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ABSTRACT

Diffusion models excel at creating visually-convincing images, but they often
struggle to meet subtle constraints inherent in the training data. Such constraints
could be physics-based (e.g., satisfying a PDE), geometric (e.g., respecting sym-
metry), or semantic (e.g., including a particular number of objects). When the
training data all satisfy a certain constraint, enforcing this constraint on a diffusion
model makes it more reliable for generating valid synthetic data and solving con-
strained inverse problems. However, existing methods for constrained diffusion
models are restricted in the constraints they can handle. For instance, recent work
proposed to learn mirror diffusion models (MDMs), but analytical mirror maps
only exist for convex constraints and can be challenging to derive. We propose
neural approximate mirror maps (NAMMs) for general, possibly non-convex con-
straints. Our approach only requires a differentiable distance function from the
constraint set. We learn an approximate mirror map that transforms data into an
unconstrained space and a corresponding approximate inverse that maps data back
to the constraint set. A generative model, such as an MDM, can then be trained in
the learned mirror space and its samples restored to the constraint set by the inverse
map. We validate our approach on a variety of constraints, showing that com-
pared to an unconstrained diffusion model, a NAMM-based MDM substantially
improves constraint satisfaction. We also demonstrate how existing diffusion-based
inverse-problem solvers can be easily applied in the learned mirror space to solve
constrained inverse problems.

1 INTRODUCTION

Many data distributions follow a rule that is not visually obvious. For example, videos of fluid flow
obey a partial differential equation (PDE), but a human may find it difficult to discern whether a video
agrees with the prescribed PDE. We can characterize such distributions as constrained distributions.
Theoretically, a generative model trained on a constrained image distribution should satisfy the
constraint, but in practice due to learning and sampling errors (Daras et al., 2024), it may generate
visually-convincing images that break the rules. Ensuring constraint satisfaction in spite of such
errors would make generative models more reliable for applications such as solving inverse problems.

Diffusion models are popular generative models, but existing approaches for incorporating constraints
either restrict the type of constraint or do not scale well. Equivariant (Niu et al., 2020), Riemannian
(De Bortoli et al., 2022; Huang et al., 2022), reflected (Lou & Ermon, 2023; Fishman et al., 2023a),
log-barrier (Fishman et al., 2023a), and mirror (Liu et al., 2024) diffusion models are all restricted
to certain types of constraints, such as symmetry groups (Niu et al., 2020), Riemannian manifolds
(De Bortoli et al., 2022; Huang et al., 2022), or convex sets (Fishman et al., 2023a; Liu et al.,
2024). Generally speaking, these restrictions are in the service of guaranteeing a hard constraint,
whereas a soft constraint offers flexibility and may be sufficient in many scenarios. One could, for
example, introduce a guidance term to encourage constraint satisfaction during sampling (Graikos
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Figure 1: Conceptual illustration. (a) Despite being trained on a data distribution constrained to M, a
regular diffusion model (DM) may generate samples that violate the constraint. (b) We propose to
learn a neural approximate mirror map (NAMM) that entails a forward map gϕ and inverse map fψ.
The forward map transforms the constrained space into an unconstrained (“mirror”) space. Once gϕ
and fψ are learned, a mirror diffusion model (MDM) can be trained on the pushforward of the data
distribution through gϕ and its samples mapped back to the constrained space through fψ .

et al., 2022; Bansal et al., 2023; Zhang et al., 2023), but so far there does not exist a principled
framework to do so. Previous work suggested imposing a soft constraint during training (Daras
et al., 2024; Upadhyay et al., 2023) by estimating the clean image at every noisy diffusion step and
evaluating its constraint satisfaction. However, approximation (Efron, 2011) of the clean image from
the intermediate noisy image is crude at high noise levels and thus unsuitable for constraints that
are sensitive to approximation error and noise, such as a PDE constraint. Of course it is possible to
penalize invalid generated samples during or after training (Huang et al., 2024), but this approach
relies on computationally-expensive simulation steps. Instead, we aim for a flexible approach to
impose general constraints by construction.

Our goal is to find an invertible function that maps constrained images into an unconstrained space so
that a regular generative model can be trained in the unconstrained space and automatically satisfy
the constraint through the inverse function. We propose neural approximate mirror maps (NAMMs)1,
which bring the flexibility of soft constraints into the principled framework of mirror diffusion models
(Liu et al., 2024). A mirror diffusion model (MDM) allows for training a completely unconstrained
diffusion model in a “mirror” space defined by a mirror map. Unconstrained samples from the
diffusion model are mapped back to the constrained space via an inverse mirror map. However,
invertible mirror maps are challenging or impossible to derive in closed form for general constraints.
We address this by jointly optimizing two networks to approximate a mirror map and its inverse.

A NAMM encompasses a (forward) mirror map gϕ and its approximate inverse map fψ. They are
trained so that fψ ≈ g−1

ϕ , and fψ maps unconstrained points to the constrained space (see Figure 1
for a conceptual illustration). Our method works for any constraint that has a differentiable function
to quantify the distance from an image to the constraint set. We parameterize gϕ as the gradient
of a strongly input-convex neural network (ICNN) (Amos et al., 2017) to satisfy invertibility. We
train the NAMM with a cycle-consistency loss (Zhu et al., 2017) to ensure fψ ≈ gϕ

−1 and train the
inverse map with a constraint loss to ensure fψ(x̃) is close to the constraint set for all x̃ that we are
interested in (we define this formally in Section 3.1). An MDM can be trained on the pushforward of
the data distribution through gϕ, and its generated samples can be mapped to the constraint set via fψ .
Although not inherently restricted to diffusion models, our approach maintains the many advantages
of diffusion models, including expressive generation, simulation-free training (Song et al., 2021b),
and tractable computation of probability densities (Liu et al., 2024). One can also adapt existing
diffusion-based inverse solvers for the mirror space and enforce constraints with the inverse map.

Our experiments show improved constraint satisfaction for various physics-based, geometric, and
semantic constraints. We also discuss ablation studies and adapt a popular diffusion-based inverse
solver to solve constrained inverse problems, in particular data assimilation with PDE constraints.

1Code can be found at https://github.com/berthyf96/namm.
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2 BACKGROUND

2.1 CONSTRAINED GENERATIVE MODELS

Explicitly incorporating a known constraint into a generative model poses benefits such as data
efficiency (Ganchev et al., 2010; Batzner et al., 2022), generalization capabilities (Köhler et al.,
2020), and feasibility of samples (Giannone et al., 2023). Some methods leverage equivariant neural
networks (Satorras et al., 2021; Geiger & Smidt, 2022; Thomas et al., 2018) for symmetry (Allingham
et al., 2022; Niu et al., 2020; Klein et al., 2024; Song et al., 2024; Boyda et al., 2021; Rezende et al.,
2019; Garcia Satorras et al., 2021; Köhler et al., 2020; Midgley et al., 2024; Dey et al., 2020; Xu et al.,
2022; Hoogeboom et al., 2022; Yim et al., 2023) but do not generalize to other types of constraints or
generative models (Klein et al., 2024; Song et al., 2024; Boyda et al., 2021; Rezende et al., 2019;
Garcia Satorras et al., 2021; Köhler et al., 2020; Midgley et al., 2024; Niu et al., 2020; Xu et al.,
2022; Hoogeboom et al., 2022; Yim et al., 2023; Dey et al., 2020; Allingham et al., 2022). Previous
methods for constrained diffusion models (De Bortoli et al., 2022; Huang et al., 2022; Fishman
et al., 2023a; Lou & Ermon, 2023; Liu et al., 2024) make strong assumptions about the constraint,
such as being characterized as a Riemannian manifold (De Bortoli et al., 2022; Huang et al., 2022),
having a well-defined reflection operator (Lou & Ermon, 2023) or projection operator (Christopher
et al., 2024), or corresponding to a convex constraint set (Fishman et al., 2023a; Liu et al., 2024).
Fishman et al. (2023b) proposed a diffusion model that incorporates Metropolis-Hastings steps to
work with general constraints, but impractically high rejection rates may occur with constraints that
are challenging to satisfy, such as a PDE constraint.

An alternative approach is to introduce a soft constraint penalty when training the generative model
(Ganchev et al., 2010; Mann & McCallum, 2007; Chang et al., 2007; Giannone et al., 2023; Daras
et al., 2024; Upadhyay et al., 2023). However, evaluating the constraint loss of generated samples
during training may be prohibitively expensive. Instead, one could add constraint-violating training
examples (Giannone et al., 2023), but it is often difficult to procure useful negative examples. In
contrast, our approach does not alter the training objective of the generative model.

2.2 MIRROR MAPS

For any convex constraint set C ⊆ Rd, one can define a mirror map that maps from C to Rd. This is
done by defining a mirror potential ϕ : C → R that is continuously-differentiable and strongly-convex
(Bubeck et al., 2015; Tan et al., 2023). The mirror map is the gradient ∇ϕ : C → Rd (Liu et al.,
2024). Every mirror map has an inverse (∇ϕ)−1 : Rd → C, which, unlike the forward mirror map,
is not necessarily the gradient of a strongly-convex function (Zhou, 2018; Tan et al., 2023). Mirror
maps have been used for constrained optimization (Beck & Teboulle, 2003) and sampling (Hsieh
et al., 2018; Li et al., 2022; Liu et al., 2024). Although true mirror maps exist only for convex
constraints, we seek to generalize the concept to learn approximate mirror maps to handle non-convex
constraints. Recent work suggested learned mirror maps for convex optimization (Tan et al., 2023)
and reinforcement learning (Alfano et al., 2024) but did not tackle constrained generative modeling.
Our work proposes a novel training objective for learning mirror maps with the goal of constraining
generative models to satisfy arbitrary constraints.

2.3 DIFFUSION MODELS

A diffusion model learns to generate new data samples through a gradual denoising process (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021b; Kingma et al.,
2021). The diffusion, or noising, process can be modeled as a stochastic differential equation (SDE)
(Song et al., 2021b) that induces a time-dependent distribution pt, where p0 = pdata (the target data
distribution) and pT ≈ N (0, I). The diffusion model learns to reverse the denoising process by
modeling the score function of pt, defined as ∇x log pt(x). In the context of imaging problems, the
score function is often parameterized using a convolutional neural network (CNN) with parameters
θ, which we denote by sθ. The score model is trained with a denoising-based objective (Hyvärinen
& Dayan, 2005; Vincent, 2011; Song et al., 2021b) that allows for simulation-free training (i.e.,
simulating the forward noising process is not necessary during training). The score function appears
in a reverse-time SDE (Song et al., 2021b; Anderson, 1982) that can be used to sample from the clean
image distribution p0 by first sampling a noise image from N (0, I) and then gradually denoising
it. Our work addresses the problem that diffusion models are often not sensitive to visually-subtle
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+ noise

Figure 2: NAMM training illustration. Given data that lie on a constraint manifold M (e.g., the
hyperplane of images with the same total brightness), we jointly train an approximate mirror map
gϕ and its approximate inverse fψ. After mapping data x ∼ pdata to the mirror space as gϕ(x), we
perturb them with additive Gaussian noise whose standard deviation can be anywhere between 0 and
σmax. The inverse map fψ is trained to map these perturbed samples back onto M.

constraints on the data. Our proposed NAMM allows for a diffusion model to be trained in an
unconstrained space yet satisfy the desired constraint by construction.

3 METHOD
We now describe neural approximate mirror maps (NAMMs). We focus on diffusion models, but any
generative model can be trained in the learned mirror space (see Appendix A for results with a VAE).
We denote the constrained image distribution by pdata and the (not necessarily convex) constraint set
by M ⊆ Rd. Images in the constrained and mirror spaces are denoted by x and x̃, respectively. The
pushforward of the data distribution pdata through a mirror map gϕ is denoted by (gϕ)♯pdata.

3.1 LEARNING THE FORWARD AND INVERSE MIRROR MAPS

Let gϕ and fψ be the neural networks modeling the forward and inverse mirror maps, respectively,
where ϕ and ψ are their parameters. We formulate the following learning problem:

ϕ∗, ψ∗ ∈ argmin
ϕ,ψ

{
Lcycle(gϕ, fψ) + λconstrLconstr(gϕ, fψ) + λregR(gϕ)

}
, (1)

where Lcycle encourages gϕ and fψ to be inverses of each other; Lconstr encourages fψ to map
unconstrained points back to the constraint set; and R is a regularization term to ensure there is a
unique solution for the maps. Here λconstr, λreg ∈ R>0 are scalar hyperparameters.

A true inverse mirror map satisfies cycle consistency and constraint satisfaction on all of Rd, so
ideally fψ(x̃) = g−1

ϕ (x̃) and fψ(x̃) ∈ M for all x̃ ∈ Rd. But since it would be computationally
infeasible to optimize fψ over all possible points in Rd, we instead optimize it over distributions that
we would expect the inverse map to face in practice in the context of generative models. That is,
we only need fψ to be valid for samples from an MDM trained on (gϕ)♯pdata, which we refer to as
the mirror distribution. To make fψ robust to learning/sampling error of the MDM, we consider a
sequence of noisy distributions in the mirror space, each corresponding to adding Gaussian noise to
samples from (gϕ)♯pdata, which, for a maximum perturbation level σmax, we denote by(

(gϕ)♯pdata ∗ N (0, σ2I)
)
σ∈[0,σmax]

. (2)

We train fψ to be a valid inverse mirror map only for points from these noisy mirror distributions.
Since we do not know a priori how much noise the MDM samples will contain, we consider all
possible noise levels up to σmax for robustness (see Appendix D.2 for an ablation study of this choice).

We define a cycle-consistency loss (Zhu et al., 2017) that covers the forward and inverse directions
and evaluates the inverse direction for the entire sequence of distributions defined in Equation 2:

Lcycle(gϕ, fψ) := Ex∼pdata

[
∥x− fψ (gϕ(x))∥1

+

∫ σmax

0

Ez∼N (0,I)

[
∥gϕ(x) + σz− gϕ (fψ(gϕ(x) + σz))∥1

] ]
. (3)
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Let ℓconstr : Rd → R≥0 be a differentiable constraint distance that measures the distance from an
input image to the constraint set. We define the following constraint loss to encourage fψ to map
points from the noisy mirror distributions (Equation 2) to the constraint set:

Lconstr(gϕ, fψ) := Ex∼pdata

[∫ σmax

0

Ez∼N (0,I) [ℓconstr (fψ(gϕ(x) + σz))] dσ

]
. (4)

To ensure a unique solution, we regularize gϕ to be close to the identity function:
R(gϕ) := Ex∼pdata

[
∥x− gϕ(x)∥1

]
. (5)

We use Monte-Carlo to approximate the expectations in the objective over the noisy mirror distribu-
tions with σ ∼ U([0, σmax]) and approximately solve Equation 1 with stochastic gradient descent.

Architecture We parameterize gϕ as the gradient of an input-convex neural network (ICNN)
following the implementation of Tan et al. (2023). For convex constraints, this satisfies the theoretical
requirement that gϕ be the gradient of a strongly-convex function. Even for non-convex constraints,
this choice brings practical benefits, as we discuss in Section 4.3. We note that gϕ is not a true mirror
map since M is not assumed to be convex, and gϕ is defined on all of Rd instead of just on M. We
parameterize fψ as a ResNet-based CNN similar to the one used in CycleGAN (Zhu et al., 2017).

3.2 LEARNING THE MIRROR DIFFUSION MODEL

Similarly to Liu et al. (2024), we train an MDM on the mirror distribution (gϕ)♯pdata and map its
samples to the constrained space through fψ. In particular, we train a score model sθ with the
following denoising score matching objective in the learned mirror space (defined as the range of gϕ):

θ∗ ∈ argmin
θ

Et
{
λ(t)Ex̃(0)∼(gϕ)

♯
pdataEx̃(t)|x̃(0)

[∥∥s̃θ (x̃(t), t)−∇x̃(t) log p0t (x̃(t) | x̃(0))
∥∥2

2

]}
, (6)

where x̃(0) ∼ (gϕ)♯pdata is obtained as x̃(0) := gϕ(x(0)) for x(0) ∼ pdata. Here p0t denotes the
transition kernel from x̃(0) to x̃(t) under the diffusion SDE, and λ(t) ∈ R>0 is a time-dependent
weight. To sample new images, we sample x̃(T ) ∼ N (0, I), run reverse diffusion in the mirror space,
and map the resulting x̃(0) to the constrained space via fψ .

3.3 FINETUNING THE INVERSE MIRROR MAP

The inverse map fψ is trained with samples from the noisy mirror distributions in Equation 2, but
we ultimately wish to evaluate fψ with samples from the MDM. To reduce the distribution shift, it
may be helpful to finetune fψ with MDM samples. We generate a training dataset of samples x̃ from
the MDM and then finetune the inverse map to deal with such samples specifically. In the following
finetuning objective, we replace x̃ ∼ (gϕ)♯pdata with x̃ ∼ pθ, where pθ is the distribution of MDM
samples in the mirror space:

ψ∗ = argmin
ψ

{
Ex∼pdata ∥x− fψ(gϕ(x))∥1

+ Ex̃∼pθ

[∫ σmax

0

Ez∼N (0,I)

[
∥x̃+ σz− gϕ(fψ(x̃+ σz))∥1 + λconstrℓconstr (fψ(x̃+ σz))

]
dσ

]}
. (7)

Finetuning essentially tailors fψ to the MDM. The original objective assumes that the MDM will
sample Gaussian-perturbed images from the mirror distribution, but in reality it samples from a
slightly different distribution. As the ablation study in Section 4.3 shows, finetuning is not an essential
component of the method; we suggest it as an optional step for when it is critical to optimize the
constraint distance metric.

4 RESULTS

We present experiments with constraints ranging from physics-based to semantic. For the considered
examples, our method achieves from 38% to as much as 96% improvement in constraint satisfaction
upon a vanilla DM trained on the same data (see Table 1). Appendices D.1 and F provide imple-
mentation and constraint details, respectively. The following paragraphs introduce the demonstrated
constraints ℓ. For each we consider an image dataset for which the constraint is physically meaningful.
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Figure 3: Improved constraint satisfaction. Samples from our approach are nearly indistinguishable
from baseline samples, yet there is a significant difference in their distances from the constraint set.
The baseline is a DM trained on the original constrained dataset. Our approach is to train a NAMM
and then an MDM in the mirror space induced by gϕ. Samples are obtained by sampling from the
MDM and then passing samples through fψ. The histograms show normalized constraint distances
ℓ̄ of 128 samples (normalized so that each constraint has a maximum of 1 across the samples from
both methods). Our results are from the finetuned NAMM. For each constraint, we made sure that
the DM was trained for at least as long as the NAMM, MDM, and finetuned NAMM combined.

Total brightness In astronomical imaging, even if a source’s structure is unknown a priori, its total
brightness, or total flux, is often well constrained (EHTC, 2019). We define ℓflux(x) as the absolute
difference between

∑d
i=1 xi and the true total brightness. We demonstrate with a dataset of 64× 64

images of black-hole simulations (Wong et al., 2022) whose pixel values sum to 120. While this
constraint is a simple warmup example, generic diffusion models perform surprisingly poorly on it.

1D Burgers’ We consider Burgers’ equation (Bateman, 1915; Burgers, 1948) for a 1D viscous fluid,
representing the discretized solution as an nx × nt image x, where nx and nt are the numbers of grid
points in space and time, respectively. The distance ℓburgers(x) compares each 1D state in the image to
the PDE solver’s output given the previous state (based on Crank-Nicolson time-discretization (Crank
& Nicolson, 1947; Kidger, 2022)). The dataset consists of 64 × 64 images of Crank-Nicolson
solutions with Gaussian random fields as initial conditions.

Divergence-free A time-dependent 2D velocity field u = u(x, y, t) is called divergence-free or
incompressible if ∇ · u = 0. We define the constraint distance ℓdiv as the ℓ1-norm of the divergence
and demonstrate this constraint with 2D Kolmogorov flows (Chandler & Kerswell, 2013; Boffetta
& Ecke, 2012; Rozet & Louppe, 2024). We represent the trajectory of the 2D velocity, discretized
in space-time, as a two-channel (for both velocity components) image x with the states appended
sequentially. We used jax-cfd (Kochkov et al., 2021) to generate trajectories of eight 64 × 64
states and appended them in a 2× 4 pattern to create 128× 256 images.

Periodic We consider images x that are periodic tilings of a unit cell. This type of symmetry
appears in materials science, such as when constructing metamaterials out of unit cells (Ogren et al.,
2024). We use a distance function ℓperiodic that compares all pairs of tiles in the image and computes
the average ℓ1-norm of their differences. We created a dataset of 64 × 64 images (composed of
32× 32 unit cells tiled in a 2× 2 fashion) using code from Ogren et al. (2024).

Count Generative models can sometimes generate an incorrect number of objects (Paiss et al.,
2023). We formulate a differentiable count constraint by relying on a CNN to estimate the count of a
particular object in an image x. Note that using a neural network leads to a non-analytical and highly
non-convex constraint. Letting fCNN : Rd → R be the trained counting CNN, we use the distance
function ℓcount(x) := |fCNN(x)− c̄| for a target count c̄. The dataset consists of 128× 128 simulated
images of exactly eight (8) radio galaxies with background noise (Connor et al., 2022).
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Figure 4: Training efficiency. For each method, we clocked the total compute time during training
(ignoring validation and I/O operations) and here plot the mean ± std. dev. of the constraint distances
ℓ of 128 generated samples at each checkpoint. The MDM training curve (“Ours w/o FT”) is offset by
the time it took to train the NAMM. The finetuning curve (“Ours”) is offset by the time it took to train
the NAMM and MDM and generate finetuning data. For most constraints, the DM has consistently
higher constraint distance without any sign of converging to the same performance as that of the
MDM. For the count constraint, the MDM performs on par with the DM, but finetuning noticeably
accelerates constraint satisfaction. Each run was done on the same hardware (4× A100 GPUs).

4.1 IMPROVED CONSTRAINT SATISFACTION AND TRAINING EFFICIENCY

First and foremost, we verify that our approach leads to better constraint satisfaction than a vanilla
diffusion model (DM). We evaluate constraint satisfaction by computing the average constraint
distance of generated samples. Since the constraint distance is non-negative, an average constraint
distance of 0 implies that the constraint is satisfied almost surely.

For each constraint, we trained a NAMM on the corresponding dataset and then trained an MDM on
the pushforward of the dataset through the learned gϕ. We show results from a finetuned NAMM,
but as shown in Section 4.3, finetuning is often not necessary. The baseline DM was trained on the
original dataset. Figure 3 highlights that MDM samples inverted through fψ are much closer to the
constraint set than DM samples despite being visually indistinguishable. For the total brightness, 1D
Burgers’, divergence-free, and periodic constraints, there is a significant gap between our distribution
of constraint distances and the baseline’s. The gap is smaller for the count constraint, which may be
due to difficulties in identifying and learning the mirror map for a highly non-convex constraint.

Furthermore, our approach achieves better constraint satisfaction in less training time. In Figure 4, we
plot constraint satisfaction as a function of compute time, comparing our approach (with and without
finetuning) to the DM. Accounting for the time it takes to train the NAMM, our MDM achieves
much lower constraint distances than the DM for the three physics-based constraints and the periodic
constraint, often reaching a level that the DM struggles to achieve. For the count constraint, we
find that finetuning is essential for improving constraint satisfaction, and it is more time-efficient to
finetune the inverse map than to continue training the MDM.

4.2 SOLVING CONSTRAINED INVERSE PROBLEMS WITH MIRROR DPS

Many methods have been proposed to use a pretrained diffusion model to sample images from the
posterior distribution p(x | y) ∝ p(y | x)p(x) (Choi et al., 2021; Graikos et al., 2022; Song et al.,
2022; Jalal et al., 2021; Kawar et al., 2022; Song et al., 2023), given measurements y ∈ Rm and
a diffusion-model prior p(x). One of the most popular methods is diffusion posterior sampling
(DPS) (Chung et al., 2022). To adapt DPS for the mirror space, we simply evaluate the measurement
likelihood on inverted mirror images fψ(x̃) instead of on images x in the original space.

We demonstrate mirror DPS on data assimilation, an inverse problem that aims to recover the hidden
state of a dynamical system given imperfect observations of the state. In Figure 5, we show results for
data assimilation of a 1D Burgers’ system and a divergence-free Kolmogorov flow given a few noisy
state observations, which can be essentially formulated as a denoise-and-inpaint problem. For each
case, we used mirror DPS with the corresponding NAMM-based MDM. We include two baselines:
(1) vanilla DPS with the DM and (2) constraint-guided DPS (CG-DPS) with the DM. The latter
incorporates the constraint distance as an additional likelihood term. As Figure 5 shows, our approach
leads to notably less constraint violation (i.e., less deviation from the PDE or less divergence) than
both baselines. Appendix D.3 shows that our method consistently outperforms the baselines for
different measurement-likelihood and constraint-guidance weights used in DPS and CG-DPS.
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(a) 1D Burgers’ (b) Kolmogorov flow (divergence-free)
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Figure 5: Data assimilation. We used the same finetuned NAMM, MDM, and DM checkpoints as in
Fig. 3. (a) Given noisy observations of the first eight states, we sampled possible full trajectories of a
1D Burgers’ system. Our solutions have smaller deviation from the PDE than samples obtained with
DPS, even those of constraint-guided DPS (CG-DPS). (b) The task is to infer the full Kolmogorov
flow from noisy observations of the first and last states. Our solution has significantly less divergence.

4.3 ABLATION STUDIES

Finetuning Table 1 shows the improvement in constraint satisfaction after finetuning fψ while also
verifying that the generated distribution stays close to the true data distribution. We use maximum
mean discrepancy (MMD) (Gretton et al., 2012) and Kernel Inception Distance (KID) (Bińkowski
et al., 2018) as measures of distance between distributions. MMD evaluates distance in a feature
space defined by a Gaussian kernel, and KID uses Inception v3 (Szegedy et al., 2015) features (see
Appendix E for details). Finetuning does not notably change the distribution-matching accuracy of
the MDM and in some cases improves it while improving constraint satisfaction. Compared to a
vanilla DM, our approach before and after finetuning does not lead to significantly different MMD
and even gives better KID while significantly improving constraint distance.

Total Brightness 1D Burgers’ Divergence-free Periodic Count

O
ur

s
w

/o
FT

CD (↓) 0.57 ± 0.48 0.09 ± 0.01 2.51 ± 0.21 0.04 ± 0.05 0.71 ± 0.53
MMD (↓) 0.0957 ± 0.0130 0.1225 ± 0.0096 0.0664 ± 0.0027 0.0760 ± 0.0058 0.1716 ± 0.0062

KID (↓) 0.0026 ± 0.0007 0.0040 ± 0.0004 0.0035 ± 0.0004 0.0018 ± 0.0005 0.0367 ± 0.0010

O
ur

s CD (↓) 0.49 ± 0.35 0.04 ± 0.01 1.57 ± 0.31 0.04 ± 0.06 0.35 ± 0.27
MMD (↓) 0.1023 ± 0.0131 0.1291 ± 0.0096 0.0781 ± 0.0023 0.0758 ± 0.0058 0.1978 ± 0.0062

KID (↓) 0.0027 ± 0.0008 0.0022 ± 0.0004 0.0058 ± 0.0006 0.0014 ± 0.0005 0.0570 ± 0.0014

B
as

el
in

e CD (↓) 2.20 ± 1.61 0.45 ± 0.03 6.96 ± 0.27 1.04 ± 0.08 0.56 ± 0.44
MMD (↓) 0.0956 ± 0.0099 0.0621 ± 0.0091 0.0595 ± 0.0026 0.0533 ± 0.0043 0.1276 ± 0.0066

KID (↓) 0.0462 ± 0.0016 0.2308 ± 0.0028 0.0053 ± 0.0007 0.0064 ± 0.0004 0.1084 ± 0.0015

Table 1: Effect of finetuning. Constr. dist. (CD) = 100λconstrℓ. The improvements in mean CD are
(left to right, comparing “Ours” to “Baseline”): 78%, 91%, 77%, 96%, 38% for five problems. For
all metrics, mean ± std. dev. is estimated with 10000 samples. In terms of MMD/KID, finetuning
does not significantly impact distribution-matching accuracy but improves constraint distance. DM
baseline results are shown for comparison. According to MMD, the baseline gives better distribution-
matching accuracy; according to KID, our approach captures the true data distribution better.
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Constraint loss There are two hyperparameters for the constraint loss in Equation 1: σmax deter-
mines how much noise to add to samples from the mirror distribution, and λconstr is the weight of
the constraint loss. Intuitively, a higher σmax means that the inverse map fψ must map larger regions
of Rd back to the constraint set, making its learning objective more challenging. We would expect
gϕ to cooperate by maintaining a reasonable SNR in the noisy mirror distributions. Figure 6 shows
how increasing σmax causes gϕ(x) for x ∼ pdata to have larger magnitudes so that the added noise
will not hide the signal. However, setting σmax too high can worsen constraint satisfaction, perhaps
due to the challenge of mapping a larger region of Rd back to the constraint set. On the flip side,
setting σmax too low can worsen constraint satisfaction because of poor robustness of fψ . Meanwhile,
increasing λconstr for the same σmax leads to lower constraint distance, although there is a tradeoff
between constraint distance and cycle-consistency inherent in the NAMM objective (Equation 1).
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Figure 6: Effect of σmax and λconstr, demonstrated with 1D Burgers’. First row: as σmax increases
(keeping λconstr = 1.0), the mirror image gϕ(x) for x ∼ pdata increases in magnitude to maintain
a similar SNR. Histograms show constraint distances of 128 inverted MDM samples, normalized
to have a maximum of 1 across samples from all three settings. Decreasing σmax from 0.5 to 0.1
improves the constraint distances, but further lowering σmax to 0.001 causes them to go back up. This
indicates a tradeoff between robustness and performance of fψ. Second row: as λconstr increases
(keeping σmax = 0.1), gϕ(x) does not change as much as when increasing σmax, but the constraint
distances decrease (with a tradeoff in cycle consistency). For all three settings, the same number of
NAMM and MDM epochs was used as in Fig. 3 but without finetuning.

Mirror map parameterization Figure 7 compares parameterizing gϕ as the gradient of an ICNN
versus as a ResNet-based CNN. We demonstrate how the mirror space changes when parameterizing
the forward map as a ResNet-based CNN. The mirror space becomes less regularized, leading to worse
constraint satisfaction of the MDM, perhaps because the MDM struggles to learn a less-regularized
mirror space. Thus, even when the constraint is non-convex and there are no theoretical reasons to
use an ICNN, it may still be practically favorable.

°10 0 10 °10 0 10

1D
 B

ur
ge

rs
’

Gradient of ICNN ResNet

g¡(x)

g¡(x)

g¡(x)

g¡(x)

0.25 0.50

D
iv

er
ge

nc
e-

fre
e

0.25 0.50 0.25 0.50 0.75 1.00
0

10

20

30

F
re

q.

1.0 1.5
Norm. Constraint Distance ( ¯̀)

0

25

50

75

F
re

q.

ICNN (Ours w/o FT)

ResNet (w/o FT)

DM Baseline
0.150 0.175 0.200

0

10

20

30

F
re

q.

1.0 1.5
Norm. Constraint Distance ( ¯̀)

0

25

50

75

F
re

q.

0.25 0.50 0.75 1.00
0

10

20

30

F
re

q.

1.0 1.5
Norm. Constraint Distance ( ¯̀)

0

25

50

75

F
re

q.

ICNN (Ours w/o FT)

ResNet (w/o FT)

DM Baseline

Figure 7: Architecture of gϕ: gradient of ICNN vs. ResNet-based CNN. Both approaches preserve
visual structure in the mirror space, but the ResNet causes irregularities, such as the patch circled in
yellow. The histograms show the normalized constraint distances ℓ̄ of 128 inverted MDM samples
(without finetuning). DM histograms from Fig. 3 are shown for comparison. An ICNN leads to better
constraint satisfaction with fewer outliers. We trained the NAMM and MDM for the same number of
epochs as in Fig. 3 without finetuning. We found that even with finetuning, a ResNet-based forward
map leads to worse constraint satisfaction or noticeably worse visual quality of generated samples.
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5 CONCLUSION
We have proposed a method for constrained diffusion models that minimally restricts the generative
model and constraint. A NAMM consists of a mirror map gϕ and its approximate inverse fψ , which is
robust to noise added to samples in the mirror space induced by gϕ. One can train a mirror diffusion
model in this mirror space to generate samples that are constrained by construction via the inverse
map. We have validated that our method provides significantly better constraint satisfaction than a
vanilla diffusion model on physics-based, geometric, and semantic constraints and have shown its
utility for solving constrained inverse problems. Our work establishes that NAMMs effectively rein
in generative models according to visually-subtle yet physically-meaningful constraints.
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Figure 8: Mirror VAE (MVAE) vs. VAE, demonstrated on the divergence-free constraint. Baseline
samples are obtained from a VAE trained in the original space, while MVAE samples are obtained
by sampling from a VAE trained in the mirror space and then mapping those samples back to the
original space via the learned inverse mirror map. Three samples are shown (vorticity on the left and
divergence on the right) for each method. (Recall that each image consists of eight state snapshots;
here we have labeled the number of each snapshot.) The vorticity fields show that the visual statistics
of both generated distributions are extremely similar, but the corresponding divergence fields are
drastically different. The MVAE samples are much closer to satisfying 0-divergence everywhere.
As further evidence, the histograms show that normalized constraint distances of MVAE samples
are significantly lower. We also report the mean ± std. dev. constraint distance (CD), computed as
100λconstrℓ, as well as the MMD and KID. All three metrics were estimated with 10000 generated
and true samples. The MVAE leads to improved constraint satisfaction and distribution-matching
accuracy compared to a vanilla VAE. This experiment demonstrates how a NAMM can be used to
constrain generative models besides diffusion models.

A NAMMS FOR CONSTRAINED VAES

Our approach is compatible with any generative model, not just diffusion models. Once a NAMM is
trained, any generative model can be trained in the learned mirror space and its samples mapped back
to the constrained space via the learned inverse mirror map. In this appendix, we apply our approach
to training a variational autoencoder (VAE) that satisfies the divergence-free constraint, comparing a
VAE trained in the learned mirror space (“MVAE”) to a VAE trained in the original data space.

A.1 IMPROVED CONSTRAINT SATISFACTION WITH A MIRROR VAE

For this experiment, we trained a VAE in the mirror space induced by the learned mirror map that
was trained for the divergence-free constraint (without finetuning). We call this the “mirror VAE,” or
MVAE, approach. As a baseline, we trained the same VAE architecture on the original divergence-free
data without transformation. We note that the same data are used to train both the MVAE and VAE;
the only difference is that the MVAE is trained in the mirror space, while the VAE is trained in the
original space. The training procedure was otherwise the same for both the MVAE and VAE.

Figure 8 shows samples from the MVAE and VAE. We ensured that the total training time of the
MVAE did not exceed that of the VAE (on the same hardware, 4× A100 GPUs). The VAE was
trained for 3500 epochs, and the MVAE was trained for 600 epochs (following 100 epochs of NAMM
training). Both approaches produce visually similar samples, yet the images of the divergence field
and histograms for this constraint distance show that the MVAE leads to overall better constraint
satisfaction. Furthermore, in terms of MMD and KID, the MVAE distribution is even closer to the
true data distribution.

A.2 VAE IMPLEMENTATION DETAILS

We used a convolutional autoencoder architecture consisting of five convolutional layers with GELU
activation functions in the encoder and decoder. Our implementation is borrowed from the autoencoder
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Figure 9: Comparisons of generated distributions. Nine (six for the divergence-free constraint)
samples are shown for each distribution. The constraint distance (CD), MMD, and KID values are
repeated here from Tab. 1 for ease of comparison. Qualitatively, our approach gives samples that are
visually very similar to real samples and baseline samples.

tutorial of Lippe (2024). We set the number of latent dimensions to 128 and the number of features in
the first layer of the encoder to 64. For training, we followed the β-VAE training objective (Higgins
et al., 2017), which consists of two terms: one to increase the likelihood of training data under the
VAE probabilistic model and one to minimize the KL divergence from the latent distribution to a
Gaussian prior. The latter is weighted by a scalar β > 0. For our purposes, the maximum-likelihood
term corresponds to a mean-squared-error (MSE) reconstruction loss, and we set β = 0.001. We
used the Adam optimizer with a learning rate of 0.0002.

B SAMPLE COMPARISONS

Figure 9 shows random samples from our approach and the baseline DM approach, corresponding to
the results shown in Figure 3. We show more samples in this appendix to give a sense of the visual
similarity between the samples generated with our approach and those generated with the baseline
approach. We emphasize again that our samples are much closer to the constraint set despite being
visually indistinguishable from baseline samples.

C CONSTRAINT HYPERPARAMETERS

Here we provide an ablation study of the constraint hyperparameters, λconstr and σmax, for all the
demonstrated constraints. We performed a hyperparameter sweep across all combinations of λconstr ∈
[0.01, 0.1, 1.0] and σmax ∈ [0.001, 0.1, 0.5]. For each setting, we trained a NAMM and then an MDM,
and then we evaluated the constraint satisfaction and distribution-matching accuracy of the MDM
samples. Table 2 reports the constraint distance, MMD, and KID metrics for all hyperparameter
settings and constraints.

These results illustrate how performance changes with respect to λconstr and σmax. We observe that
increasing λconstr generally leads to lower constraint distances for any constraint. For some constraints,
there is also an improvement in MMD/KID as λconstr increases (e.g., 1D Burgers’), whereas in other
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cases, there seems to be a tradeoff between constraint satisfaction and distribution-matching accuracy
(e.g., Count). We observe that the metrics change non-monotonically as a function of σmax. This
may be attributed to the fact that the training objective has a nonlinear dependence on σmax. When
applying our method to a new constraint, one can run a similar hyperparameter sweep to choose
values that lead to the best combination of constraint satisfaction and distribution-matching accuracy.

σmax = 0.001 σmax = 0.1 σmax = 0.5

To
ta

lB
ri

gh
tn

es
s λconstr = 0.01

CD (↓) 0.66 ± 0.38 0.55 ± 0.45 0.66 ± 0.57
MMD (↓) 0.0517 ± 0.0060 0.0549 ± 0.0067 0.0757 ± 0.0055

KID (↓) 0.0386 ± 0.0025 0.0078 ± 0.0014 0.0062 ± 0.0008

λconstr = 0.1
CD (↓) 0.03 ± 0.02 0.02 ± 0.01 0.22 ± 0.03

MMD (↓) 1.1723 ± 0.0006 1.1723 ± 0.0006 1.1727 ± 0.0006
KID (↓) 0.4372 ± 0.0043 0.5275 ± 0.0045 0.6396 ± 0.0047

λconstr = 1.0
CD (↓) 0.07 ± 0.02 0.03 ± 0.01 0.11 ± 0.01

MMD (↓) 1.1721 ± 0.0006 1.1722 ± 0.0006 1.1727 ± 0.0006
KID (↓) 0.5052 ± 0.0044 0.5191 ± 0.0045 0.6151 ± 0.0046

1D
B

ur
ge

rs
’

λconstr = 0.01
CD (↓) 0.20 ± 0.03 0.27 ± 0.03 0.26 ± 0.03

MMD (↓) 0.0488 ± 0.0090 0.0631 ± 0.0095 0.0945 ± 0.0078
KID (↓) 0.0483 ± 0.0012 0.1111 ± 0.0018 0.1142 ± 0.0020

λconstr = 0.1
CD (↓) 0.20 ± 0.03 0.20 ± 0.02 0.18 ± 0.02

MMD (↓) 0.0784 ± 0.0075 0.0682 ± 0.0071 0.1069 ± 0.0062
KID (↓) 0.0434 ± 0.0014 0.0495 ± 0.0016 0.0499 ± 0.0015

λconstr = 1.0
CD (↓) 0.20 ± 0.03 0.07 ± 0.01 0.17 ± 0.02

MMD (↓) 0.1159 ± 0.0078 0.1092 ± 0.0090 0.2169 ± 0.0084
KID (↓) 0.0494 ± 0.0012 0.0026 ± 0.0004 0.0144 ± 0.0008

D
iv

er
ge

nc
e-

fr
ee

λconstr = 0.01
CD (↓) 4.17 ± 0.29 5.17 ± 0.33 6.01 ± 0.35

MMD (↓) 0.0493 ± 0.0029 0.0484 ± 0.0025 0.0522 ± 0.0018
KID (↓) 0.0007 ± 0.0002 0.0029 ± 0.0004 0.0062 ± 0.0008

λconstr = 0.1
CD (↓) 3.37 ± 0.30 3.16 ± 0.33 3.56 ± 0.31

MMD (↓) 0.0593 ± 0.0026 0.0569 ± 0.0031 0.0588 ± 0.0030
KID (↓) 0.0029 ± 0.0006 0.0009 ± 0.0002 0.0020 ± 0.0003

λconstr = 1.0
CD (↓) 2.42 ± 0.36 2.28 ± 0.18 2.61 ± 0.21

MMD (↓) 0.0554 ± 0.0037 0.0548 ± 0.0031 0.0593 ± 0.0019
KID (↓) 0.0031 ± 0.0005 0.0031 ± 0.0004 0.0029 ± 0.0004

Pe
ri

od
ic

λconstr = 0.01
CD (↓) 0.25 ± 0.40 0.28 ± 0.12 0.30 ± 0.15

MMD (↓) 0.2133 ± 0.0057 0.0484 ± 0.0041 0.0507 ± 0.0039
KID (↓) 0.0215 ± 0.0018 0.0006 ± 0.0002 0.0019 ± 0.0004

λconstr = 0.1
CD (↓) 0.35 ± 0.29 0.15 ± 0.09 0.35 ± 0.20

MMD (↓) 0.0795 ± 0.0059 0.0621 ± 0.0045 0.1013 ± 0.0060
KID (↓) 0.0054 ± 0.0008 0.0015 ± 0.0005 0.0044 ± 0.0008

λconstr = 1.0
CD (↓) 0.30 ± 0.11 0.05 ± 0.06 0.00 ± 0.00

MMD (↓) 0.1092 ± 0.0056 0.0856 ± 0.0057 0.7822 ± 0.0037
KID (↓) 0.0049 ± 0.0007 0.0044 ± 0.0009 0.8408 ± 0.0020

C
ou

nt

λconstr = 0.01
CD (↓) 0.73 ± 0.55 0.65 ± 0.49 0.61 ± 0.47

MMD (↓) 0.0715 ± 0.0057 0.0449 ± 0.0030 0.2119 ± 0.0067
KID (↓) 0.0084 ± 0.0006 0.0514 ± 0.0011 0.0266 ± 0.0011

λconstr = 0.1
CD (↓) 0.13 ± 0.10 0.59 ± 0.45 0.52 ± 0.41

MMD (↓) 0.1773 ± 0.0023 0.0884 ± 0.0058 0.0520 ± 0.0032
KID (↓) 0.5006 ± 0.0040 0.0594 ± 0.0012 0.0086 ± 0.0004

λconstr = 1.0
CD (↓) 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.01

MMD (↓) 0.6346 ± 0.0022 0.6774 ± 0.0024 0.7988 ± 0.0029
KID (↓) 0.4995 ± 0.0018 0.4957 ± 0.0020 0.4786 ± 0.0016

Table 2: Ablation study of constraint loss hyperparameters. Constr. dist. (CD) = 100λconstrℓ. MMD
and KID are metrics for distribution-matching accuracy. The mean ± std. dev. of each metric was
estimated with 10000 samples. For each constraint, the NAMM and MDM were trained for as many
epochs (before finetuning) as reported in Table 4. The hyperparameter setting used for the main paper
results reported in Table 1 is underlined for each constraint (the results here are slightly different due
to randomness in the training runs). These results, which were attained without finetuning, give a
sense of how performance changes with respect to λcosntr and σmax for each constraint.
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D EXPERIMENT DETAILS

D.1 IMPLEMENTATION

MDM score model For training the score model sθ in the learned mirror space, we followed the
implementation of Song et al. (2021a). We used the NCSN++ architecture with 64 filters in the first
layer and the VP SDE with βmin = 0.1 and βmax = 20. Training was done using the Adam optimizer
with a learning rate of 0.0002 and gradient norm clipping with a threshold of 1.

NAMM For gϕ, we followed the implementation of the gradient of a strongly-convex ICNN of Tan
et al. (2023), configuring the ICNN to be 0.9-strongly convex. Following the settings of CycleGAN
(Zhu et al., 2017), fψ was implemented as a ResNet-based generator with 6 residual blocks and 32
filters in the last convolutional layer. For all constraints except the divergence-free constraint, we
had the ResNet-based generator output the residual image (i.e., fψ(x̃) = ResNet(x̃) + x̃). We found
that for the divergence-free constraint, a non-residual-based inverse map (i.e., fψ(x̃) = ResNet(x̃))
achieves better constraint loss. The NAMM was trained using Adam optimizer with a learning rate of
0.001 for the divergence-free constraint and a learning rate of 0.0002 for all other constraints.

Table 3 shows the hyperparameter choices for each constraint. The regularization weight λreg in
the NAMM objective (Equation 1) was fixed at 0.001. We used 3 ICNN layers for images 64× 64
or smaller and 2 ICNN layers for images 128 × 128 or larger for the sake of efficiency. These
hyperparameter values do not need to be heavily tuned, as we chose these settings through a coarse
parameter search (e.g., trying λconstr = 0.01 or λ = 1 to see which would lead to reasonable loss
curves).

Num. ICNN layers σmax λconstr

Total Brightness 3 0.1 0.01
1D Burgers’ 3 0.1 1

Divergence-free 2 0.5 1
Periodic 3 0.1 1

Count 2 0.1 0.01

Table 3: NAMM hyperparameter values for each constraint in our experiments.

The main results shown in Figure 3 were taken from the finetuned NAMM, ensuring that the total
training time of the NAMM, MDM, and finetuning did not exceed the total training time of the
baseline DM. While we kept track of the validation loss, this was not used to determine stopping time.
We found that the NAMM training and MDM training were not prone to overfitting, so we chose
the total number of epochs based on observing a reasonable level of convergence of the loss curves.
We found that some overfitting is possible during finetuning but did not perform early stopping. All
results were obtained from unseen test data because we fed random samples from the MDM into the
inverse map and made sure not to use the same random seed as the one used to generate finetuning
data. For all constraints, we generated 12800 training examples from the MDM for finetuning.

Table 4 details the exact number of training epochs for each constraint. Figure 4 in the main results
compares the constraint distances of our method without finetuning, our method with finetuning, and
the baseline DM as a function of compute time.

Mirror map parameterization ablation study For the comparison of parameterizing the mirror
map as the gradient of an ICNN versus as a ResNet-based generator (Figure 7), we used a ResNet-
based generator that outputs the residual image. This means that the inverse mirror map was
parameterized as a residual-based network (fψ(x̃) = ResNet(x̃;ψ) + x̃), and so was the ResNet-
based forward mirror map (gϕ(x) = ResNet(x;ϕ) + x).

D.2 ABLATION OF SEQUENCE OF NOISY MIRROR DISTRIBUTIONS

Recall that the NAMM training objective involves optimizing fψ over the sequence of noisy mirror
distributions defined in Equation 2. Thus instead of considering a single noisy mirror distribution
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NAMM epochs
(before FT) MDM epochs FT epochs DM epochs

Total Brightness 30 200 1000 450
1D Burgers’ 100 300 700 1500

Divergence-free 100 700 500 2000
Periodic 50 300 1000 1000

Count 50 300 700 1500

Table 4: Number of training epochs of the NAMM, MDM, finetuning, and DM used for the results
in Fig. 3. These were chosen so that our method (including the NAMM training, MDM training,
finetuning data generation, and finetuning) did not take longer to train than the DM.

0.0005 0.0010 0.0015
Constraint Distance `burgers

0

10

20

30

C
ou

nt

Before Finetuning

0.0005 0.0010 0.0015

After Finetuning
Fixed σ

Integral (Ours)

Figure 10: Fixed σ vs. integrating over [0, σmax]. The NAMM objective involves optimizing fψ
over the sequence of noisy mirror distributions defined in Eq. 2. We compare this approach of
integrating over σ ∈ [0, σmax] to setting a fixed noise standard deviation σ = σmax in the context
of the 1D Burgers’ constraint (here σmax = 0.1). Both before and after finetuning, the constraint
distances ℓburgers of inverted MDM samples are smaller if the NAMM was trained with varying σ.
The histograms show the constraint distances of 128 samples from each method.

(gϕ)♯pdata ∗ N (0, σ2I) with a fixed noise level σ, we perturb samples from (gϕ)♯pdata with varying
levels of Gaussian noise with variances ranging from 0 to σ2

max. In Figure 10, we compare this choice,
which involves integrating over σ ∈ [0, σmax], to the use of a fixed σ = σmax.

D.3 DATA ASSIMILATION WITH MIRROR DPS

Following the original DPS (Chung et al., 2022), we use a hyperparameter ζ ∈ R>0 to re-weight the
time-dependent measurement likelihood. At diffusion time t, the measurement weight is given by

ζ(t) := ζ/ ∥y −A(x̂0)∥Γ , (8)
where x̂0 := fψ (E[x̃(0) | x̃(t)]). Here we assume that the measurement process has the form

y = A(x∗) + n, n ∼ N (0m,Γ) (9)

for some unknown source image x∗ ∈ Rd, where A : Rd → Rm is a known forward operator, and
m ×m is the known noise covariance matrix Γ. Higher values of ζ impose greater measurement
consistency, but setting ζ too high can cause instabilities and artifacts. The data assimilation results
in Figure 5 used ζ = 0.1 and constraint-guidance weight equal to 200. Figure 11 shows results for
the same tasks but different values of ζ in DPS and the constraint-guidance weight in CG-DPS.

E MEASURES OF DISTANCE BETWEEN DISTRIBUTIONS

E.1 MMD

The maximum mean discrepancy (MMD) between two distributions is computed by embedding
both distributions into a reproducing kernel Hilbert space (RKHS) and using samples to estimate the
resulting distance. We use the popular Gaussian radial basis function (RBF) kernel to construct the
RKHS, setting the length scale σ as√

median
({∥∥x(i) − x(j)

∥∥2
2

})
/2, (10)
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(a) 1D Burgers’ (b) Kolmogorov flow (divergence-free)
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Figure 11: Data assimilation results for different values of ζ and constraint-guidance strengths. E.g.,
“CG-DPS-50” refers to CG-DPS with a constraint-guidance weight of 50. These highlight that even for
different values of ζ, the constraint errors (i.e., PDE residual or absolute divergence) of our solutions
are much smaller than those of the baseline solutions. Furthermore, changing the constraint-guidance
weight of CG-DPS does not meaningfully change the level of constraint satisfaction.
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i.e., the square root of half the median of the pairwise squared Euclidean distances in the dataset{
x(i)

}n
i=1

. This is a popular choice in previous work (Briol et al., 2019) and has been theoretically
and empirically justified Garreau et al. (2017).

Our MMD implementation is based on the code provided for the work of Sutherland et al. (2016)
(Sutherland, 2018). We estimated mean and standard deviation empirically with 50 random subsets of
1000 samples from each dataset. The length scale was estimated (Equation 10) for each subset using
the samples in the true subset. In total, the generated and true datasets contained 10000 samples each.
Held-out test images were used as true samples for all constraints, except for total brightness (due to
a lack of test images in the dataset, training images were used for this constraint only).

E.2 KID

The Kernel Inception Distance (KID) between two distributions is based on the Inception v3 fea-
tures evaluated for samples from both distributions. Following standard practice, we use the 2048-
dimensional final average pooling features. The KID is computed as the squared MMD (using a
polynomial kernel) between the two embedded distributions. It has several advantages over the
Fréchet Inception Distance (FID) (Heusel et al., 2017), including being unbiased and more sample-
efficient (Bińkowski et al., 2018). We note, however, that the Inception network was trained on
natural images, so both KID and FID are not perfect metrics for the types of data we consider in this
work, such as physics-based simulation outputs.

KID evaluation is based on the gan-metrics-pytorch repository (Fatir, 2021), using the same
Inception v3 weights as those used in the official TensorFlow implementation of FID (Heusel et al.,
2017). We evaluated KID with the same samples that were used for MMD. Since the Inception
network takes RGB images as input, we represented the samples as grayscale images converted to
RGB. For all the constraint datasets except for the divergence-free Kolmogorov flows, we clipped the
image pixel values to [0, 1] before converting them to RGB. For the divergence-free data, we clipped
the values in the vorticity images to [−20, 20] and then rescaled this range to [0, 1].

E.3 FID

Although FID is a biased finite-sample estimator and heavily depends on the number of samples,
it is a popular metric for evaluating generative models. Table 5 reports FID values in addition to
the MMD and KID values in Table 1. We find that the rankings of our method before finetuning,
our method after finetuning, and the baseline method are consistent with the rankings when using
KID in Table 1. Again we note that FID and KID are based on Inception features that were tuned to
natural images, so they are not the most reliable measures of distance between distributions for these
particular image datasets.

Total Brightness 1D Burgers’ Divergence-free Periodic Count

Ours w/o FT 5.02 3.36 2.21 2.26 24.18

Ours 4.58 2.04 3.97 1.99 37.65

Baseline 42.25 140.70 3.41 6.42 69.76

Table 5: FID values (↓) associated with the comparisons in Tab. 1. According to FID, our approach
consistently outperforms the baseline DM approach in matching the true distribution. Finetuning even
sometimes improves FID while improving constraint satisfaction (see Tab. 1 for constraint distances).

Our FID implementation is borrowed from the pytorch-fid codebase (Seitzer, 2020). Per
standard practice, we estimated FID with 50000 generated samples and 50000 true samples. As was
the case with MMD and KID, held-out test images were used as true samples, except that training
images were used for the total brightness data. We pre-processed the samples for the Inception
network in the same way we did for KID.
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F CONSTRAINT DETAILS

Here we provide details about each demonstrated constraint and its corresponding dataset.

Total brightness The total brightness, or total flux, of a discrete image x ∈ Rd is simply the sum
of its pixel values: V (x) :=

∑d
i=1 xi. We use the constraint distance function

ℓflux(x) :=
∣∣V (x)− V̄

∣∣ ,
where V̄ ∈ R≥0 is the target total brightness. The dataset used for this constraint contains images
from general relativistic magneto-hydrodynamic (GRMHD) simulations (Wong et al., 2022) of Sgr
A* with a fixed field of view. The images (originally 400 × 400) were resized to 64 × 64 pixels
and rescaled to have a total flux of 120. The dataset consists of 100000 training images and 100
validation images.

1D Burgers’ Burgers’ equation (Bateman, 1915; Burgers, 1948) is a nonlinear PDE that is a
useful model for fluid mechanics. We consider the equation for a viscous fluid u = u(t, x) in
one-dimensional space:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (11)

where u(0, x) is some initial condition u0(x), and ν ∈ R≥0 is the viscosity coefficient. We use
Crank-Nicolson (Crank & Nicolson, 1947) to discretize and approximately solve Equation 11 by
representing the solution on an nx × nt grid, where nx is the spatial discretization, and nt is the
number of snapshots in time. Given an nx × nt image, we wish to verify that it could be a solution to
Equation 11 with the Crank-Nicolson discretization. Letting x ∈ Rnx×nt denote the 2D image, we
formulate the following distance function for evaluating agreement with the Crank-Nicolson solver:

ℓburgers(x) :=
1

nt − 1

nt−2∑
t=0

∥x[:, t+ 1]− fC-N(x[:, t])∥1 ,

where fC-N : Rnx → Rnx outputs the snapshot at the next time using Crank-Nicolson, and Pythonic
notation is used for simplicity. Note that a finite-differences loss as proposed for physics-informed
neural networks (PINNs) Raissi et al. (2019) would also work, but then our data would have non-
negligible constraint distances since Crank-Nicolson solutions do not strictly follow a low-order
finite-differences approximation.

Using a Crank-Nicolson solver (Crank & Nicolson, 1947) implemented with Diffrax (Kidger, 2022),
we numerically solved the 1D Burgers’ equation (Equation 11) with viscosity coefficient ν = 0.5. The
initial conditions were sampled from a Gaussian process based on a Matérn kernel with smoothness
parameter 1.5 and length scale equal to 1.0. We discretized the spatiotemporal domain into a 64× 64
grid covering the spatial extent x ∈ [0, 10] and time interval t ∈ [0, 8]. We ran Crank-Nicolson with
a time step of ∆t = 0.025 and saved every fifth step for a total of 64 snapshots. We followed this
process to create our 1D Burgers’ dataset of 10000 training images and 1000 validation images.

Divergence-free The study of fluid dynamics often involves incompressible, or divergence-free,
fluids. Letting u = u(x, y, t) be the time-dependent trajectory of a 2D velocity field, the divergence-
free constraint says that ∇ · u = ∂ux

∂x +
∂uy

∂y = 0. We assume an nx × ny spatial grid and represent
trajectories as two-channel (for the two velocity components) images showing each nx×ny snapshot
for a total of nt snapshots. Such an image x has a corresponding image of the divergence field
div(x), which has the same size as x and represents the divergence of the trajectory. We formulate
the following distance function that penalizes non-zero divergence:

ℓdiv(x) := ∥div(x)∥1 .

We created a dataset of Kolmogorov flows, which satisfy a Navier-Stokes PDE, to demonstrate the
divergence-free constraint. The Navier-Stokes PDEs are ubiquitous in fields including fluid dynamics,
mathematics, and climate modeling and have the following form:

∂u

∂t
= −u∇u+

1

Re
∇2u− 1

ρ
∇p+ f∇ · u = 0,
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where u = u(x, y, t) is the 2D velocity field at spatial location (x, y) and time t, Re is the Reynolds
number, ρ is the density, p is the pressure field, and f is the external forcing. Following Kochkov et al.
(2021) and Rozet & Louppe (2024), we set Re = 103, ρ = 1, and f corresponding to Kolmogorov
forcing (Chandler & Kerswell, 2013; Boffetta & Ecke, 2012) with linear damping. We consider the
spatial domain [0, 2π]2 with periodic boundary conditions and discretize it into a 64×64 uniform grid.
We used jax-cfd (Kochkov et al., 2021) to randomly sample divergence-free, spectrally filtered
initial conditions and then solve the Navier-Stokes equations with the forward Euler integration
method with ∆t = 0.01 time units. We saved a snapshot every 20 time units for a total of 8 snapshots
in the time interval [3, 4.6]. We represent the solution as a two-channel 128× 256 image showing
the snapshots in left-to-right order. In total, the dataset consists of 10000 training images and 1000
validation images.

Periodic Assuming the constraint that every image is a periodic tiling of ntiles unit cells, we
formulate the following constraint distance for a given image x:

ℓperiodic(x) :=

ntiles∑
i=1

1

ntiles

ntiles∑
j=1

∥ti(x)− tj(x)∥1 ,

which compares each pair of tiles, where ti(x) denotes the i-th tile in the image. For our experiments,
we consider 32× 32 unit cells that are tiled in a 2× 2 pattern to create 64× 64 images. Using the
unit-cell generation code of Ogren et al. (2024), we created a dataset of 30000 training images and
300 validation images.

Count For the count constraint, we rely on a CNN to estimate the count of a particular object.
Letting fCNN : Rd → R be the trained counting CNN, we turn to the following constraint distance
function for a target count c̄:

ℓcount(x) := |fCNN(x)− c̄| .
We demonstrate this constraint with astronomical images that contain a certain number of galaxies.
In particular, we simulated 128× 128 images of radio galaxies with background noise Connor et al.
(2022), each of which has exactly eight (c̄ = 8) galaxies with an SNR ≥ 15 dB. The dataset consists
of 10000 training images and 1000 validation images.

To train the counting CNN, we created a mixed dataset with images of 6, 7, 8, 9, or 10 galaxies that
includes 10000 training images and 1000 validation images for each of the five labels. The CNN
architecture was adapted from a simple MNIST classifier (8bitmp3, 2023) with two convolutional
layers followed by two dense layers with ReLU activations. The CNN was trained to minimize the
mean squared error between the real-valued estimated count and the ground-truth count.
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