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A Related Works

In this appendix, we summarize the relevant literature related both to the works focusing on the best
arm identification problem and rested bandits. The SRB setting was proposed by Heidari et al. (2016)
for the first time. Their work and subsequently the one by Metelli et al. (2022) analyzed the problem
from a regret minimization point of view.

Best Arm Identification in Stochastic Rising Bandits As highlighted in Section 1, the works
mostly related to ours are the ones by Li et al. (2020) and Cella et al. (2021). They both focus on the
BAI problem in the rested setting, given a fixed-budget. More specifically, Li et al. (2020) consider
rising rested bandits in which the reward function of each arm increases as it is pulled. However,
they limit to deterministic arms and, thus, fail to deal with the intrinsic stochasticity of the real-world
processes they want to model. Instead, Cella et al. (2021) deal with the problem of identifying the
arm with the smallest loss in a setting where the losses incurred by selecting an arm decrease over
time. It is easy to show that such a setting can be transformed straightforwardly in the SRB one.
However, the authors develop two algorithms whose theoretical guarantees hold under the assumption
that the expected loss follows a specific known parametric functional form, whose parameters are
to be estimated. This constitutes a major limitation to the presented work since checking such an
assumption is not feasible in real-world settings.

Best Arm Identification The pure exploration and BAI problems have been first introduced
by Bubeck et al. (2009), while algorithms able to learn in such a setting have been provided by Au-
dibert et al. (2010). The work by Gabillon et al. (2012) proposes a unified approach to deal with
stochastic best arm identification problems by having either a fixed budget or fixed confidence. How-
ever, the stochastic algorithms developed in this line of research only provide theoretical guarantees in
settings where the expected reward is stationary over the pulls. Abbasi-Yadkori et al. (2018) propose
a method able to handle both the stochastic and adversarial cases, but they do not make explicit use
of the properties (e.g., increasing nature) of the expected reward. Finally, (Garivier and Kaufmann,
2016; Kaufmann et al., 2016; Carpentier and Locatelli, 2016) analyze the problem of BAI from the
lower bound perspective.

Rested Bandits Bandit settings in which the evolution of an arm reward depends on the number
of times the arm has been pulled, such as the one analyzed in our paper, are generally referred to
as rested. A first general formulation of the rested bandit setting appeared in the work by Tekin
and Liu (2012) and was further discussed by Mintz et al. (2020) and Seznec et al. (2020). In these
works, the evolution of the expected reward of each arm is regulated by a Markovian process that is
assumed to visit the same state multiple times. This is not the case for the rising bandits, where the
arm expected rewards continuously increase over the time budget. Finally, a specific instance of the
rested bandits is constituted by the rotting bandits (Levine et al., 2017; Seznec et al., 2019, 2020), in
which the expected payoff for a given arm decreases with the number of pulls. However, as pointed
out by Metelli et al. (2022), techniques developed for this setting cannot be directly translated into
ours, due to the inherently different nature of the problem.

B Additional Motivating Examples

In this appendix, we provide two additional motivating examples to better understand and appreciate
the SRB setting.

Selection of Athletes for Competitions Consider the role of a professional trainer for a team, having
several athletes (i.e., our arms) to train in order to increase their performances. The final goal is to
select a single athlete to represent the team in a competition. The performances of athletes increase
when the trainer properly follows them. However, a trainer can follow just one athlete at a time.
The trainer can be modeled as an agent performing best-arm (athlete) identification, and the athletes
represent the arms that increase their payoffs (i.e., performance) when pulled (i.e., when the trainer
follows them).

Online Best Model Selection Suppose we have to choose among a set of algorithms to maximize
a given index (e.g., accuracy) over a training set. In this setting, we expect that all the algorithms
progressively increase (on average) the index value and converge to their optimum value with different
convergence rates. Therefore, we want to identify which candidate algorithm is the most likely to
reach optimal performances, given the budget, and assign the available resources (e.g., computational

12



450
451
452

453

454

456
457

459
460
461

462

464

465

466

467

468

469
470
471
472

473

474

power or samples). In summary, this problem reduces to the identification, with the largest probability,
of the algorithm that converges faster to the optimum. A real-world example of such a scenario is
provided in Figure 8.

C Estimators Efficient Update

In this appendix, we describe how to implement an efficient version (i.e., fully online) of the estimators
we presented in the main paper. We resort to the update developed by Metelli et al. (2022). This
update provides a way to achieve an O(1) computational complexity at each step for the update of
the estimates for the pessimistic estimator /i;(¢) and optimistic estimator ji7 (t).

With a slight abuse of notation, only in this appendix, for the sake of simplicity, we denote with
Z;.n the reward collected at the n™ pull from the arm i and with h; ; = h(N; ;_1) the window size.
Differently, from what we use in the paper, here the reward subscript indicates the arm ¢ and the
number of pulls of that arm n instead of the total number of pulls ¢ we used in the definition of x;.

More specifically, the pessimistic estimator [i; can be written as:

where the quantity @; is updated as follows:

¢ {ai +Ti Ny, — Ti,Ng—hi, T hie=hip1
)

Q; < § _ _ .
a; + T; N, , otherwise
and a; = 0 as the algorithm starts.
Instead, the optimistic estimator ji} (t), is updated using:

1 (_ T@—b) ¢ —d;
.T i 4 i 7
T'(F) — . _ )
(D) == (“’+ his s >

Where the quantity @, is defined and updated above and b;, ¢;, and d; are updated as follows:

B 40t TN —hie ~ Ti Ny —2ha if b = hiz—1
¢ bi + TNy, —2h 41 otherwise ’

T — Ci+ NitTiN;, — (Ni7t - hiﬂf) " T4, Ni o —hi ifh;y = hi,t—l
! ¢+ Nit Tin,, otherwise ’

T EZ + Nit TN, ,—hs, — (Nig — hztl TiNiy—2h; . hig =N
’ d; + (Ni,t — hiﬂg) .fini,t_2hi,t+1 + b; otherwise )

Similarly to what is presented above, the quantities are initialized to O as the algorithms start.

D Proofs and Derivations

In this appendix, we provide all the proofs omitted in the main paper. For the sake of generality,
we will provide the derivations for a generic choice of the window size of the estimators h; ; which
depends on the arm ¢ € [K] and on the round ¢ € [T]. When needed, we will particularize the choice
for the case in which the window size depends on the number of pulls only %; ; = h(N; ;—1).

D.1 Proofs of Section 3
Lemma D.1. Under Assumption 2.1, for every i € [K], j, k € N with k < j, it holds that:

N i(g) — pilk)
Y (j) < T
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Proof. Using Assumption 2.1, we get:
= 1 il = y
i(Jj)=— i(J) < — i(l) = — (+1) —u(l) = ————,
Yi(4) j_khzk%(]) j_kI;C’Yz() j_kl;k(,uz( +1) — wi(l)) ik

where the first inequality comes from the concavity of the expected reward function (Assumption 2.1),
and the second equality comes from the definition of increment. O

Lemma D.2. For every arm i € [ K], every round t € [T'], and window width 1 < h; s < |N;—1/2],
let us define:

Ni -1

I CURRC L )

it I=Nit-1—h;+1

- 1
fif (Niy) =

h

otherwise if h; ; = 0, we set [il (N; ;) := +00. Then, ﬁZT(NM) = p;(T) and, if N; 41 > 2, it holds
that:

(2T — 2N¢7t_1 + h@t — 1) FYi(Ni,t—l — 2h1‘7t + 1)

N | =

fii (Nie) = pi(T) <
Proof. Following the derivation provided above, we have for every [ € [2,..., N; 7_1]:

(™) = ) + 3 ()
=1

<

< (1) +

—~

T 1)yl — 1) (12)
i (1) — pi (U= hiy)

13
s ; 13)

< i)+ (T =1)

where Equation (12) follows from Assumption 2.1, and Equation (13) is obtained from Lemma D.1.
By averaging over the most recent 1 < h; ; < |N;;—1/2| pulls, we get:

Nm,t—l

Y (s @O ),

ni(T) < - h.
it I=Nit—1—h;i+1 Bt

h

For the bias bound, when N; ;1 > 2, we retrieve:

LRy pill) = pall — his)
N @) = Y @m>wTol b Zt)m@>a@
it I=N; it 1—h;+1 it
Nit—1
1 ’ o) — il — by
bt I=N;t-1—hit+1 it
Nit—1 -1
1 N 1
- 2 (T %)
Pt i e Pt i h
1 Nit—1
< Do (T=0) vl —hiy) (15)
G I=Ni o1 —hi+1
1
< 5(2T — 2Ni,t—1 + hi,t - 1) '-Yi(Ni,t—l — 2hi,t + 1), (16)

where Equation (14) follows from Assumption 2.1 applied as p; (1) < p;(N;+), Equation (15) follows
from Assumption 2.1 and bounding ﬁ Zéj_ hio V(1) <% (l = hi;t), and Equation (16) is derived

still from Assumption 2.1, v; (I — h; ) < 7;(Nit—1 — 2h;+ + 1) and computing the summation. [J
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Lemma D.3. For every arm i € [KJ|, every round t € [T], and window width 1 < h < |N;+—1/2),
let us define:

Nit—1
1 \ X; () — X;(1— hy
B (Nig) = 7 (Xi(l)Jr(T—l) 1) = Xl >>
bt =Nt 1—h;:+1 .t
3 a
61'T(Nivt) =0(T — Nig—1+hiz—1) B3
it

where X;(1) denotes the reward collected from arm i when pulled for the l-th time. Otherwise, if
hit = 0, we set il (t) :== +00 and BT (t) := +00 . Then, if the window size depends on the number
of pulls only h; ; = h(N; 1), it holds that:

P (vt e [7] : [l (Vi) = i (Vi)| > BT (Ni)) < 2Texp (1)

Proof. Before starting the proof, it is worth noting that under the event {h;, = 0}, it holds that
il (t) = @' (t) = BF(t) = +oo. Thus, under the convention that ©0 — o0 = 0, then 0 > 37 (¢) is not
satisfied. For this reason, we need to perform our analysis under the event {h; ; > 1}.

The first thing to do is to remove the dependence on the number of pulls that, in a generic time instant,
represents a random variable. So, we can write:
P(Vte [T] : |if (Nie) = i (Nig)| > B (Niv))
<P@Ene0,T]st hiy >1: il (n) — il (n)] > AT (n))
< ) P(E () -l )= B (), (17)
nel0,T]:hi,n=1
where Equation (17) follows form a union bound over the possible values of N; ;.

Now that we have a fixed value of n, consider a generic time ¢ in which arm 7 has been pulled. We
will observe a reward x; composed by the mean of the process p;(N; ;) plus some noise. The noise
will be equal to 7;(N; ) = ¢ — (N ¢), i.e., as the difference (not known) between the observed
value for the arm ¢ at time ¢ and its real value at the same time. Let us rewrite the quantity to be
bounded as follows for every n:

him (1 (n) = il (n))

n

N e

l:n—hi,n+1

g T -1 g T -1
- Y (=)o - 2 () we-m,
l=n—h;n+1 nn l=n—h;n+1 LN

Here, notice that all the quantities n;(!) and n;(I — h; ,,) are independent since the number of pulls /
is fully determined by n and h; ,,, that now are non-random quantities.

Now, we apply the Azuma-Hoéffding’s inequality of Lemma C.5 from Metelli et al. (2022) for
weighted sums of subgaussian martingale difference sequences. To this purpose, we compute the
sum of the square weights:

n T 1 2 n T 1 2
> 0w 2 G

l=n ’ l=n—h; ,+1
T—n+hi,—1\> T—n+hi,—1\°
<hin |1+ n—i——’ + R H—’
’ hzn ’ hi,n
5T —n+ hiy, — 1)

hi,’n
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Given the previous argument, we have, for a fixed n:

P (i (n) = i (n)] = B (n))

" T -1 n T—1 -
<pl| N (-5 )em - X () w2 k(0

l=n—Ts n+1 l=n—hi n+1
< 2ex — h%"BZT(n)?
S £6Xp 902 (5(T—n+hi,n—1))
a
o
P\ 10

By replacing the obtained result into Equation (17) we get:

t
a a a
2 2 - exp (_E) < Z 2exp (—1—0) < 2T exp (_ﬁ)
n=1

nel0,T]:h; n>1

Lemma D.4. For every arm i € [K], every round t € [T'], and window width 1 < h;; < |N;1—1/2),
let us define:

1 Nit—1

fi(Ni ) =

hi’t I=N; ¢t 1—hi+1

otherwise, if h; 1 = 0, we set i;(N; ¢) == +00. Then, il (N; ) < p;(T) and, if N; ;1 = 2, it holds
that:

1
wi(T) — pi(Ni ) < 5(2T —2Ni¢1+hig — 1)%(Nig—1 — hig +1).
Proof. Following the derivation provided above, we have forevery [ € {2,..., N, p_1}:
T—1
pilT) = pi(l) + > %id) = pa(D). (18)
j=l

Thus, by averaging over the most recent 1 < h; ¢ < |N; ;—1/2] pulls, we get:

)

1 Nit—1 -1
p() = 7 3 (W(Z) + ) %:(j)>
it l=Nit-1—hit+1 I=l
1 Nit—1 T-1
= [ui(Niy) + - 7i(J)
U =Nijo1—hi+1 j=1
1 Nit—1 T-1
< Bi(Nig) + 4 2 2, %0)

i, l:Nq‘,,f,_lfhi,t‘i’l j=l
1
S fi(Nig) + 52T = 2Nig—1 + hiyp = 1)7(Nijg—1 = hie + 1),

where we used Assumption 2.1. O
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Lemma D.5. For every arm i € [K||, every round t € [T], and window width 1 < h < |N;1—1/2),
let us define:

1 Ni -1
i (Nit) = o Xi(1),
gL I=N; i 1—h;+1
~ a
ﬂzT(Nz,t) =0 h )
1,

,t

where X;(1) denotes the reward collected from arm i when pulled for the l-th time. Otherwise, if
hit = 0, we set il (t) :== +o0 and B] (t) := +00 . Then, if the window size depends on the number
of pulls only h; ; = h(N; _1), it holds that:

P (W € [T : |fi(Niyg) — fti(Nig)| > Bi(Ni,t)) < 2T exp (*g) .

Proof. Before starting the proof, it is worth noting that under the event {h;, = 0}, it holds that
aF(t) = I (t) = B¥(t) = +oo. Thus, under the convention that «0 — co = 0, then 0 > 37 (¢) is not
satisfied. For this reason, we need to perform our analysis under the event {h; ; > 1}.

The first thing to do is to remove the dependence on the number of pulls that, in a generic time instant,
represents a random variable. So, we can write:

P (Vt e [T] : |fi(Niy) — Bi(Niy)| > Bz(Nzt)>
<P (Eln €0, T] st. hip =1+ |f1i(n) — fi(n)| > Bz(ﬂ))
< Y P(lum) - m) > Aiw), 19
nel0,T]:h; n=1

where Equation (19) follows form a union bound over the possible values of N; ;.

Now that we have a fixed value of n, consider a generic time ¢ in which arm 7 has been pulled. We
will observe a reward x; composed by the mean of the process p;(N; ;) plus some noise. The noise
will be equal to 7;(N; ;) = 1 — p:(Nit), i.e., as the difference (not known) between the observed
value for the arm ¢ at time ¢ and its real value at the same time. Let us rewrite the quantity to be
bounded as follows, for every n:

hiw (Ri(n) —(n) = > m(0).
l=n—h;,+1

Here we can note that all the quantities 7;({) and 7;(I — h; ;) are independent since the number of
pulls [ is fully determined by n and h; ,,, that now are non-random quantities.

Now, we apply the Azuma-Hoéffding’s inequality of Lemma C.5 from Metelli et al. (2022) for sums
of subgaussian martingale difference sequences. For a fixed n, we have:

n

P <|ﬂi(n) — fi(n)] = Bi(n)) <P S (D) = hiw - BE()

< 2exp (—hi7nﬁ?(n)2 )
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By replacing the obtained result into Equation (19) we get:
t
a a a
Z 2exp (—5) < 2 2exp (—5) < 2Texp (—§>
nel0,T]:h; n>1 n=1

O

Lemma 3.1 (Concentration of ji;). Under Assumption 2.1, for every a > 0, simultaneously for every
arm i € [K] and number of pulls n € [0, T, with probability at least 1 — 2T Ke~%? it holds that:

Bi(n) = Gi(n) < fu(n) = pi(n) < Bi(n),
where f3i(n) = o, /76y and Ciln) = 12T —n+ h(n) — 1) vi(n — h(n) + 1).

Proof. The proof simply combines Lemmas D.4 and D.5 and a union bound over the arms. O

Lemma 3.2 (Concentration of ji1). Under Assumption 2.1, for every a > 0, simultaneously for every
arm i € [K] and number of pulls n € [0, T, with probability at least 1 — 2T K e~ it holds that:

Bl (n) < fif (n) — pi(n) < B (n) + ¢ (),

where BT (n) == o-(T—n+h(n)—1), [ 7tnys and ¢F(n) = 12T —n+h(n)—1)vi(n—2h(n)+1).
Proof. The proof simply combines Lemmas D.4 and D.3 and a union bound over the arms. O

D.2 Proofs of Section 4

In this appendix, we provide the proofs we have omitted in the main paper for what concerns the
theoretical results about R-UCBE. All the lemma below are assuming that the strategy we use for
selecting the arm is R-UCBE.

Let us define the good event ¥ corresponding to the scenario in which all (over the rounds and over
the arms) the bounds B} (n) hold for the projection up to time T of the real reward expected value
wi(n), formally:

U= {¥ie [K],Vte [T]: |af (t) - &7 (0] < B (1)},

where i} (¢) is the deterministic counterpart of ji] (t) considering the expected payoffs j;(-) instead
of the realizations, formally:

Nit—1

2, (ui(l) - ptl _ZL(: —hz‘,t)).

it I=N;t—1—h;t+1

_ 1
il (Niy) ==

h

s

Lemma D.6. Under Assumption 2.1 and assuming that the good event VU holds, the maximum number
of pulls N; 7 of a sub-optimal arm (i # i*(T')) performed by the R-UCBE is upper bounded by the
maximum integer y;(a) which satisfies the following condition:

T (|(1 = 2¢)yi(a)]) + 270 - v = Ay(T).

Proof. In the following, we will use i} (N; ;1) to bound the bias introduced by i} (N; ;—1) and,
subsequently, to find a number of pulls such that the algorithm cannot suggest pulling a suboptimal
arm. Using Lemma D.4, we have that Vi € [K],Vt € [T] and when 1 < h;; < |1/2- N; 1| with
N;+—1 = 2, it holds that:

AF(Nig—1) = pi(T) < = - (2T = 2Nj 41 + hiy — 1) - 7i(Niy—1 — 2hip + 1), (20)

N =
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Let us assume that, at round ¢, the R-UCBE algorithm pulls the arm ¢ € [ K] such that ¢ # ¢*(7T'). From
now on, to avoid weighing down the notation, we will omit the dependence of the optimal arm i*(7T")
on the budget T, simply denoting it as ¢*, and the window size will be denoted ad h; ; = h(N; —1).
By construction, the algorithm chooses the arm with the largest upper confidence bound B;T (N 1)
Thus, we have that BY (N; ;—1) = Bl (N;x ¢—1). Now, we want to identify the minimum number of
pulls such that this event no longer occurs, assuming that the good event ¥ holds. We have that, if we
pull such an arm 4 # ¢*, it holds:

BI(N; 1)

7

> Bl (Nix ;1)
B;T(Nz t—l) - Bg:; (Ni*,t—l) = 0
> A

)

Using the definition of A;(T) and the definition of the upper confidence bound B (N; ;1) in
Equation (3) for ¢ and i*, we have:

pin (T) = i (T) + 1] (Nige—1) + B (Nije—1) — fiie (N p1) = B (N 1) = Ai(T).
Given Assumption 2.1 we have that y;« (T") < fiy (N;* ;—1), and, therefore, we have:

fite (N 2 —1) — pi(T) + il (Nig—1) + BE(Ni4—1) — i (Niw s 1) — B (Nixe 11) = Ay(T),

and, since under the good event W, it holds that ji% (N« ;1) — % (N 1—1) — BE (Nix ¢—1) < 0,
we have:

—i(T) + il (Nj4—1) + BT (Ni4—1) = Ai(T)
—pi(T) + BT (Nig—1) + i} (Nie—1) + iy (Nie—1) — il (Niw—1) = Ay(T),

where we added and subtracted i (N; ;_1) in the last equation. Under the good event ¥, we can
upper bound |(D)| = |if (Ni,e—1) — i (Nie—1)| < B] (Ni-1):

fif (Nije—1) — pa(T) + 287 (Ni—1) = Ay(T).

Using Equation (20), and substituting the definition of BZT (N, t—1) provided in Equation (4), we
have:

1
5 (2T — 2Ni,t—1 + hiﬂg — 1) "Yi(Ni,t—l — Zhi,t + 1)+
<27
+20 - (T = Nijg—1+hig—1)- h% > Ay(T)
-7 it
a
Tl = 2)Nial) 207 [rmm 2 AT, @D
~ 7,t
v

(4)
(B)

where we used the definition of h; ; := |eN; | and the fact that N; ;_; = N, ; — 1 since at time ¢ the
algorithm pulls the ¢-th arm.

This concludes the proof. O

Theorem 4.1. Under Assumption 2.1, let a™* be the largest positive value of a satisfying:

T— > yla)=1, 5)

i£i% (T)
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where for every i € [K], y;(a) is the largest integer for which it holds:

Tr(l(1 — 2)y)) + 2T 15 = Au(T). ©
~—_— [E:yJ
(4) "_(B)

If a* exists, then for every a € [0, a*] the error probability of R-UCBE is bounded by:

er(R-UCBE) < 2TK exp (-1%). )

Proof. From the definition of the error probability, we have:
er(R-UCBE) = P (f*(T) # i*(T)) —P(Ipyy # (D).

Therefore, we need to evaluate the probability that the R-UCBE algorithm would pull a suboptimal
arm in the 7" + 1 round. Given that Assumption 2.1 and that each suboptimal arms have been pulled
a number of times N, 7 at the end of the time budget 7', under the good event ¥, we are guaranteed
to recommend the optimal arm if:

T Nz > 1. (22)
i£i% (T)
If Equation (22) holds, a suboptimal arm can be selected by R-UCBE for the next round 7" + 1 only if

the good event ¥ does not hold e (R-UCBE) = P (¥€), where we denote with W€ the complementary
of event W. This probability is upper bounded by Lemma D.5 as:

er(R-UCBE) = P (I°) < 27K exp (—1%) .

We now derive a condition for a in order to make Equation (22) hold. Thanks to Lemma D.6 we
know that N; v < y;(a) where y;(a) is the maximum integer such that:

Tvi([(1 = 2¢)yi(a)]) + 2To En@P = Ay(T).

From this condition, we observe that y;(a) is an increasing function of a. Therefore, we can select a
in the interval [0, a*], where ™ is the maximum value of @ such that:

T — Z yi(a) = 1. (23)
ii% (T)

Note that, we are not guaranteed that such a value of a* > 0 exists. In such a case, we cannot provide
meaningful guarantees on the error probability of R-UCBE. O

Corollary 4.2. Under Assumptions 2.1 and 2.2, if the time budget T satisfies:

(F=20)7 (Hiap(m) + (K =1)" " ifBe(1,3/2)

T > ( 3
(c%(l —26) 738 (Hy y5(T)) + (K — 1)) if B € [3/2, +0)

; ®)

there exists a™ > O defined as:

2
.3 1-1/8_ (f_ B8 _ .
107 <(T Hl‘l/ﬁ((T) 1)) — (1 —2¢) B) if Be(1,3/2)
a = 2 )

3 1Y3_ g1y 3/2 B )
((TH”ET))) —c(1-2¢) ﬂ) if B € [3/2, +o0)
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where Hy ,,(T') = Zi#i*(T) A7‘,#(:,1)for n > 0. Then, for every a € [0, a*), the error probability of
R-UCBE is bounded by: '

er(R-UCBE) < 2TK exp G%).
Proof. We recall that Assumption 2.2 states that all the increment functions +;(n) are such that

vi(n) < en™". We use such a fact to provide an explicit solution for the optimal value of a*. From
Theorem 4.1 and using the fact that v;(n) < cn™?, we have that Equation (6) becomes:

Te n 2Toa?
[(1—=2e)yl® ~ |ey|?

> A(T). (24)

Or, more restrictively:

o8 R
Tc(l—2¢) N 2Toe 2631,2 > AJ(T).
(y—1)° (y—1)2

Let us solve Equation (24) by analyzing separately the two cases in which one of the two terms in the
Lh.s. of such equation become prevalent.

Case 1: 8 € [3,
Equation (24) by:

oo) In this branch, we can upper bound the left-side part of the inequality in

Te(1—2)""  2Toe %az > A(T)
3 (2 .
2

(y—1)2 (y—1)
Thus, we can derive:

2
Te(1—2e)77 + 2T05_§a§‘> : . 25)

play <t ( AT)

Using the above value in Equation (23), provides:

T— > wila)>0
ii% (T)
-B _3 1 % 1
T—(K—l)—(Tc(l—Qs) +2Toe a3 >0
i#i% (T) Af (T)

T—(K—1)- (Tc(l —2e) % + QTUE_%G%)7 Hy 53(T) > 0

. 2
(T T (K-1)8 c(1 —2¢)F
(Hy/5(T))2
4023
3

2
(HM’M'@chQQXﬁ
a < (H1,2/3(T))2

402e—3 ’

where the last expression is obtained by observing that 7" > 1 and for obtaining a more manageable

a <

3
expression, under the assumption that M —c(1—-28)"P > 0.
(Hy,2/3(T))2

This implies a constraint on the minimum time budget 7', which explicit form for the case 8 € [%, oo)
is provided in Lemma D.7

Case2: B € (1, %) In this case, we enforce the more restrictive condition:

Te(l—2e)7" . 2Toe"%a>
(y—1)8 (y—1)F




619 the value for the number of pulls is:

(@) <14 Te(l—2¢) 7 +2Toe 2a2 \”
s Ad(T) |

620 and the value for a* becomes:

T (K—1)— (Tc(l —2e) P 4 2Tae*%a%)g P—
iz (1) A7 (T)

1
T— (K1)~ (Te(1 = 20) " + 2Toe 3at )" Hyyyp(T) > 0
(e 25)*5)2

(Hy,1/8(T))P
4o2e—3

(TP (K —1))P 8\?
( )~ c(l—2¢) ,@)

402e—3 ’

a <

a <

(26)

621 where the last expression is obtained by observing that 7" > 1 and for obtaining a more convenient

P (1)

622 expression, under the assumption that ‘~ T c(1—2e) P >0.

623 Also here, this implies a constraint on the minimum time budget 7" for the case g € (1, %) which

624 explicit form is provided in Lemma D.7

O

625 Lemma D.7. Under Assumptions 2.1 and 2.2, the minimum time budget T for which the theoretical

626 guarantees of R-UCBE hold is:

B

(eh (=207t (Hyyp(@) + (K =1))" " ifBe(1,3/2)

T> ( 3
(31 =253 (Hiap(@) + (K =1))  ifBe[3/2,+)

627 and Hy ,,(T) = Zi#i*(T) %ﬁ)rn <L

628 Proof. Given Corollary 4.2, we want to find the values of 7" such that a value of a € [0, a*] should
629 exist. This implies having a* > 0. Given the value of 8, we can derive a lower bound for the time

630 budget T
Casel: S e [3, o)
(T~ (K — 1)}
(Hy,2/5(T))%

—c(1-2e)"F >0.

From this, it follows:

T > (P31 2) %% (Hyapa(D)) + (K ~ 1))3.

Case2: B e (1,3):
(11— (K 1))

(Hip(T) c(1-2¢)7" =0.

From this, it follows:

631
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632 D.3 Proofs of Section 5

633 In this appendix, we provide the proofs we have omitted in the main paper for what concerns the
634 theoretical results about R-SR. We recall that with a slight abuse of notation, as done in Section 5, we
sss  denote with A(;)(T') the "™ gap rearranged in increasing order, i.e., we have A (T') < A (T) for
636 1 <j.

Lemma D.8. For every arm i € [K] and every round t € [T, let us define:

1 N1

fii(t) = Y Z pi(l),

it I=N; ¢ 1—h;+1

637 if Nyt = 2, then p;(t) = f;(t), and if hiy < N; /2, it holds that:
wi(T) — fi(Nie) < Tvi([Nit/2]). (27)

638 Proof. The proof follows trivially from Lemma D.2. O

Lemma D.9 (Lower Bound for the Time Budget for R-SR). Under Assumptions 2.1 and 2.2, the R-SR
algorithm is s.t. the minimum value for the horizon T ensuring thatVj € [K — 1] and Vi € [K]:

A(KJrlfj)(T)

T’YZ(N _1> 9 ;

639 IS

s40 Proof. First, using Assumption 2.2, we derive an upper bound on the bias between y; (T) and fi;(N;)
641 (r.h.s. of Equation 27), where N is a generic time corresponding to the end of a phase of the R-SR
642 algorithm:

Ti(|Nj/2]) < eT|N;/2] 7P
643 Substituting the definition of IV; into the above equation, we get:

-8

T|N;/2| P <T- <1 —-1 (28)
g

1

o(K K-‘rl—j
1
(

-8
<T-| = -1
(logK) K+1*J >
-8

") >

s4¢ Requiring that, for a generic /V;, the maximum possible bias is lower than a fraction of the subopti-
645 mality gap of arm K + 1 — j:

A _»(T
CTle/2J7B< (K+1 47)( )

2
-8 )
CT( _ T ) < A(K+17j)(T)
2log(K) - (K +1—) 2
Tlfg < A(K+lfj) (T)
2148 - (log(K) - (K +1— j))”
A(1Kﬁ+1 j)(T)

T>

1 B

cTEE QIS (log(K) - (K +1—4))""
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Requiring that the above condition holds for all the phases j € [K — 1] we have
(T)

646 i
=5
A (K+1—j)

T > max - ”
215 - (log(K) - (K +1—j)) ™7
{(A(K-&-l—j)(T))llﬁ}

> T2 T log(K) TP
> cT- =5 o, -7 ma
& je[[Kfl]] (K+1—4)8
1
29 T loe(K) 1727 . _ 1 =1
> cT-F2 1-6log(K) -7 jeI[FKai{l]] {((K—l— 1 ]) A(K+1 j)(T)) }
1 148 8 B —a
> T2 T-6log(K) T8 PN (T .
c 8( nax {Z @ )}
647 O
648 Theorem 5.1. Under Assumptions 2.1 and 2.2, if the time budget T satisfies
Bt1 — ) 8 1
T > 25 criog(K)?T {iFrap@m =}, 10
g(K)77r max 37T A (T) (10)
then, the error probability of R-SR is bounded by:
K(K-1) € T-K
(R-SR) < —————F exp| —5 5 = >
2 802 " Tog(K) Hs(T)
s49  where Ho(T) = max;e[x] {iA(Z-) )_2} and log(K) = % + ZZK=2 T

Proof. The R-SR algorlthm makes an error when at the end of a phase j the optimal arm has a

pessimistic estimator i1 (IV;) is smallest among the arms, formally:
) < M(%)( ))

650
651
7(R-SR) <P (Fje[K —1]Fie [K+1—4, K] : pa)(N
K—1
< ]P)(H’LE[[K-Fl—j,KH /~L(1)(N)</~L()(N))
j=1
K-1 K
<22 Plan0) <in(),

j=1 i=K+1-j
es2  where we use a union bound over the phases and over the arms still in the available arm set X;_; in
ss3 each phase. Let us focus on P (1) (N;) < fi(;)(IN;)). We have that the optimal arm has a smaller
654 pessimistic estimator than the i™ one when:

figiy(N3) = fi1y (N;)
fuiy (Nj) = fig1y(Nj) = 0
1y (T) = iy (N3) + fuay (N;) = iy (T) = Ay (T) (30)
py (T) = Fiay (N5) =iy (N;) + By (NG) + gy (N;) —peay (T) = Ay (T) 31
~ ——
<Ty(1)(N;—1) <—R() (N;)
+ fiiy(N;) = By (N;) = A (T) =T - vy (N; — 1)
(32)

=Ry (N;) + By (N;)
;) to derive Equatlon 31),

655 where we added +A;)(T') to derive Equation (30), and added +7i(;) (V.
656 we used the results in Lemma D.8 and from the fact that the reward functlon is increasing. Since we
are with a time budget 7 satisfying Theorem D.9, we have that:
Ap(T
@@ 33)

657

Tyy(N; = 1) < —
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Substituting into Equation (32) the above, we have:

X _ X _ Ay (T)
=iy (N3) + By (Nj) + Ly (N) = By (Nj) = %,
and the error probability becomes:
K-1 K
X _ X _ Ay (T)
er(R-SR)< >, ) P (—N(l)(Nj) + fiqy (N;) + Ay (Nj) — By (N) = ()2> '

j=1i=K+1—j
658 For the previous argumentation, we apply the Azuma-Hoéffding’s inequality to the latter probability:

2
K-1 K eN; (Amﬁ(ﬂ)

j=1
659 Now, given that:

ﬂA%KH—') > o T-R 2

802 77 802 log(K) (K + 1 — DA K115

> £ _T-K
= 802 log(K)Hy(T)’

es0 we finally derive the following:

)

er(R-SR) < K(I;_l)exp( e T-K )

807 Jog(K) Ha(T)

661 which concludes the proof. O

662 D.4 Proofs of Section 6

663 In this appendix, we provide the proofs of the lower bound on the error probability presented in
664 Section 6.

665 Theorem 6.1. For every algorithm 2, there exists a deterministic SRB satisfying Assumptions 2.1
666 and 2.2 such that the optimal arm i*(T') cannot be identified for some time budgets T unless:

1
T>Hyyp-nT) = Y, ——— (1D
izir(r) Di(T) P71

667 Proof. We define for every suboptimal arm ¢ € [2, K] the suboptimality gap reached at T — +0
ees  as A; € (0,1/2]. We consider the base instance v (see Figure 5) in which define the (deterministic)
e69 reward functions are defined for 5 > 1 and n € N as:

i) = 5 (1-n'7),
1i(n) = min <;+Ai> (1—n1—[3),%—Ai i€ [2,K].

N

—eul ()
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690

Clearly, v fulfills Assumption 2.1 and it is simple to show that also Assumption 2.1 is satisfied.
Indeed, by first-order Taylor expansion:

0
nm) =pmm+1)—mn) < sup — () (34)
z€[n,n+1] X
—1 -1
= L sup P = L niﬁ,
2 z€[n,n+1] 2

0
7i(n) = pi(n + 1) —pin) < sup  — ()
z€[n,n+1] 0T

=(B-1) (; + Ai> _Sup z P =pB-1)n"

z€[n,n+1]

Thus, we simply take ¢ = 5 — 1 in Assumption 2.1. Let us define n* the number of pulls in which
arm ¢ € [2, K] reaches the stationary behavior:

Do oty L e (125 AN
(2+A1>(1 n )—2 A, = nf = A .

A sufficient condition on the time budget so that the optimal arm is 1 (i.e., ¢*(T") = 1) is given by
T = T*, where T* is the point in which the curve of the optimal arm intersects that of any of the
suboptimal arms i € [2, K]:

1 1 1 B—1
—(1-=T"P) == — A T* = .
5 ) =3 - ela ] (2Ai)

Consider now the regime in which 7' > T*. We proceed by contradiction. Suppose that there exists
an algorithm %A that identifies the optimal arm such that on the bandit v and that the suboptimal arm
1 € [2, K] has an expected number of pulls satisfying:

E[N+(T)] < n¥. (35)
I

Consider now the alternative bandit 2 constructed from v by keeping all the arms unaltered, except
for arm ¢ that is made optimal:

pi(n) = (; + A;) (1—n'"P),
wi(n) = pi(n),  je [K\{i}

Clearly the bandit v’ fulfills Assumption 2.1 and, with calculations similar to those in Equation (34),
we conclude that it satisfies Assumption 2.2 with ¢ = 8 — 1. A sufficient condition on 7" for which
arm i is optimal in bandit 2 is that T > T in which the curve of arm 7 intersects that of the arms j
such that A; > Az

1/2 + Ai> 71

1 a1
— - — = — — . > - -

jEIIK]]:AjZA;
Thus, we take:
1
1/2+ A;\ 71
Ty = | L— .
? ( 24 >

Clearly, for T* > T, since all the suboptimality gaps are at most 1/2. Thus, we continue in the
regime T' > T*. Since pi5(n) = piz(n) if n < n}, it follows that under condition (35), algorithm A
cannot distinguish between the two bandits and, consequently, cannot identify the optimal arm on
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700
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702
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704

1/2

3V

n* T*
Figure 5: Instances v and v’ of SRB used in Theorem 6.1 and Theorem 6.2.
bandit ’. Thus, it must follow, from the contradiction, that:

By summing over i € [2, K], we obtain:

v ¥ avons 3 - % (M) s (4 on

i€[2,K] i€[2,K] i€[2,K] i€[2,K]

Thus, we have found an interval 7' € [T*, 7] in which identification cannot be performed. Notice
that it is simple to enforce that 7T > T* with a sufficiently large number of arms K > 27T,

To conclude, we need to relate A; with A,;(T") and A%(T). We perform the computation for both the
instances v and v/, in the regime T’ > Qﬁ T*. Let us start with v:

1 1 1 A;
A(T)=-(1-T" A= [Z—A)) =4, — TP > ie2,K
l( ) 2( ) (2 l) 7 2 25 ZG[[, ]]
We move to v':
/ 1 1-3 1 1-8 1-8 A%
AUT) = (5+ 8 ) =T = S =T = A1 =TV 9) = 5,

AYT) = (; + Ai) 1-7"7) - (; - Az—) > A~ %Tl‘ﬁ > % i€ [2, K]\{i}.

Thus, a necessary condition for the correct identification of the optimal arm is:
1 1
1/2 +2A;(T)\ 71 1 BA-1 1
T > P S > P =92 =1 TT.
: 2, ( 408;(T) - 2, 84;(T)
€[2,K] €[2,K]

Similarly, with K > 8ﬁ, we can enforce 2~ 71Tt > QFT T, O

Theorem 6.2. For every algorithm 2 run with a time budget T fulfilling Equation (11), there exists a
SRB satisfying Assumptions 2.1 and 2.2 such that the error probability is lower bounded by:

1 8T 1
er(2A) = = exp <f> , where Hyo(T) = .
O'2H1’2(T) i#;(T) A,LQ(T)

Proof. The proof imports the technique from (Kaufmann et al., 2016, Theorem 16 and 17). We
consider the Gaussian bandit p with variance o equal for all the arms and the expected reward z;(n)
as in the base instance of proof of Theorem 6.1 (see Figure 5). Let us define by convention A; = As.
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Let 2 be an algorithm, it is simple to show that there exists an arm = [K], such that:

_ T
T HSAY

where Hy = Zfil A;2. We consider two cases. Suppose that i = 1 and we construct the alternative
Gaussian bandit v’ with the same variance o and the expected rewards defined as follows:

ph(T) = min{; (1 —nlfﬁ) ,% —2A1},
WUT) = i(T), i [2,K]

For T sufficiently large as in Theorem 6.1, while in bandit v the optimal arm is 1, in bandit +’ the
optimal arm is 2. Instead, suppose that ¢ # 1 and we construct the alternative Gaussian bandit v/’
with the same variance o2 and the expected rewards defined as follows:

1
() = (3 +8) (1=,
pi(T) = mi(T), i e [K]\{i}.
For T sufficiently large as in Theorem 6.1, while in bandit v the optimal arm is 1, in bandit v’ the

optimal arm is 4. Let us denote with v;(¢) the distribution of the reward at time ¢ for arm i. By the
Bretagnolle-Huber’s inequality, we obtain:

max{er(v), er(v')} > iexp <—IVE [Z 1{I; = i} Dxr.(vi(t), Vﬁ(t))D
t=1
T S(N3,) — 1 (N;,))?
= EGXP <—IE ngl ]l{lt = E} (MZ(NL )2051(1\]17 )) ])
1 2A;)? 1 2T
> 7 exp <_I§[Ni(T)] ( 202) > P OxP (‘0.2]{2+>
1 2T
Z o (‘ o2Hy ) !

where we observed that for every n € [T, we have |;(n) — pi(n)| < 2A;. To conclude, we relate

H with Hy »(T). Using an argument analogous to that of the last part of the proof Theorem 6.1 it
is simple to observe that, for sufficiently large T', we have A; < 2A;(T'), from which we have:

K K K
Hf =Y A=A+ Y A=Y A7 >
=2

i=1

pM»—*

K
Z = *Hl 2(T).

D.5 Auxiliary Lemmas

Lemma D.10 (Hoeffding-Azuma’s inequality for weighted martingales). Let F; < --- < F,, be a
filtration and X1, . . . , Xy, be real random variables such that X, is Fy-measurable, E[X¢|Fi—1] = 0

(i.e., a martingale difference sequence), and E[exp(AX})|Fi—1] < exp (Azf’z

o?-subgaussian). Let oy, . . . , o, be non-negative real numbers. Then, for every k = 0 it holds that:

P K| <2exp <n> .
= 207 35 of

Z OttXt >
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Proof. For a complete demonstration of this statement, we refer to Lemma C.5 of Metelli et al.
(2022). O

Lemma D.12. Let § > 1, then it holds that:

Hy5(T)Y =0 = Hy 151y (T).

Proof. We prove the equivalent statement, being 3 > 1:
Hy1yp-1)(T)P ™0 < Hy 3 5(T).
Recalling that the function (-)(#~1)/8 is subadditive, being (3 — 1)/ < 1, we have:
(B-1)/p

1 1
Hyyon M = Y s < X s~ Has@).
i#i% (T) ATV i#i% (T) Ai(T)YP

O

E Theoretical Analysis of a baseline: RR-SW

In this appendix, we provide the theoretical analysis for the algorithm Round Robin Sliding
Window (RR-SW), as it represents the most intuitive baseline for this setting. First, we need to
formalize the algorithm, whose pseudo-code is provided in Algorithm 3.

Algorithm 3: RR-SW.

Input : Time budget 7', Number of arms K,
Window size

1 Initialize ¢ <« 1

2 Estimate N «— %

3 fori e [K] do

4 for [ € [N] do

5 Pull arm 7 and observe x¢

6

7

8

9

t—t+1
end
Update fi; (V)
end

e

Recommend I*(T') € arg maxeep fi(N)

Algorithm The algorithm takes as input the time budget 7" and the number of arms K. Then, it
computes the number of pulls N = - we need to perform for each arm. After having computed
the number of pulls, RR-SW plays all the arms IV times in a round-robin fashion. After the N
pulls, it estimates [i;(V) using the last ¢ N samples (i.e., the ones from (1 — )N to N). Finally, it
recommends I*(7T'), corresponding to the one which the highest estimated /i; (V).

Error probability bound Before presenting the error probability bound for RR-SW, we need to
introduce A (o) (T"), which represents the minimum suboptimality gap at a given time budget 7". It
is actually the gap between the optimal arm and the first sub-optimal one. Formally: Ay (T') :=

min; .+ (7) {A;(7)}. Given this quantity, the error probability for the RR-SW algorithm can be
bounded as follows.

Theorem E.1. Under Assumptions 2.1 and 2.2, considering a time budget 'T" satisfying:

1 1
T > 277 71 (1 — )77 K71 AT (T), (36)

the error probability of RR-SW is bounded by:

eT 9
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Some comments are in order. First, it is worth noting how, as expected, by increasing the number of
samples considered in the estimator, we reduce the error probability e () at the cost of a more strict
constraint on the time budget 7. This is due to the request that the arms must be already separated at
the beginning of the window we use to estimate the [i; (V). Second, the error probability scales as an
(inverse) function only of the smallest suboptimality gap Aoy (7T').

E.1 Proofs

Before demonstrating Theorem E.1, we need to introduce the following technical lemma.

Lemma E.2 (Lower Bound for the Time Budget). Under Assumptions 2.1 and 2.2, the RR-SW
algorithm is s.t. the minimum value for the horizon T ensuring that Vi € [K]:

T (1 - v - 1) < 220,

where N = L and e € (0,1) is:
7 ertt ~52r KPS AT
T>281 ¢cp1(1l—g) 51 K5 @) (T).

Proof. First of all, we recall that N = % is the number of times each arm has been pulled, considering
K arms by running a round-robin procedure until we reach a time budget 7. We consider the
pessimistic estimator described in Section 3. Considering such an estimator and the RR-SW algorithm,
which runs a round-robin procedure, what we get at the end of the time budget is a sliding-window
estimator for the value of u;(7"), which will include the lasts (1 — 5)% samples. In this lemma, we
want to find the minimum value of the time budget 1" for which, at the first samples we consider, the
real process of the arms are separated by at least # In this estimator, we consider samples in the

range of [(1 — €)%=, L], so we need to ensure, given Assumption 2.1, that:
Ay (T
71— v - 1)) < 22 (37)

Given that, for Assumptions 2.1 and 2.2, it holds:
Ty((L—e)(N—-1)) <Tv((1—¢)N)

-1 (0-ag)

T

-8
<Tc<(1s)K> . (38)

By introducing the term derived in Equation (38) into Equation (37) we obtain:

Te ((1 _5)17;)_[3 < A(%(T).

This implies that the minimum time budget I" which guarantees the initial condition of Equation (38)
is:

_1
T > 25T 71 (1 — ¢) 7T KA ALH(T),

where A 2)(T') is the minimum suboptimality gap (A o) (T') = min; ;1) {A:(T)}). O

Now, we can find the error probability e (RR-SW), which will hold for all the time budgets which
satisfy the condition of Lemma E.2.

Theorem E.1. Under Assumptions 2.1 and 2.2, considering a time budget 'T" satisfying:
1 1 B B __1
T>2771 ¢F1(l—g) 1 KA1 A(;*l (T), (36)
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the error probability of RR-SW is bounded by:

eT

Proof. The RR-SW algorithm makes an error in predicting the best arm when, at the end of the process
(at T total pulls), the optimal arm has a pessimistic estimator fi1 (/V) that is not the highest among the
arms (we consider w.l.o.g. that the best arm is the arm 1). Formally:

er(RR-SW) = P(Ji € [K] : ju(N) < ju(N))

< 2 P (11 (N) < f1i;(N)).
i€[K]

Let us focus on a single arm ¢, where we want to upper bound the probability that P (i1 (N) < [i;(IV)).
Let us focus on the term inside the probability:

fi(N) = i (N)
1;(N) — 11 (N) =0
i (T) — i (N) + V) — a(T) > A(T) 39)
pa(T) = B (N) = (N) + g (N) + ﬂ(N);/ﬁ/(_TJ?Ai(T) (40)

<T-v1(N-1) <—Ri(N)
—(N) + B (N) + a(N) = a(N) 2 A(T) =T-m(N =1) (4D
where we added +A;(T) to derive Equation (39), and added +Ji; (V) to derive Equation (40), we

used the results in Lemma D.8 and from the fact that the reward function is increasing. Considering a
time budget 7" satisfying Theorem E.2, and A;(T) = A(9)(T), Vi € [K], we have that:

Ai(T)
R

Equation (42) holds since we are considering a time budget 7" which satisfies a more restrictive
condition (we are considering a time budget at which this separation already holds for (1 — €) N, so
it also holds now).

Ty(N—-1) < (42)

Substituting Equation (42) into Equation (41) the above, we have:

. _ . _ A (T
—(N) + i (N) + i(N) = ma(N) = ; )
and the error probability becomes:
A (T
1 (RR-S) ZP( N) 4 )+ () - () > 240

For the previous argumentation, we apply the Azuma-Hoé&ffding’s inequality and the union bound:

_sN( (T))

7 (RR-SW) Z exp 5oz

eT

G Experimental Details

In this section, we provide all the details about the presented experiments.
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Table 2: Numerical values of the parameters characterizing the functions for the synthetically
generated setting.

The payoff functions characterizing the arms shown in Figure 2 belong to the family:

)

where ¢, ¥ € (0,1] and b € [0, +00). Note that, by construction, all the functions laying in F satisfy
the Assumptions 2.1 and 2.2. In particular, the largest value of 3 satisfying Assumption 2.2, for
the setting presented in Section 7, is § = 1.3. In Table 2, we report the value of the parameters
characterizing the function employed in the the synthetically generated setting presented in the main

paper.
G.1 Parameters Values for the Algorithms

This section provides a detailed view of the parameter values we employed in the presented experi-
ments. More specifically, the parameters, which may still depend on the time budget 7" and on the
number of arms X, are set as follows:

* UCB-E: for the exploration parameter a, we used the optimal value, i.e., the one that
minimizes the upper bound of the error probability, as prescribed in Audibert et al. (2010),
formally:

_ 25(T - K)
o 36H;
where H1 = Zi#i*(T) é’
* R-UCBE: we used the value prescribed by Corollary 4.2 where we set the value § = 1.3;
* ETC and Rest-Sure: weset p = 0.8 and U = 1 as suggested by Cella et al. (2021).

G.2 Running Time

The code used for the results provided in this section has been run on an Intel(R) I7 9750H @ 2.6GHz
CPU with 16 GB of LPDDR4 system memory. The operating system was MacOS 13.1, and the
experiments were run on Python 3.10. A run of R-UCBE over a time budget of T' = 3200 takes
~ 0.07 seconds (on average), while a run of R-SR takes ~ (.06 seconds (on average).

H Additional Experimental Results

In this section, we present additional results in terms of empirical error ey of R-UCBE, R-SR, and the
other baselines presented in Section 7.

H.1 Challenging scenario

Here we test the algorithms on a challenging scenario in which we consider K = 3 arms whose
increment changes abruptly. The setting is presented in Figure 6a. The results corresponding to
such a setting are presented in Figure 6b. In this case, the last time the optimal arm does not change
anymore is 7' = 400. Similarly to the synthetic setting presented in the main paper, we have two
different behaviors for time budgets 7" < 400 and T" > 400. For short time budgets, the algorithm
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Figure 6: Challenging scenario in which the arm reward increment rate changes abruptly.

providing the best performance is Rest-Sure, and the second best is R-UCBE. Conversely, for time
budgets T > 550 R-UCBE provides a correct suggestion in most of the cases providing an error
er(R-UCBE) < 0.01. Instead, Rest-Sure is not consistently providing reliable suggestions. This is
allegedly due to the fact that such an algorithm has been designed to work in less general settings
than the one we are tackling. Even in this case, the R-SR starts providing a small value for the
error probability after R-UCBE does, at T ~ 1000. However, it is still better behaving than the
other baseline algorithms. Note that Rest-Sure has a peculiar behavior. Indeed, it seems that even
for large values of the time budget, it does not consistently suggest the optimal arm (i.e., the error
probability does not go to zero). This is likely due to the nature of the parametric shape enforced by
the algorithm, which may result in unpredictable behaviors when it does not reflect the nature of the
real reward functions.

H.2 Sensitivity Analysis on the Noise Variance

In what follows, we report the analysis of the robustness of the analyzed algorithms as noise standard
deviation o changes in the collected samples. The setting we considered is the one described in
Section 7. The results are provided in Figure 7. Let us focus on the performances of the R-UCBE
algorithm. For small values of the standard deviation (o < 0.01), we have the same behavior in terms
of error probability, i.e., a progressive degradation of the performances for time budget 7' = 150.
Indeed, at this time budget, the expected rewards of 3 arms are close to each other, and determining
the optimal arm is a challenging problem. However, the performances are better or equal to all the
other algorithms even at this point. Conversely, for values of the standard deviation o > 0.05, the
performance of R-UCBE starts to degrade, with behavior for ¢ = 0.5 which is constant w.r.t. the
chosen time budget with a value of e7(R-UCBE) = 0.8. This suggests that such an algorithm suffers
in the case the stochasticity of the problem is significant. Let us focus on R-SR. This algorithm does
not change its performances w.r.t. changes in terms of o. Indeed, only for o = 0.5, we have that it
does not provide an error probability close to zero for time budget 7 > 1000. However, excluding
R-UCBE, we have that the R-SR algorithm is the best/close to the best performing algorithm. This is
also true in the case of o = 0.5, in which the R-UCBE fails in providing a reliable recommendation
for the optimal arm with a large probability.

H.3 Real-world Experiment on IMDB dataset

Description We validate our algorithms and the baselines on an AutoML task, namely an online
best model selection problem with a real-world dataset. We employ the IMDB dataset, made of
50, 000 reviews of movies (scores from 0 to 10). We preprocessed the data as done by Metelli et al.
(2022), and run the algorithms for time budgets T € T := {500, 1000, ..., 15000, 20000, 30000}.
A graphical representation of the reward (in this case, represented by the accuracy) of the different
models is presented in Figure 8. Since, in this case, we only had a single realization to estimate the
error probability e (2(), we report the success rate R(2l) instead, i.e., the ratio between the number
of times an algorithm provides a correct suggestion and the number of budget values we considered,

formally defined as R(2l) := ﬁ DiTeT 1{I* = i*} (the larger, the better).
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Figure 7: Empirical error probability for the synthetically generated setting, with different values of

the noise standard deviation o.
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T

H 500 1000 | 2000 3000 4000 5000 7000 10000 15000 20000 30000 H R(Y)

Optimal Arm || 5 5 | 2 2 2 2 2 2 2 2 2 |
R-UCBE (ours) || 6 5 2 5 2 2 2 2 2 2 2 | 911
R-SR(ours) | 5 5 5 5 5 5 5 5 2 2 2 | 511
z RR 5 5 5 5 5 5 5 5 5 5 5| 2/11
£ RR-SW 5 5 5 5 5 5 5 5 5 2 2 | 41
5 SR 5 5 5 5 5 5 5 5 5 5 2 | 311
= UCB-E 505 5 5 5 5 5 5 5 5 50| 2/m
Prob-1 1 5 2 5 5 5 5 1 5 6 2 | 3/m
ETC 505 5 5 5 5 5 5 5 5 2 | 3/m
Rest-Sure | 6 5 2 2 2 1 0 2 5 0 2| 6/11

Table 3: Optimal arm for different time budgets on the IMDB dataset (first row) and corresponding
recommendations provided by the algorithms (second to last row). In the last column, we compute
the corresponding success rate.

sss  Results The results are reported in Table 3. The algorithm with the largest success rate R(4l) is the
849 R-UCBE, while R-SR provides the third best success rate. Moreover, Rest-Sure, the only algorithm
850 providing a success rate larger than R-SR, has issues with large time budgets since for 7' > 5000 is
851 able to provide only 2 correct guesses of the optimal arm over 6 attempts. Conversely, our algorithms
gs2  progressively provide more and more correct guesses as the time budget 7" increases. The above
853 results on a real-world dataset corroborate the evidence presented above that the proposed algorithms
ss4 outperform state-of-the-art ones for the BAI problem in SRB.
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