
DATASET REQUIREMENTS SPECIFICATION

ComBack: Requirements Specification
Owner: Ming Zhong; Created: 2024/03/19; Last updated: 2024/05/21

Vision
ComBack is the first public dataset for compiler backend
development, it comprises 178 backends for mainstream
compilers and three tasks for common backend development
scenarios: Statement-Level Completion, Next-Statement
Suggestion, and Code Generation.
Motivation
Compiler backend development is a laborious and time-
consuming task, lacking effective automation methods in
the community. To mitigate this challenge, we propose
ComBack, which can be utilized to fine-tune models. This
approach aims to facilitate the automatic completion and gen-
eration of backend code using the fine-tuned model, thereby
reducing redundant development efforts and enhancing man-
ual efficiency.
Intended uses
ComBack is intended is for non-proit research and educa-
tional purposes.
Non-intended uses
ComBack is not intended is for commercial uses, because
all source data in ComBackare obtained from open-source
repositories.
Data mocks

//Inputs:
unsigned FPReg = getFPReg(STI);
...
adjustReg(MBB,LastFrameDestroy, DL, SPReg, FPReg, −StackSize+RVFI−>getVarArgsSaveSize()
//Ground Truth:
MachineInstr::FrameDestroy);

(a) Statement-Level Completion

//Inputs:
unsigned maxCallFrameSize = MFI −> getMaxCallFrameSize();
...
maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask;
//Ground Truth:
MFI −> setMaxCallFrameSize(maxCallFrameSize);

(b) Next-Statement Suggestion

//Inputs:
getPointerRegClass: Returns a TargetRegisterClass used for pointer values.
Target−Specific Value: Sparc, SP::I64RegsRegClass, SP::IntRegsRegClass.
//Ground Truth:
TargetRegisterClass *SparcRegisterInfo::getPointerRegClass(MachineFunction &MF ,unsigned Kind) {

return Subtarget.is64Bit() ? &SP::I64RegsRegClass : &SP::IntRegsRegClass;
}

(c) Code Generation

Figure 5: The Examples of 3 Tasks in ComBack .

statement serves as the ground truth, as shown in Fig. 5(b). We also retained the intermediate179

representation in code and filtered out samples with input lengths exceeding 512 tokens or ground truth180

lengths surpassing 128 tokens, resulting in 216,315 samples with 19.7M tokens. The train/valid/test181

sets adhere to an 80%:10%:10% split, with details on data and token quantities provided in Table 2.182

3.3.3 Code Generation183

For Code Generation, we only kept functions with natural language descriptions, discarding those184

without such descriptions. Each function’s description, along with its internal target-specific val-185

ues, was used as input (typically requiring extraction from ISA manuals), while the entire func-186

tion(replacing each intermediate representation with corresponding target-specific value) served as187

the ground truth, as seen in Fig. 5(c). During filtering, samples with input exceeding 256 tokens188

or ground truth surpassing 512 tokens were removed. This yielded 45,296 samples containing 6.4189

million tokens. The train/valid/test sets maintained an 80%:10%:10% split, with specific details190

provided in Table 2.191

4 Experiment192

This section addresses the following research questions: RQ.1 Can ComBack effectively improve193

the backend code completion and generation capabilities of representative programming language194

models?(Sec. 4.2) RQ.2 Can ComBack be used to fine-tune a model, enabling it to complete and195

generate code for multiple new targets, thereby achieving higher development efficiency compared196

to conventional methods?(Sec. 4.3) RQ.3 When completing and generating code for multiple new197

targets, does the accuracy of the fine-tuned model surpass that of existing mainstream large language198

models, such as ChatGPT-3.5-turbo [44] and Code-LLaMA [50]?(Sec. 4.4) RQ.4 Is it possible to199

utilize the data of a specific target type (e.g., CPU) to complete and generate backend code for other200

target types (e.g., GPU)?(Sec. 4.5) RQ.5 Does ComBack support iterative expansion, and can models201

fine-tuned with it efficiently complete and generate backend code for new customized target platforms202

through iterative expansion?(Sec. 4.6)203

6

Creation requirements

• GitHub. Crawling from open-sourced repositories
related to "LLVM Backend" and "GCC Backend".

• LLVM Official Released Website. Downloading
LLVM released version 2.0.1 - 17.0.1.

• GCC Official Released Website. Downloading
GCC released version 3.0 - 13.0.

Instance requirements
For completion tasks:

• Coverage. The proportion of tokens in the instance
relative to the entire function is over 30%.

• Ground Truth. Assuming each sample contains
n statements, for Statement-Level Completion,
the first n-1 statements along with the preced-
ing 50%-90% of tokens from the nth statement
as input. The subsequent 10%-50% of tokens
from the nth statement served as ground truth.
For Next-Statement Suggestion, the preceding n-1
statements serve as input, while the nth statement
serves as the ground truth.

For Code Generation:
• Function Description. ComBack only contains

functions with natural language descriptions, dis-
carding those without such descriptions.

Distributional requirements

• Train/validation/Test. 80%/10%/10% of the entire
dataset.

Data processing requirements

• Length. For completion tasks, Instance with in-
put lengths exceeding 512 tokens or output lengths
exceeding 128 tokens are filtered. For Code Gener-
ation, input exceeding 256 tokens or ground truth
surpassing 512 tokens were removed.

Performance requirements

• Accuracy. Improvement of accuracy across three
tasks for fine-tuned models with ComBack.

Maintenance requirements
The data should be regularly updated with new released
version of LLVM and GCC, and other open-sourced LLVM
and GCC backends repositories in GitHub.
Sharing requirements
ComBackis avaliable at https://huggingface.co/
datasets/docz-ict/ComBack, it can be shared under CC-
BY-4.0 license.
Caveats and risks
No risks.
Data ethics
No ethical implications.

Sign-off grid
Name Role Date
Ming Zhong Owner 2024/04/29

Changelog
Editor Comments Date
Ming Zhong Fix Errors 2024/05/21

https://huggingface.co/datasets/docz-ict/ComBack
https://huggingface.co/datasets/docz-ict/ComBack


DATASET DESIGN DOCUMENT

ComBack: Design Document

Owner: Ming Zhong; Created: 2024/03/19; Last updated: 2024/05/21

Overview
Dataset Name: ComBack.
Primary Data Type(s): Code,text.
Data Content: Code.
Funding: None

Objective
ComBack is the first public dataset for compiler back-
end development, which aims to enhance programmers’
efficiency by fine-tuning language models based on it.

Version
Initial Version: V1.0.

Background
Compiler backend development is a laborious and time-
consuming task, lacking effective automation methods
in the community.To mitigate this challenge, we propose
ComBack, which can be utilized to fine-tune models and
facilitate the automatic completion and generation of
backend code.

Sources
Source data contains 21 GCC repositories
and 296 LLVM repositories in GitHub with
"LLVM,GCC,Backend" as keywords. Addition-
ally, source data also comprises source code of GCC
versions 3.0 to 13.0 and LLVM versions 2.0.1 to 17.0.1.

Annotations
Function descriptions and target-specific values are fea-
tures in ComBack, they will be filtered in code comple-
tion tasks and serve as input for Code Generation.

Data Quality
Quality are measured by reliability and feature repre-
sentation. Labels in ComBack are function descriptions
and target-specific values, the first one is crawled or ex-
tracted from websites and source code without manual
intervention. The latter one is firstly labeled by a script
with rules, then double-checked by manual efforts.

Characteristics
Expected Characteristics: Statement-Level Comple-
tion contains 161,124 data samples containing 14.2M
token. Next-Statement Suggestion contains 216,315
samples with 19.7M tokens. Code Generation con-
tains 45,296 samples with 6.4M tokens. All datasets
are divided into train/validation/test sets with an ratio of
80%:10%:10%.

Privacy Handling
All source data are collected from open-source reposito-
ries, thus there is no privacy issue.

Maintenance
The owner and his team will be responsible for main-
tain the dataset. They will regularly extend the dataset
with backends in newly released GCC, LLVM and open-
sourced projects. As the dataset has been open-sourced
at Huggingface, it will be easy to recover from former
version when issues arise.

Sharing
ComBackis avaliable at https://huggingface.co/
datasets/docz-ict/ComBack, it can be shared under
CC-BY-4.0 license.

Caveats
No caveats.

Data Ethics
No ethical considerations.

Work estimates
It takes about a week to collect data and a month for data
pre-processing and labeling data.

Author Statement
We bear all responsibility in case of violation of rights.

Related Datasets: TenSet, Circuit Net 2.0
Dataset Discovery Process: Doing search on mainstream websites and databases, including arxiv, GitHub, Huggingface, etc.
Survey: TenSet is a tensor program performance dataset. Circuit Net 2.0 is a dataset for chip design environment.

ComBack TenSet Circuit Net 2.0
Documentation and DOI https://huggingface.co/datasets/docz-

ict/ComBack
https://github.com/tlc-
pack/tenset https://circuitnet.github.io/

Motivation and Intended use Backend Development Performance Prediction Chip Design
Size, Sampling and Filtering 422,735 samples for 3 tasks. 13,848 tasks. 10,791 samples.
Annotation and Labels Target-Specific Values Network and Subgraph Congestion,DRV, etc.

https://huggingface.co/datasets/docz-ict/ComBack
https://huggingface.co/datasets/docz-ict/ComBack

	Introduction
	Background: Conventional Backend Development
	ComBack: A Dataset for Compiler Backend Development
	Overview of ComBack
	Data Collection and Pre-processing
	Tasks in ComBack
	Statement-Level Completion
	Next-Statement Suggestion
	Code Generation


	Experiment
	Experimental Setup
	Accuracy Improvement across Various Models
	Efficiency Enhancement for New Targets
	Targets of Existing Types
	Targets of New Types

	Iterative Expansion Ability

	Related Work
	Discussion
	Appendix: Target List in ComBack.
	Appendix: Target abbreviation occurred during pre-processing.
	Appendix: Hyperparameters and Input/Output Sequence Length Settings.
	Appendix: Data Statistics about the Number and Token of Three Tasks.
	Appendix : Fork-Flow Detailed Experimental Data.
	Appendix: Prompt Example of Input for ChatGPT and Code-LLaMA.
	Appendix : License of Assets.
	Appendix: Heatmap Analysis.



