempts. Conversely, our algorithms851

progressively provide more and more correct guesses as the time budget T increases. The above852

results on a real-world dataset corroborate the evidence presented above that the proposed algorithms853

outperform state-of-the-art ones for the BAI problem in SRB.854
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