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ABSTRACT

Recent studies have shown that code language models at scale demonstrate sig-
nificant performance gains on downstream tasks, i.e., code generation. However,
most of the existing works on code representation learning train models at a hun-
dred million parameter scale using very limited pretraining corpora. In this work,
we fuel code representation learning with a vast amount of code data via a two-
stage pretraining scheme. We first train the encoders via a mix that leverages
both randomness in masking language modeling and implicit structure and se-
mantic aspects of programming language. We then enhance the representations
via contrastive learning with hard negative and hard positive constructed in an
unsupervised manner. We establish an off-the-shelf encoder model that persis-
tently outperforms the existing models on a wide variety of downstream tasks. To
comprehend the factors contributing to successful code representation learning,
we conduct detailed ablations and share our findings on (i) a customized and ef-
fective token-level denoising scheme for source code; (ii) the importance of hard
negatives and hard positives; (iii) how the proposed bimodal contrastive learning
boost the cross-lingual semantic search performance; and (iv) how the pretraining
schemes decide the downstream task performance scales with the model size. 1

1 INTRODUCTION

Large language models (LLMs) pretrained on a massive amount of source code have reshaped the
landscape of code generation (Chen et al., 2021; Chowdhery et al., 2022; Li et al., 2023, inter alia).
As an example, the recent release of a 6TB dataset (Kocetkov et al., 2022) comprising source code
under permissive licenses play pivotal roles in promoting the advancement of code language models
in present times. Nonetheless, these large corpora are not fully utilized to develop general-purpose
Programming Language (PL) embedding models. To date, most PL embedding models (Feng et al.,
2020a; Guo et al., 2021; 2022, inter alia) have no more than 125M parameters and are primarily
trained on a few millions of training examples, e.g., CodeSearchNet (Husain et al., 2019).

Despite the undeniable significance of large-scale data, it’s imperative to acknowledge the vital role
of pretraining objectives. The prevailing approach for pretraining a bidirectional Transformer en-
coder to learn representations is through the optimization of a masked language modeling (MLM)
objective, as proposed by Devlin et al. (2019b). The masking scheme in the standard MLM objective
follows an 80-10-10 practice.2 However, we have noticed that such a masking scheme leads to the
development of suboptimal code embedding models. Since code snippets contain both natural lan-
guage (NL) statements (i.e., docstrings, comments) and pure code, hence replacing masked tokens
with a random token following the 80-10-10 convention could result in replacing an NL token with
a PL token, and vice versa (see statistics in Appendix A.3). We speculate such co-occurrence of PL
and NL together with the syntax nature of source code make it easier to disrupt both the semantics
and structure of the masked code, resulting in sub-optimal learning of the language model.

∗Corresponding authors with equal Contribution.
1Code and models can be found at https://code-representation-learning.github.io/.
2Under this scheme, 80% of the randomly selected tokens for prediction are replaced with the [MASK]

token, 10% are substituted with random tokens, and the remaining tokens remain unchanged.
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Figure 1: An overview of the key ingredients of CODESAGE for code representation learning.

While MLM pretraining yields contextual token representations, most downstream discriminative
tasks primarily function at the sequence level. When the objective is to enhance the representation
discrimination power for immediate application in sequence-level tasks, contrastive learning (CL)
emerges as the go-to approach. Existing works have employed unimodal CL (using Code-Code
pairs) (Guo et al., 2022; Jain et al., 2021) or bimodal CL (using Text-Code pairs) (Li et al., 2022) for
representation learning. In unimodal CL, a popular choice is to utilize dropout augmentation Gao
et al. (2021) to construct positive code pairs. However, we found that dropout augmentation suffers
from supporting long training process, also reported by Zhou et al. (2022). In contrast, bimodal CL
becomes an appealing choice, primarily because of the availability of naturally occurring pairs. Prior
studies utilize functions and their corresponding docstrings to establish the bimodal training pairs.
Nonetheless, our preliminary experiments indicate that substantial overlap between docstrings and
function signatures simplifies the contrastive learning process (see statistics in Appendix A.6).

To this end, we present CODESAGE, a bidirectional encoder representation model for source code.
We pretrain CODESAGE using a two-stage training scheme with a large amount of customized pre-
training data (Kocetkov et al., 2022). We depict the key ingredients of CODESAGE in Figure 1. We
first train the bidirectional encoders via a mix of two objectives complementing each other: identifier
deobfuscation (DOBF) and MLM without the 80-10-10 practice. Similar to a human programmer,
finding meaningful names for obfuscated identifiers necessitates the model to acquire a profound
comprehension of code semantics and structure. Meanwhile, as a more general objective, MLM
covers other facets beyond identifiers of code – this is important for enriching the training signals,
especially for data examples with non-informative identifier names. In the second stage, we leverage
the (text, code) pairs for bimodal contrastive learning (CL). In contrast to existing approaches that
primarily rely on naturally occurring text and code pairs, we propose a strategy to reduce the likeli-
hood of the model learning shortcuts. Our approach involves exclusively utilizing the function body
while disregarding the signature and return statements. We additionally harness CL based on hard
negatives identified within the embedding space. We show that such a hard positive and negative
construction strategy is simple, yet essential for effective bimodal contrastive learning.

We train three bidirectional encoder representation models, namely, CODESAGE-SMALL (130M),
CODESAGE-BASE (356M), and CODESAGE-LARGE (1.3B). We assess the effectiveness of our ap-
proach over a wide variety of discriminative tasks, where CODESAGE substantially outperforms the
previous state-of-the-art models with similar model sizes on most tasks. To comprehend the factors
contributing to successful code representation learning, we meticulously analyze the key compo-
nents of our framework and present our findings for future research endeavors.

2 RELATED WORKS

Embedding for Programming Languages Recently, there has been a surge of interest in learn-
ing general-purpose representations to support a wide variety of downstream tasks in programming
languages. Feng et al. (2020a); Kanade et al. (2020); Li et al. (2023) take the inspiration of the suc-
cess in text and optimize the Masking Language Modeling (MLM) objective on the linearized code
data. Similar to text, they additionally optimize with replaced token detection objective (Clark et al.,
2020) or the next sentence prediction objective (Devlin et al., 2019b) for source code. Another line
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of work leverages the structure aspect of code to provide additional training signals. Among them,
Guo et al. (2021) leverages the data flow to encode the relation of “where-the-value-comes-from”
between variables. Wang et al. (2021a); Jiang et al. (2021) inject syntactical structure from the ab-
stract syntax tree (AST) through variant auxiliary objectives. A more recent work (Guo et al., 2022)
flattens the AST structure into a sequence directly and encodes the syntax information via language
modeling objectives. Wang et al. (2021b); anne Lachaux et al. (2021) train a sequence-to-sequence
language model to reconstruct the original code from an identifier-obfuscated code where class,
function, and variable names are replaced with special tokens. Deobfuscation implicitly encodes
data flow and AST without involving auxiliary objectives or complex input with deep hierarchy,
since the model needs to understand the dependency between variables as well as code structure so
as to correctly predict the names for identifiers.

Contrastive Learning Ever since the early success attained by the Siamese (Hadsell et al., 2006)
network, contrastive learning has been widely adopted in representation learning using deep neural
networks. Song et al. (2016) extends the vanilla triplet loss by contrasting each positive example
against all in-batch negatives, which has greatly improved the learning efficiency and is further
popularized by SimCLR (Chen et al., 2020). However, different from the compute version domain
where effective positives can be obtained by stochastic transformations of images in the input space,
effective data augmentation has long been a challenge in NLP due to the discrete nature of the input.
Such challenge is further validated in Gao et al. (2021) which shows that dropout (Srivastava et al.,
2014) as the minimum data augmentation is often more effective than those obtained by operating
in the discrete input space, e.g., word deletion and replacement.

Alternatively, various methods have been proposed to leverage naturally occurring pairs as posi-
tives. Zhou et al. (2022) treat the consecutive utterances from dialogue data as positives, while
Neelakantan et al. (2022) consider the neighboring texts mined from the internet. A very recent
work (Wang et al., 2022) leverages the question and answer or comment pairs from StackExchange
and Reddit. In a similar vein for programming language, Guo et al. (2022); Wang et al. (2021a);
Neelakantan et al. (2022) leverage (text, code) pairs with text mined from the docstrings. We take a
step further by focusing on hard positive and hard negative construction, which is a key ingredient
for representation learning and allows us to attain off-the-shelf embedding models.

3 METHOD

3.1 MASK LANGUAGE MODELING AND DEOBFUSCATION PRE-TRAINING

Given an input sequence with N tokens, i.e., x = [x1,x2, . . . ,xN , ], the mask language modeling
objective (Devlin et al., 2019b) is formed as follows

LMLM(x) = −
∑
i∈M

logP
(
xi|xM) (1)

Here M denotes the mask applied on the given input x. Equation (1) is essentially a denoising
objective with the task to predict the original tokens given the masked sequence xM.

Deobfuscation We first consider identifier deobfuscation (DOBF) which pretrains the model to
predict the masked-out names of the identifiers. Similar to human programmers, in order to deob-
fuscate the code, the model needs to understand both the semantics and structure of the code. Also
the NL tokens, i.e., docstring and comment, are excluded from code obfuscation. When the model
is trained to predict the identifier names, it can benefit from looking at and correlating with the NL
tokens in comments or docstrings as those often carry rich semantics of code. Consequently, the
model is encouraged to learn improved shared representations between PL and NL, as indicated by
the better NL2Code search performance attained by DOBF than random masking in Table 3.

DOBF is initially proposed for Seq2Seq models (anne Lachaux et al., 2021; Wang et al., 2021b).
To the best of our knowledge, we are the first to apply it to the encoder-only models. The main
challenge to adopting DOBF for encoder-only models is to construct the one-on-one mapping be-
tween mask tokens (inputs to the LM) and identifier tokens (output labels) due to the differences in
code tokenization (i.e., using tree-sitter) and model-specific tokenization (i.e., using a sentencepiece
tokenizer). We briefly discuss the challenge in Appendix A.5.
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Random Masking Additionally, we also involve the random token masking strategy in BERT
Devlin et al. (2019b) for two main reasons. First, to promote better representations by promoting
the model to learn beyond identifiers. Taking Python as an example, there are approximately 30% of
the code tokens associated with identifiers, hence better representations can be attained by encoding
the information carried by the remaining 70% of tokens. Second, not every programmer follows the
naming conventions, e.g., meaningless variable names like v1, v2, v3 can be used. Predicting such
tokens is unnecessarily hard and provides a very limited training signal.

We do not follow the 80-10-10 masking convention proposed in the standard MLM for text (Devlin
et al., 2019b). Since source codes are composed of NL and PL tokens (i.e., identifiers, keywords,
operators), random replacement of tokens could hurt both the structure and meaning of code and
leads to deterioration in representation learning.3 We show in Section 4.2.1 that the 80-10-10 con-
vention consistently results in worse performance on downstream tasks. In this paper, we also set the
random masking rate to 15% which we find is optimal through our ablation study in Appendix A.4.
For each training example, we randomly pick DOBF or random masking with equal probability.

3.2 BIMODAL CONTRASTIVE LEARNING WITH HARD NEGATIVE AND HARD POSITIVE

Let xi,xi+ denote a positive input pair and hi,hi+ be the associated representations output by the
last hidden layer of the encoder. Let B = {h1,h1+ ,h2,h2+ , . . . ,hN ,hN+} denote the representa-
tions of a randomly sampled batch with N pairs, we then minimize the following symmetric loss,

LCL (hi,hi+) = −

(
log

exp(hi ⋄ hi+/τ)

exp(hi ⋄ hi+/τ) +
∑

k∈B\(i,i+) γ
k
i · exp(hi ⋄ hk/τ)

+ log
exp(hi+ ⋄ hi/τ)

exp(hi+ ⋄ hi/τ) +
∑

k∈B\(i,i+) γ
k
i+ · exp(hi+ ⋄ hk/τ)

)
.

(2)

Here, τ is the temperature hyper-parameter which we set as 0.05 in this work. ⋄ denotes cosine
similarity between two representation vectors. γk

i is the weight parameter which we will detail next.

Hard Negative Without supervision, it is tricky to identify hard negatives. We resort to a distance-
based unsupervised approximation of hard negatives proposed in Zhang et al. (2021). For a given
anchor hi, hard negatives refer to those semantically different examples but are mapped close to hi

in the representation space. Thereby, the closer a negative is to the anchor hi in the representation
space, the larger γ value is desired, which can be characterized as follows

γk
i =

exp(hi ⋄ hk/τ)

exp(hi ⋄ hk/τ) +
∑

j∈B\(i,i+,k) exp(hi ⋄ hj/τ)
. (3)

That is, γk
i approximates the relative importance of hk to the anchor hi, among all 2N -2 in-batch

negatives. Despite the semantic equivalence between training examples except the given positive
pairs are not available in our case, the above approximation of hard negatives is still valid as each
training batch is randomly sampled with a much smaller size compared to that of the whole training
data. Hence the presence of false negatives within each batch is negligible when the training data
is large and diverse enough. We set the batch size to 8K in this paper, under which we observe
monotonic increasing performance reported on the downstream tasks.

Hard Positive We consider naturally occurring (text, function) as positive pairs, where the text is
mined from the function docstring (Husain et al., 2019). The extracted text often summarizes the
high-level semantics of the code. Therefore, contrastive learning with such bimodal data largely
boosts the NL2Code semantic search performance in Section 4.2.2. Further, the extracted text of
semantically equivalent code, no matter from the same or different programming languages, is often
less diverse compared to the code themselves. Thereby, semantically similar codes can be implicitly
grouped together through the same or very similar summary text. Our conjecture is validated by the
large performance gain on both in-language and cross-language Code2Code search in Section 4.2.2.

3For example, masking a couple of tokens randomly from tokenizer.convert ids to tokens
can yield tokenizer.convert ids to<mask><mask> but random token replacement can result in
tokenizer.convert jet toboattokens. Consequently, the code semantics are largely altered and
representation learning via the self-attention mechanism can thereby deteriorate. See Appendix A.3 for more.

4



Published as a conference paper at ICLR 2024

It is also easy to see that function names and input variable names often share a significant similarity,
especially in terms of the lexical overlap with the summary text (see Appendix A.6 for statistics).
We thereby form hard positives by removing both function signature and return statements.4 We
assess the effectiveness of such hard positive construction strategy in Section 4.2.2.

4 EXPERIMENTS

Training Data and Model Architecture We train our models on The Stack dataset (Kocetkov
et al., 2022) over nine languages - Python, Java, Javascript, Typescript, C#, C, Ruby, Go, and PHP.
As aforementioned, we train three embedding models with size 130M (CODESAGE-SMALL), 356M
(CODESAGE-BASE), and 1.3B (CODESAGE-LARGE) parameters. Please refer to Appendix A for
training details at each stage and model hyper-parameters.

Evaluation Protocol We assess the performance of our models over two main categories of down-
stream tasks, semantic search and classification. Our goal is to perform an evaluation of the encoder
models for those practical scenarios where supervised fine-tuning data collection is costly. We
thereby focus on zero-shot semantic search and only finetuning a linear classification layer on top of
the frozen encoders for classification tasks (Peters et al., 2019; Chen et al., 2020; Wang et al., 2022).
We report the fully finetuned classification results and finetuning hyper-parameters in Appendix B.3.

Baselines We compare our models against four general-purpose code representation learning en-
coders and OpenAI-Embedding-Ada-002 (For convenience, we refer to it as OpenAI-Ada-002.
For comparative analysis with OpenAI-CPT-Code-001 and OpenAI-Text-Embedding-3, please see
Tables 8 & 9 in Appendix, where OpenAI-Ada-002 attains significantly better or on par perfor-
mance against the previous and latest models, respectively). Both CodeBERT (Feng et al., 2020b)
and GraphCodeBERT (Guo et al., 2021) are trained with standard MLM on six programming
languages using CodeSearchNet (Husain et al., 2019)5, while the replaced token detection objective
(Clark et al., 2020) and data flow prediction objectives are adopted as auxiliary objectives, respec-
tively. UnixCoder (Guo et al., 2022) is trained via three language modeling and two contrastive
learning objectives using the same dataset. More recently, StarEncoder (Li et al., 2023) is trained
with MLM and next sentence prediction (Devlin et al., 2019a) on 86 programming languages from
The Stack (Kocetkov et al., 2022). We provide more details for each baseline model in Table 6 in
Appendix. We also consider decoder-only baselines in Table 8 & 9 in Appendix B.

4.1 COMPARISON WITH THE BASELINES

We first compare CODESAGE against the aforementioned baselines on the following tasks.

Code2Code semantic search is the task of retrieving relevant code fragments given a code fragment
as a query. In this work, we extend the Code2Code search evaluation set (Guo et al., 2022) created
from CodeNet to six more languages - C, C#, Javascript, Typescript, GO, and PHP, for which we
summarize the details in Appendix B.2. We report the in-language where query and candidate codes
are in the same language, code2code search results in Table 1.

NL2Code semantic search is the task of using natural language as the query to retrieve the relevant
code. We consider three benchmarks in Table 2, CoSQA (Huang et al., 2021), AdvTest (Lu et al.,
2021), and CSN (Guo et al., 2021) . Detailed data statistics can be found in Appendix B.2.

Classification We consider three source code classification tasks. Code Defect detection is a bench-
mark in C from CodeXGLUE (Lu et al., 2021), with a binary label indicating whether a code is
insecure and may attack software systems. Code Complexity prediction (Jeon et al., 2023) is a Java
benchmark that requires predicting the algorithmic complexity among 7 labels. The RunTime error
prediction (Bieber et al., 2023) benchmark has 29 possible labels with highly imbalanced distribu-
tion (see Table 10 in Appendix). For a more robust evaluation, we balance the dataset by aligning
its total training examples of the “no error” class with the cumulative count of the other 28 classes.

Overall Performance Summary On Code2Code search, Table 1 shows that CODESAGE-SMALL
(130M) persistently outperforms all the baseline models with known model size (i.e., exclude

4Removal of function signature reduces the chance to learn shortcuts due to its similarity with the summary
text. We remove the return statements to make a code look like a generic code snippet.

5The dataset includes 2.3M functions paired with natural language documents.
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Model Python Java JS TS C# C Ruby PHP GO Avg
CodeBERT 14.40 7.62 5.47 6.05 3.66 5.53 13.55 10.28 6.27 8.09

GraphCodeBERT 19.23 10.78 7.38 8.65 5.54 8.48 19.69 15.67 9.65 11.68
StarEncoder 19.17 11.65 9.0 10.52 5.69 9.72 21.57 16.98 10.81 12.79
UnixCoder 30.77 16.45 21.32 21.95 6.19 15.62 32.33 31.93 13.94 21.17

OpenAI-Ada-002 35.91 25.13 19.01 21.86 10.17 29.15 40.85 40.47 23.43 27.33
CODESAGE-SMALL 36.31 23.97 26.60 29.90 11.84 22.84 29.06 34.64 19.56 26.08

CODESAGE-BASE 47.52 22.84 28.70 31.95 13.37 30.99 44.86 51.13 25.15 32.95
CODESAGE-LARGE 46.70 33.13 37.16 41.18 16.81 32.89 54.12 52.13 32.48 38.51

Table 1: MAP score (%) of the zero-shot code search task. The language names mentioned in the
top row indicate the languages queries and candidates are written in.

NL2Code Classification
Model CoSQA AdvTest CSN Defect Complexity RunTime

CodeBERT 0.24 0.06 0.10 51.820.38 35.601.96 6.20.02

GraphCodeBERT 16.20 5.58 11.26 55.260.28 55.541.98 10.630.10

StarEncoder 10.78 0.93 2.69 53.20.11 50.633.33 8.910.05

UnixCoder 42.11 27.32 46.39 60.280.04 76.451.10 20.870.43

OpenAI-Ada-002 44.23 38.08 71.24 62.560.11 79.820.50 20.840.36

CODESAGE-SMALL 49.92 41.28 63.86 57.520.21 79.760.50 25.051.04

CODESAGE-BASE 48.50 49.08 68.72 57.740.09 85.321.72 24.700.40

CODESAGE-LARGE 47.53 52.67 71.24 58.950.13 90.322.10 24.420.28

Table 2: Left. MRR score (%) of NL2Code search in zero-shot setting. For CSN, we report
the average performance over six languages (see Table 9 in Appendix for the detailed results).
Right. F1 (macro) score of the source code classification tasks attained by only finetuning
the classification head. We finetuned each model using three seeds and reported the mean and
standard deviation (in subscript). The fully finetuned results can be found in Appendix B.3.

OpenAI-Ada-002) on every language, with 23.19% relative (4.91% absolute) improvement on the
average performance when comparing with UnixCoder. With the increased model size, CODESAGE-
BASE and CODESAGE-LARGE outperform the best baseline model, i.e., OpenAI-Ada-002 (model
size unknown), with 20.56% relative (5.62% absolute) and 40.91% relative (11.18% absolute) im-
provement on the average performance, respectively.

As shown in Table 2, CODESAGE-SMALL achieves 18.54% to 51.1% relative (7.81% to 13.96%
absolute) improvement over UnixCoder on NL2Code search. Compared to OpenAI-Ada-002,
CODESAGE-SMALL attains a 12.86% relative (5.69% absolute) improvement on CosQA and an
8.4% relative (3.12% absolute) improvement on AdvTest. On the other hand, OpenAI-Ada-002 at-
tains the same average performance as CODESAGE-LARGE on CSN. However, we want to highlight
the performance gain attained by CODESAGE on AdvTest which contains normalized Python func-
tions (from CSN) with function and variable names replaced by dummy variables (see Figure 9 in
Appendix). AdvTest constructed in this way better assesses the generalization performance as the
model needs to understand what the obfuscated code does so as to identify the correct target code
for a given natural language query.

Compared to both UnixCoder and OpenAI-Ada-002, CODESAGE persistently performs better on
code complexity and runtime error prediction with large margins in Table 2. We also notice that
CODESAGE underperforms both models on code defect detection, whilst attaining better perfor-
mance when we finetuning the full models in Table 12 in Appendix.

4.2 ABLATION STUDY

4.2.1 MASKING STRATEGY

80-10-10 vs. Full Mask Given an input sequence, standard MLM (Devlin et al., 2019b) first ran-
domly samples a subset of its tokens, of which 80% are replaced by a special token “[MASK]”, 10%
are left unchanged, and the other 10% are replaced by random tokens from the vocabulary. We revisit
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(a) Sample code (left) and its corrupted version following the 80-10-10 rule (right).

0

10

20

30

In
-L

an
gu

ag
e 

Co
de

2C
od

e 
M

AP

0

5

10

15

20

Cr
os

s-
La

ng
ua

ge
 C

od
e2

Co
de

 M
AP 80-10-10

Full Mask

0

5

10

15

20

Av
g 

NL
2C

od
e 

M
RR

CodeSage-SMALL
CodeSage-BASE
CodeSage-LARGE

10

30

50

Cl
as

sif
ica

tio
n 

F1
 (M

ac
ro

)

(b) With a fixed masking rate of 15%, we assess the effectiveness of applying “Full Mask”, i.e., replacing the
sampled tokens with the [MASK] token only, and the 80-10-10 corruption strategy on downstream tasks.

Figure 2: 80-10-10 vs. “Full Mask”.

CODESAGE-SMALL CODESAGE-BASE CODESAGE-LARGE

Model R D S P R D S P R D S P
NL2Code 6.6 19.9 22.7 25.8 12.2 22.5 22.0 23.3 19.4 23.3 29.4 30.5

Code2Code (In) 16.8 14.6 17.9 19.7 28.2 23.7 25.3 29.2 30.7 28.2 30.2 33.9
Code2Code (Cross) 5.7 6.7 8.8 9.6 17.2 14.1 14.6 19.7 20.5 18.0 19.0 24.6

Classification 51.2 53.9 53.5 53.4 53.8 55.6 54.8 55.4 52.0 55.6 57.2 56.5

Table 3: We explore two options to leverage DOBF (D) and random masking (R) to complement
each other. (1) Sequential (S): training the model with random masking first, then DOBF. (2) Parallel
(P): randomly picking either DOBF or random masking for a training example – our strategy.

the effectiveness of such convention, originally proposed for text, for code in Figure 2. Surprisingly,
compared to simply replacing all selected tokens with the [MASK] token, i.e., “Full Mask”, the
80-10-10 masking scheme causes a large performance drop across different downstream tasks, as
shown in Figure 2b. A similar finding has been reported in Gao et al. (2022) for text. However, the
degradation is more severe for source code. As Figure 2a indicates, when replacing with random
tokens, both the semantics and structure of the masked code can be largely disrupted, which together
with the presence of “[MASK]” tokens makes the learning too challenging (see Appendix A.3 for
more discussions). We hypothesize that excessive corruption may also account for the modest en-
hancement observed in downstream tasks when scaling up the size of a model trained with 80-10-10
in Figure 2b. It would be intriguing to explore whether this scaling trend would experience a sudden
expansion with a further increase in model size and training data, potentially identifying a phase
transition point, provided that the computational resources permit such an investigation.

Deobfuscation & Random Masking Complement Each Other We investigate DOBF and the
random masking based MLM with “Full Mask” in Figure 3. DOBF persistently outperforms ran-
dom masking on classification, which validates our motivation that the model is promoted to better
capture (understand) the code structure so as to predict the identifier names. DOBF also performs
better on NL2Code search than random masking. A potential reason could be natural language in
comments and docstrings often carry rich semantics of code while both being excluded from mask-
ing in DOBF; hence when training the model to predict the identifier names, it will look at and
correlate with the natural language and lead to better contextualized representations between natural
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language and programming language. On the other hand, the random masking strategy (with “Full
Mask”) outperforms DOBF on both in-language and cross-language Code2Code search tasks. As
examined in Appendix A.3, a large portion of tokens in code snippets are not identifiers. Therefore,
the random masking strategy allows the model to learn beyond identifiers and enrich the semantics
encoded in representations. In summary, Table 3 validates our strategy of jointly optimizing DOBF
and random masking so as to leverage their strengths to complement each other.
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(b) Unimodal vs. bimodal contrastive learning.

Figure 3: (a) Hard negative and hard positive can independently boost performance over the baseline
where neither is applied. Further improvement is attained when leveraging them simultaneously. (b)
Unimodal contrastive learning with positives obtained via dropout requires longer training and hence
cannot leverage vast amounts of training data to further enhance the representations.

4.2.2 ON EFFECTIVENESS OF CONTRASTIVE LEARNING

Hard Positive and Hard Negative Effectively Boost Performance We first demonstrate the ef-
fectiveness of the hard positive and hard negative construction strategy in Figure 3a. As it shows,
both hard positive and hard negative can independently improve the performance by a large margin,
while the combination of them persistently yields better performance across different model sizes.
We also observe that a large model size (i.e., CODESAGE-BASE) benefits more from the proposed
hard negative construction strategy. This observation is unsurprising since larger models possess
more capacity to leverage more challenging and effective learning objectives.

Unimodal vs. Bimodal Contrastive Learning In Figure 3b, we compare our bimodal contrastive
learning approach against the Dropout-based unimodal contrastive learning where a positive pair is
obtained by leveraging different dropout masks of the transformer in two forwarding passes of the
same sequence (Gao et al., 2021; Guo et al., 2022). For a fair comparison, hard negative optimization
is applied to both approaches. We can see that the dropout-based unimodal contrastive learning
suffers from supporting a long training process and hence cannot effectively utilize a large amount
of pretraining data to further improve the representations. A similar finding has been reported by
(Zhou et al., 2022). Indeed, both Gao et al. (2021) nor Guo et al. (2022) – demonstrate dropout
as effective augmentation for text and code respectively, only use a few million training examples
that can be covered by the amount of training data in the first 500 iterations (with batch size 8K) in
Figure 3b where the dropout-based contrastive learning shows improvement over the baseline.

Larger Improvement on Cross-Lingual Search To gain a deeper understanding of the perfor-
mance improvement achieved through contrastive learning during Stage II of pretraining, we delve
into the analysis of semantic search performance. As Figure 4a shows, contrastive learning persis-
tently boosts the search performance with comparatively larger improvement on the cross-lingual
scenarios, encompassing both NL2Code and cross-language Code2Code search. We posit that the
text extracted from docstring helps group semantically equivalent code together as the text often
summarizes the high-level semantics of code and hence are likely less diverse than the code them-
selves. In particular, those parallel examples from different programming languages can share very
similar or even the same summary. For NL2Code, the larger improvement can be credited to its
alignment with the bimodal contrastive learning objective using (text, code) as positives. Such bi-
modal objective also brings NL and PL closer in Figure 4b. Compared to the model trained at Stage-I
only, contrastive learning pulls together NL and PL such that the relative similarity gap between par-
allel NL2Code pairs and cross-language Code2Code parallel examples largely decreased.
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Figure 4: Examining the effectiveness of contrastive learning (Stage-II) by comparing CODESAGE
against those trained with the token-level denoising objective only (Stage-I). (a) Compared to the
in-language Code2Code search, contrastive learning persistently leads to a larger performance boost
for cross-lingual search, including both NL2Code and cross-language Code2Code search. (b) Con-
trastive learning leads to more dispersed representation space with improved discrimination, as in-
dicated by the corresponding enlarged similarity gap between parallel and randomly sampled pairs,
while simultaneously bridging the relative similarity gap between NL2Code and Code2Code pairs.

4.3 ON OBJECTIVE AND DOWNSTREAM PERFORMANCE SCALING WITH MODEL SIZE
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Figure 5: On the downstream task per-
formance scaling with pretrained model
size under different training schemes.

In Figure 5, we study how the downstream task perfor-
mance scales with the model size when pretrained with
different schemes, i.e., token-level objective only (Stage-
I), contrastive learning only (Stage-II), and our proposed
two-stage framework with Stage-I followed by Stage-II.
We use zero-shot multilingual in-language code search
performance (averaged over nine languages) for this ex-
ploration. We can see that models pretrained from scratch
with contrastive learning alone do not scale with the in-
creased model size. Neelakantan et al. (2022) report a
similar finding that the contrastive objective on its own is
not sufficient to learn useful representations. When train-
ing from scratch with contrastive learning only, we find
the training loss often converges at a large value, indicat-
ing the model cannot well discriminate each positive pair
from the other in-batch negatives. In other words, leveraging the token-level denoising objective to
provide a good embedding foundation is essential for contrastive learning to be effective and further
enhance the sequence-level presentations.

5 CONCLUSION

In this study, we unveiled CODESAGE, a cutting-edge encoder representation learning model for
source code. We trained CODESAGE using an extensive dataset comprising 237 million code files
and 75 million bimodal code and natural language pairs across nine languages. Our findings reveal
that our model outperforms its predecessors significantly in tasks related to code search and code
classification. We also delve into the essential factors contributing to enhanced code representation
learning across various model sizes.

We hope our work will serve as an inspiration for future works not only in code representation
learning by effectively utilizing publicly accessible extensive corpora for source code, but also in
the broader field of universal model training. This includes integrating language generation and
embedding within a single model, as seen in the works of (Jain et al., 2023; Muennighoff et al.,
2024). Additionally, we aim to encourage advancements in cross-domain representation learning,
such as unifying text and code embedding within a single model.
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A DATA, MODEL, AND HYPER-PARAMETERS DETAILS

A.1 PRETRAINING DATA

Masked Language Modeling (MLM) and Identifier Deobsfucation (DOBF) For both MLM
and DOBF, we use the Stack dataset (Kocetkov et al., 2022). We set the maximum sequence length
to 1024 with concatenation and block attention.

Contrastive Learning (CL) In CL, we focus on bimodal data, i.e., code and natural language
pairs, denoted as (text, function). Text is extracted as the first sentence from the docstring of a
function (Husain et al., 2019). For better interpretation, we refer to such text as ”summary” in this
section as it often summarizes the high-level semantics of a function. We filter or modify summaries
based on the following practices.

1. Filter summary if it is not in English.
2. Filter summary if the number of tokens in a summary is <3 or >256.
3. Remove URLs, HTML tags, and doctags from the summaries.
4. Fix bad Unicode text in the summaries.
5. Filter functions with no more than one line of code in the function body.

We summarize the statistics of our pretraining data at each stage in Figure 1 and Table 4.

Language Total files #Functions #Func. w/ docstring #Func. w/ summary
Python 24,214,270 67,264,716 24,321,126 18,146,327
Java 42,429,211 84,828,833 17,613,636 13,118,303
Javascript 40,112,121 35,469,803 7,450,153 4,796,101
C# 21,702,269 37,284,300 9,325,665 7,350,191
C 21,383,832 16,253,435 4,392,973 2,958,699
Ruby 7,205,146 5,475,047 1,217,764 1,049,356
GO 11,653,185 31,067,259 11,247,051 9,739,861
PHP 34,851,418 42,373,766 22,191,329 13,416,574
Typescript 19,589,267 16,612,988 2,637,245 1,863,436
Total 237,961,548 367,905,026 105,760,862 75,389,347

Table 4: Statistics of the data used in pre-training via Masked Language Modeling (MLM) and
Identifier Deobsfucation (DOBF), followed by contrastive learning (CL). The data is collected from
The Stack (Kocetkov et al., 2022).

A.2 MODEL AND TRAINING HYPER-PARAMETERS

We pretrain three sizes of model architecture which we refer to as CODESAGE-SMALL, CODESAGE-
BASE, and CODESAGE-LARGE. We summarize the model hyper-parameters in Table 5.

A.3 ON TOKEN DISTRIBUTION AND STAGE-I PRETRAINING OBJECTIVE

In our preliminary study, we perform data analysis where we examine the ratio of natural language
(NL) and programming language (PL) tokens. In a source code, tokens are broadly categorized
into five groups: (1) identifiers, (2) keywords, (3) operators, (4) delimiters, and (5) literals. We tag
the String literals (i.e., docstring, comments) as NL tokens, while all other tokens are considered
PL tokens. We use tree-sitter to parse source code and extract the five categories of code tokens.
Then we tokenize them using Starcoder tokenizer (Li et al., 2023). From Stack-Python corpora, we
compute the following statistics using Starcoder tokenized tokens.

1. Approximate PL Tokens: 57.8% of tokens belong to {identifiers, keywords, delimiters,
operators}. Among them, 53.8% tokens belong to identifiers and 46.2% are other tokens.

2. Approximate NL Tokens: 42.2% of tokens Literals {Boolean, Numeric, String}. Among
them, 92.9% tokens belong to String literals and 7.1% tokens belong to others.

As we can tell from the above numbers, the approximate NL tokens account for roughly 40% of
the overall tokens for a particular programming language. Therefore, when replacing masked to-
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CODESAGE-SMALL CODESAGE-BASE CODESAGE-LARGE
#layers 6 24 24
#heads 8 8 16
Model dim 1024 1024 2048
Vocab size 49,152 49,152 49,152
Max sequence length 1024 1024 1024
Total parameters 130M 356M 1.3B
Stage1: Masked Language Modeling
Dropout 0.1 0.1 0.1
Max steps 250,000 250,000 250,000
Warmup steps 5000 5000 5000
Batch size 2048 2048 2048
Base learning rate 3e-4 3e-4 3e-4
Stage2: Contrastive Learning
Dropout 0.1 0.1 0.1
Max steps 20,000 20,000 20,000
Warmup steps 500 500 500
Batch size 8192 8192 8192
Bae learning rate 5e-06 5e-06 5e-06

Table 5: Model architecture and pre-training related hyper-parameters.

kens with a random token could result in replacing a PL token with an NL token, and vice versa.
However, there are often no clear boundaries between PL and NL tokens in many scenarios, as PL
tokens, e.g., those identifier-related tokens, are often expected to carry clear semantics so that the
code snippets are interpretable by humans. Therefore, given masked input tokens following the
80-10-10 convention, it can be a non-trivial task for the model to decide which tokens are from
corruption. This together with the structure nature of PL makes it possible for those random tokens
to largely disrupt both the semantics and structure of code and make the representation learning too
challenging to be effective.

Take the example in Figure 6 (right) for illustration, the function name ”binary search” is being
corrupted with random tokens at all three places it appears, which has the potential to alter the
semantic meaning of the code. Although we may expect the model to still be able to correctly
recover ”binary search” from the corrupted code, it is a challenging task given (1) the syntax of the
code has been disrupted by another random token ”getConfig”; (2) the presence of < MASK >
tokens; and (3) the bidirectional self-attention mechanism can drive the model to leverage those
random tokens to form prediction of the masked tokens.

Figure 6: A code snippet(on the left) and its corresponding masked version, were created using the
80-10-10 practice with a 15% masking rate (on the right).

A.4 MASKING RATE

With ”Full Mask”, i.e., MLM without the 80-10-10 corruption strategy, we investigate the optimal
masking rate in Figure 7. We consider three constant masking rates, 7.5%, 15%, and 30%, as well
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as a dynamic masking strategy with the masking rate being randomly selected from the range [10%,
50%] for each training example. We find 15% remains the optimal masking rate among the four
variants we investigate.
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Figure 7: Maksing rate and zero-shot Code2Code search performance investigated on CODESAGE-
BASE. We consider three constant masking rates, 7.5%, 15%, and 30%, as well as a dynamic
masking strategy with the masking rate being randomly selected from the range [10%, 50%] for
each training example.

A.5 IDENTIFIER OBFUSCATION

In this research, we employ an identifier deobfuscation (DOBF) objective to train bidirectional
encoder representation models. While our inspiration for this approach comes from the DOBF
method introduced by anne Lachaux et al. (2021), our adoption strategy differs from theirs. In
their work, anne Lachaux et al. (2021) trained a sequence-to-sequence language model to recon-
struct the original code from an obfuscated version where class, function, and variable names
were replaced with special tokens. In contrast, our approach applies this technique to encoder-
only models. This adaptation involves a non-trivial effort to establish a 1-1 mapping between
mask tokens and identifier tokens (will be masked and encoders will predict them) due to dis-
parities in code tokenization (i.e., using tree-sitter) and model-specific tokenization (i.e., utilizing
a sentencepiece tokenizer). To illustrate, let’s consider the tokenization process. Tree-sitter to-
kenizes “def function name():” as {def, function name, (, ), :}, whereas a model-specific tok-
enizer might tokenize it as {def, function, , name(, ), :}. Consequently, we encounter a challenge
to construct the mapping from masked tokens to prediction tokens: {[mask], [mask], [mask]} →
{function, , name}, by skipping “(” token that is part of the identifier token “name”. To perform
obfuscation and construct the mask map, we developed an obfuscation (OBF) tool.

OBF Tool We developed a tool that takes an entire source code file or a function as input and
outputs an identifier obfuscated code along with a token map. We provide an example in Figure
8. We used tree-sitter to parse a code snippet and extract all identifiers and their ancestor node
types. Based on the node types, we identify class names, function names, function arguments, and
function calls. Then we replace them with special tokens (ci, fi, vi for class names, function names,
and variable names, respectively). Then we include the special tokens into the model tokenizer
(i.e., Starcoder tokenizer) and tokenize the obfuscated code such that special tokens are retained in
the output tokens. Finally, we use the model tokenizer to tokenize the identifiers individually and
replace the special tokens (ci, fi, vi) with the identifier tokens.

A.6 ON LEXICAL OVERLAP AND HARD POSITIVE DESIGN

As detailed in Appendix A.1, we extract the first sentence from the function docstring as the sum-
mary text. We then examine the lexical overlap between docstring (summary) and function signature
versus that between docstring (summary) and function body. In Stack-Python corpora, we found -

1. 22.3% of tokens in function signature and 23.1% of tokens in function body overlap with
docstring tokens.

2. 12.3% of tokens in function signature and 11.6% of tokens in function body overlap with
summary tokens.
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1 c l a s s Node :
2 d e f i n i t ( s e l f , v ) :
3 s e l f . d a t a = v
4 s e l f . l e f t = None
5 s e l f . r i g h t = None
6

7 # Function to print postorder traversal
8 d e f p r i n t P o s t o r d e r ( node ) :
9 i f node == None :

10 r e t u r n
11

12 # First recur on the left subtree
13 p r i n t P o s t o r d e r ( node . l e f t )
14

15 # Then recur on the right subtree
16 p r i n t P o s t o r d e r ( node . r i g h t )
17

18 # Now deal with the node
19 p r i n t ( node . da t a , end= ' ' )

1 c l a s s c 0 :
2 d e f f 0 ( v 0 , v 1 ) :
3 v 0 . v 2 = v 1
4 v 0 . v 3 = None
5 v 0 . v 4 = None
6

7 # Function to print postorder traversal
8 d e f f 1 ( v 5 ) :
9 i f v 5 == None :

10 r e t u r n
11

12 # First recur on the left subtree
13 f 1 ( v 5 . v 3 )
14

15 # Then recur on the right subtree
16 f 1 ( v 5 . v 4 )
17

18 # Now deal with the node
19 p r i n t ( v 5 . v 2 , end= ' ' )

Figure 8: An example of a Python code (at the left) and its corresponding obfuscated version
(at the right) generated by our developed obfuscation tool. The class names, function names,
and variables are replaced by special tokens. Given the code on the left, our developed OBF
tool produces the obfuscated code and the identifier map: {c0, v0, v1, v2, v3, v4, v5, f0, f1} →
{Node, self, v, data, left, right, node, init , printPostorder}.

This validates our intuition that the docstring or summary of a function often has a large lexical
overlap with the function signature. Thereby, when contrasting docstring or summary with the entire
function, the model tends to learn shortcut by leveraging such overlap, and hence fail to capture the
semantic equivalence concept in the representations. Consequently, poor generalization is attained.

B EVALUATION OF DOWNSTREAM TASKS

B.1 BASELINE MODELS

We summarize the baseline model size and output representation dimension in Table 6.

Model Model Size Embedding Max Sequence Training
Dimension Length Data Source

CodeBERT 125M 768 512 CodeSearchNet
GraphCodeBERT 125M 768 512 CodeSearchNet
StarEncoder 125M 768 1024 The Stack
UnixCoder 125M 768 1024 CodeSearchNet
OpenAI-Embedding-Ada-002 Unknown 1536 8191 Unknown

Table 6: Model size and dimension of the embeddings. The GitHub Code dataset is available at
(https://huggingface.co/datasets/codeparrot/github-code).

B.2 CODE SEARCH

We summarize the data statistics of NL2Code and Code2Code benchmarks in Table 7. Below, we
provide more context on each dataset.

Code2Code search is the task of retrieving relevant code fragments given a code fragment as a query.
In this work, we extend the code2code search dataset (Guo et al., 2022) created from CodeNet to six
more languages - C, C#, Javascript, Typescript, GO, and PHP. The original dataset includes 2 to 10
solutions for each problem in Java, Python, and Ruby. At first, we collect the problem identifiers and
aggregate solutions in those six languages from CodeNet. Also, CodeNet provides cluster identifiers
for each solution where solutions within a cluster are near duplicates of each other. We collect one
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Code2Code Semantic Search Data Statistics in Each Language
Python Java JS TS C# C Ruby PHP GO

Num Queries 15,594 23,530 6,866 3,385 11,952 11,260 11,744 6,782 9,720
Num Candidates 15,594 23,530 6,866 3,385 11,952 11,260 11,744 6,782 9,720

NL2Code Semantic Search Data Statistics in Benchmark and Language
CoSQA AdvTest CSN
Python Python Python Java JS PhP Go Ruby

Num Queries 500 19,120 14,918 10,955 3,291 14,014 8,122 1,261
Num Candidates 6,268 19,120 43,827 40,347 13,981 52,660 28,120 4,360

Table 7: Evaluation data statistics of both NL2Code and Code2Code search.

Model Python Java JS TS C# C Ruby PHP GO Avg
CodeGen2.5(7B) 16.45 10.18 7 8.46 4.24 7.99 17.28 15.56 9.38 10.73
Starcoder(15.5B) 7.09 3.91 3.19 4.36 1.72 2.35 6.82 6.06 3.26 4.31

CodeT5+(16B) Encoder 18.24 9.85 5.84 6.86 4.19 8.16 16.47 13.88 8.01 10.17
CodeBERT 14.40 7.62 5.47 6.05 3.66 5.53 13.55 10.28 6.27 8.09

GraphCodeBERT 19.23 10.78 7.38 8.65 5.54 8.48 19.69 15.67 9.65 11.68
StarEncoder 19.17 11.65 9.0 10.52 5.69 9.72 21.57 16.98 10.81 12.79
UnixCoder 30.77 16.45 21.32 21.95 6.19 15.62 32.33 31.93 13.94 21.17

OpenAI-CPT-Code-001 21.92 8.90 4.90 5.70 3.15 11.58 26.25 16.60 9.40 12.04
OpenAI–Ada-002 35.91 25.13 19.01 21.86 10.17 29.15 40.85 40.47 23.43 27.33

OpenAI-Text-3-Small 25.18 12.61 8.00 9.44 5.46 15.86 30.70 23.33 11.2 15.75
OpenAI-Text-3-Large 40.57 25.33 20.09 22.00 11.84 31.9 42.54 41.84 21.75 28.65

CODESAGE-SMALL 36.31 23.97 26.60 29.90 11.84 22.84 29.06 34.64 19.56 26.08
CODESAGE-BASE 47.52 22.84 28.70 31.95 13.37 30.99 44.86 51.13 25.15 32.95

CODESAGE-LARGE 46.70 33.13 37.16 41.18 16.81 32.89 54.12 52.13 32.48 38.51

Table 8: MAP score (%) of the zero-shot code search task. The language names mentioned in the
top row indicate the languages queries and candidates are written in.

solution from each cluster and randomly pick 2 to 10 solutions per problem. We summarize in-
language (query and candidates are in the same language) code2code search results in Table 1.

NL2Code search refers to the task of using natural language as the query to retrieve the relevant
code. We consider three benchmarks in this paper. CoSQA where the NL queries (in NL) are
from the search logs of the Bing search engine and the candidate functions are from CodeSearch-
Net (in Python). Total queries 500 and number of candidates 6,268. CSN is constructed from the
CodeSearchNet dataset of six programming languages, including Python, Java, JavaScript, PHP, Go,
and Ruby. AdvTest which normalizes Python functions (from CSN) and variable names to test the
understanding and generalization capabilities of models (an example is shown in Figure 9).

Additional Baselines are considered in Tables 8 and 9. We constantly find decoder-only models
yield poor performance on semantic search. Finetuning or prompt engineering may help improve
the performance of decoder-only models, which we leave as future work.

We also compare against OpenAI-CPT-Code-001, specifically choosing the code-search-babbage-
code-001 model, along with OpenAI-Text-3-Large and OpenAI-Text-3-Small. For the OpenAI-
Text-3 models, we utilized their default embedding sizes of 3072 and 1536 for the large and small
models, respectively. When submitting our paper in September 2023, based on OpenAI’s recom-
mendation, we evaluated against the OpenAI-Ada-002 model. Our findings, presented in Tables 8 &
9, indeed demonstrate that OpenAI-Ada-002 surpasses OpenAI-CPT-Code-001 in both Code2Code
and NL2Code search tasks. Furthermore, while OpenAI-Text-3-Large shows superior performance
over OpenAI-Ada-002, OpenAI-Text-3-Small falls short. Nevertheless, our model, CodeSage, con-
sistently outperforms OpenAI-Text-3-Large in Code2Code search tasks and shows slightly inferior
results in NL2Code search.
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CoSQA AdvTest CSN
Model Python Python Python Java JS PhP Go Ruby

CodeGen2.5 (7B) 0.02 0.01 0.06 0.02 0.05 0.18 6.03 2.04
Starcoder (15.5B) 0.02 0.06 0.03 0.01 0.05 0.59 0.06 0.05

CodeT5+ (16B) Encoder 22.96 20.36 19.93 14.05 12.26 26.08 20.37 13.05
CodeBERT 0.24 0.06 0.05 0.03 0.04 0.02 0.14 0.34

GraphCodeBERT 16.20 5.58 10.37 8.59 7.29 8.07 12.47 20.79
StarEncoder 10.78 0.93 2.81 2.51 1.87 0.74 2.65 5.54
UnixCoder 42.11 27.32 42.17 43.92 40.46 35.21 61.39 55.22

OpenAI-CPT-Code-001 52.20 36.03 63.13 67.85 62.30 57.47 85.22 69.28
OpenAI-Text-Ada-002 44.23 38.08 68.02 71.49 67.50 60.62 85.63 74.20
OpenAI-Text-3-Small 52.48 34.10 62.62 65.87 60.28 54.85 81.96 67.57
OpenAI-Text-3-Large 55.21 46.83 70.81 72.89 68.12 59.58 87.6 75.22

CODESAGE-SMALL 49.92 41.28 64.38 63.19 60.01 54.71 77.66 63.20
CODESAGE-BASE 48.50 49.08 67.99 68.02 66.95 58.15 83.21 68.00

CODESAGE-LARGE 47.53 52.67 70.77 70.21 69.50 61.33 83.71 71.92

Table 9: MRR score (%) of NL2Code search in zero-shot setting.
NL query: Try loading the given cache file.

1 # Original Python function
2 d e f f r o m f i l e ( c l s , f i l e , * a rgs , ** kwargs ) :
3 t r y :
4 cache = s h e l v e . open ( f i l e )
5 r e t u r n c l s ( f i l e , cache , * a rgs , ** kwargs )
6 e x c e p t OSError a s e :
7 l o g g e r . debug ( ” Loading {0} f a i l e d ” . f o r m a t ( f i l e ) )
8 r a i s e e

1 # AdvTest Python function
2 d e f Func ( a rg 0 , a rg 1 , * a rg 2 , ** a r g 3 ) :
3 t r y :
4 a r g 4 = s h e l v e . open ( a r g 1 )
5 r e t u r n a r g 0 ( a rg 1 , a rg 4 , * a rg 2 , ** a r g 3 )
6 e x c e p t OSError a s e :
7 l o g g e r . debug ( ” Loading {0} f a i l e d ” . f o r m a t ( a r g 1 ) )
8 r a i s e e

Figure 9: An example of natural language query and the associated ground truth function from the
AdvTest dataset. The function names and variables in the original function (at the top) are replaced
by special tokens (at the bottom) to obfuscate the code.

Target Class Train # Valid # Test # Target Class Train # Valid # Test #
No error 1,20,503 13,049 13,745 ImportError 259 37 22

ZeroDivisionError 25,087 3,087 2,828 TabError 74 4 3
OSError 21540 2,427 2,422 re.error 62 6 11

UnboundLocalError 21,414 2,641 2,603 AttributeError 47 4 8
decimal 10,026 509 1,674 StopIteration 24 5 3

ValueError 8,585 991 833 OverflowError 19 2 2
AssertionError 7,816 1,072 691 Timeout 18 8 2

FileNotFoundError 7,676 727 797 IndexError 10 0 12
IndentationError 7,645 285 841 ModuleNotFoundError 8 7 1

KeyError 7,505 965 733 RecursionError 5 0 0
NameError 1,876 186 110 EOFError 3 0 0

numpy.AxisError 437 47 125 SyntaxError 3 0 1
MathDomainError 362 39 22 RuntimeError 2 0 1

Table 10: Distribution of target classes in the Python Runtime Errors dataset.

B.3 CODE CLASSIFICATION

We present the label distribution for the RunTime error prediction dataset in Table 10. We present
the hyper-parameters that we used while finetuning models for code classification tasks in Table 11.
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Hyper-parameters Ft. linear classification head only Ft. full model end-to-end
Defect Complexity Runtime Defect Complexity Runtime

Optimizer AdamW AdamW

Learning rate (LR) 1e-3

5e-5 (baselines)
1e-5 (CODESAGE-SMALL)
1e-5(CODESAGE-BASE)

5e-6(CODESAGE-LARGE)
LR schedule Linear Linear
Batch size 32 32
# Epoch 10 10 2 5 5 2

Table 11: Hyperparameters for fine-tuning baseline models and CODESAGE on code classification
tasks. Across all models, we used mean pooling to form sequence representations from contextual-
ized token representations.

Finetuning models end-to-end on classification tasks In the main body of this paper, we pre-
sented the evaluation results (in Table 2) of finetuning a linear classification head on top of the
frozen code representation learning encoders. Furthermore, we finetune the code encoder models
end-to-end on the classification tasks and present the results in Table 12. It’s evident from these
results that CODESAGE outperforms the baseline models.

Classification
Model Defect Complexity RunTime

CodeBERT 64.370.37 85.812.53 42.082.49

GraphCodeBERT 65.361.00 87.982.45 44.290.97

StarEncoder 65.200.11 92.871.47 38.063.86

CodeT5+ Embedding 64.720.65 90.631.47 38.362.54

UnixCoder 65.741.00 93.750.67 47.142.71

CODESAGE-SMALL 66.140.67 94.740.29 44.461.50

CODESAGE-BASE 66.520.48 95.900.43 46.402.90

CODESAGE-LARGE 66.380.23 96.200.57 49.253.68

Table 12: F1 (macro) score of the code classification tasks in the full finetuning setup. We finetuned
using three seeds and reported the mean and standard deviation (in subscript).
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